ON NONSINGULARITY AND GROUP INVERSE OF LINEAR COMBINATIONS OF FOUR TRIPOTENT MATRICES

CHEN Yin－lan，ZUO Ke－zheng，XIE Tao
（School of Mathematics and Statistics，Hubei Normal University，Huangshi 435002，China）

Abstract

In this paper，some conditions for the nonsingularity and group inverses of linear combinations of four tripotent matrices is mainly established．By using the method of matrix decomposition，we obtain some formulae for the inverses and group inverses of them，which perfects the theory of nonsingularity of linear combinations of k－potent matrices．

Keywords：inverse；group inverse；linear combination；tripotent matrices
2010 MR Subject Classification：15A09
Document code：A Article ID：0255－7797（2015）05－1026－09

1 Introduction

Let \mathbb{C} be the field of complex numbers and $\mathbb{C}^{*}=\mathbb{C}-0$ ．For a positive integer n ，let \mathcal{M}_{n} be the set of all $n \times n$ complex matrices over \mathbb{C} ．The symbols $\operatorname{rank}(A), A^{*}, \mathcal{R}(A)$ ，and $\mathcal{N}(A)$ stand for the rank，conjugate transpose，the range space，and the null space of $A \in \mathcal{M}_{n}$ ， respectively．Recall that a matrix $A \in \mathcal{M}_{n}$ is tripotent if $A^{3}=A$ ．

The nonsingularity of linear combinations of idempotent matrices and k－potent matrices was studied in，for example［1－4］．The nonsingularities of the combinations $c_{1} P+c_{2} Q-c_{3} P Q$ and $c_{1} P+c_{2} Q-c_{3} P Q-c_{4} Q P-c_{5} P Q P$ of two idempotent matrices P, Q were investigated in［5］and［6］，respectively．The considerations of this paper are inspired by Benítez et al．［7］． They established necessary and sufficient conditions for the nonsingularity of combinations $T=c_{1} T_{1}+c_{2} T_{2}+c_{3} T_{3}-c_{4}\left(T_{1} T_{2}+T_{3} T_{1}+T_{2} T_{3}\right)$ of three trioptent matrices and gave some formulae for the inverse of $T=c_{1} T_{1}+c_{2} T_{2}+c_{3} T_{3}-c_{4}\left(T_{1} T_{2}+T_{3} T_{1}+T_{2} T_{3}\right)$ under some conditions．

In this paper we consider a combination of the form

$$
\begin{equation*}
T=c_{1} T_{1}+c_{2} T_{2}+c_{3} T_{3}+c_{4} T_{4} \tag{1.1}
\end{equation*}
$$

where $c_{1}, c_{2}, c_{3}, c_{4} \in \mathbb{C}^{*}$ and $T_{1}, T_{2}, T_{3}, T_{4} \in \mathcal{M}_{n}$ are three tripotent matrices．The purpose of this paper is mainly twofold：first，to establish necessary and sufficient conditions for the

[^0]nonsingularity of combinations of form (1.1); second, to give some formulae for the inverse of them.

Now, let us give the following additional concepts and properties. A given matrix $A \in \mathcal{M}_{n}$ is said to be group invertible if there exists a matrix $X \in \mathcal{M}_{n}$ such that

$$
\begin{equation*}
A X A=A ; X A X=X ; A X=X A \tag{1.2}
\end{equation*}
$$

hold. If such an $\mathrm{X} \in \mathcal{M}_{n}$ exists, then it is unique, customarily denoted by A^{\sharp} (see e.g. [8]). A matrix $A \in \mathcal{M}_{n}$ is group invertible if and only if there exist nonsingular $S \in \mathcal{M}_{n}, C \in \mathcal{M}_{r}$ such that $A=S(C \oplus 0) S^{-1}, r$ being the rank of A (see [9], Exercise 5.10.12). In this situation, one has $A^{\sharp}=S\left(C^{-1} \oplus 0\right) S^{-1}$. This latter representation implies that any diagonalizable matrix is group invertible. Moreover, it is well known that $\mathrm{A} \in \mathcal{M}_{n}$ is nonsingular if and only if $\mathcal{N}(A)=0$. Furthermore, if $A \in \mathcal{M}_{n}$ and k is a natural number greater than 1 , then A satisfies $A^{k}=A$ if and only if A is diagonalizable and the spectrum of A is contained in $\sqrt[k-1]{1} \cup 0$ (see e.g. [10]).

Special types of matrices, such as idempotents, tripotents, etc., are very useful in many contexts and they have been extensively studied in the literature. For example, quadratic forms with idempotent matrices are used extensively in statistical theory. So it is worth to stress and spread these kinds of results. Evidently, if T is a tripotent matrix, then T is group invertible and $T^{\sharp}=T$. Many of the results given in this work will be given in terms of group invertible matrices.

2 Main Results and Proofs

If $A \in \mathcal{M}_{n}$ satisfying $A^{2}=I_{n}$, We call A an involutory matrix. On the inverse of linear combinations of involutory matrices, we have the following results.

Lemma 2.1 Let $A, B, C, D \in \mathcal{M}_{n}$ be involutory matrices and they are mutually commuting, $a, b, c, d \in \mathbb{C}^{*}$ and

$$
\begin{aligned}
& (a+b+c+d)(a-b+c+d)(a+b-c+d)(a+b+c-d) \\
& (a-b-c+d)(a-b+c-d)(a+b-c-d)(a-b-c-d) \neq 0,
\end{aligned}
$$

then

$$
\begin{align*}
& (a A+b B+c C+d D)^{-1} \\
= & \frac{1}{m}\left(x_{1} A+x_{2} B+x_{3} C+x_{4} D+z_{1} A B C+z_{2} A B D+z_{3} A C D+z_{4} B C D\right), \tag{2.1}
\end{align*}
$$

where

$$
\begin{aligned}
m= & a x_{1}+b x_{2}+c x_{3}+d x_{4}=(a+b+c+d)(a-b+c+d)(a+b-c+d) \\
& (a+b+c-d)(a-b-c+d)(a-b+c-d)(a+b-c-d)(a-b-c-d), \\
z_{1}= & 2 b c\left(a^{5}-2 a^{3} b^{2}+a b^{4}-2 a^{3} c^{2}-2 a b^{2} c^{2}+a c^{4}+2 a^{3} d^{2}+2 a b^{2} d^{2}+2 a c^{2} d^{2}-3 a d^{4}\right), \\
z_{2}= & 2 b d\left(a^{5}-2 a^{3} b^{2}+a b^{4}+2 a^{3} c^{2}+2 a b^{2} c^{2}-3 a c^{4}-2 a^{3} d^{2}-2 a b^{2} d^{2}+2 a c^{2} d^{2}+a d^{4}\right), \\
z_{3}= & 2 c d\left(a^{5}+2 a^{3} b^{2}-3 a b^{4}-2 a^{3} c^{2}+2 a b^{2} c^{2}+a c^{4}-2 a^{3} d^{2}+2 a b^{2} d^{2}-2 a c^{2} d^{2}+a d^{4}\right),
\end{aligned}
$$

$$
\begin{aligned}
z_{4}= & 2 b c d\left(-3 a^{4}+2 a^{2} b^{2}+b^{4}+2 a^{2} c^{2}-2 b^{2} c^{2}+c^{4}+2 a^{2} d^{2}-2 b^{2} d^{2}-2 c^{2} d^{2}+d^{4}\right), \\
x_{1}= & -\left(-a^{7}+3 a^{5} b^{2}-3 a^{3} b^{4}+a b^{6}+3 a^{5} c^{2}-2 a^{3} b^{2} c^{2}-a b^{4} c^{2}-3 a^{3} c^{4}-a b^{2} c^{4}+a c^{6}+3 a^{5} d^{2}\right. \\
& \left.-2 a^{3} b^{2} d^{2}-a b^{4} d^{2}-2 a^{3} c^{2} d^{2}+10 a b^{2} c^{2} d^{2}-a c^{4} d^{2}-3 a^{3} d^{4}-a b^{2} d^{4}-a c^{2} d^{4}+a d^{6}\right), \\
x_{2}= & -b\left(a^{6}-3 a^{4} b^{2}+3 a^{2} b^{4}-b^{6}-a^{4} c^{2}-2 a^{2} b^{2} c^{2}+3 a b^{4} c^{2}-a^{2} c^{4}-3 b^{2} c^{4}+c^{6}-a^{4} d^{2}\right. \\
& \left.-2 a^{2} b^{2} d^{2}+3 b^{4} d^{2}+10 a^{2} c^{2} d^{2}-2 b^{2} c^{4} d^{2}-c^{4} d^{2}-a^{2} d^{4}-3 b^{2} d^{4}-c^{2} d^{4}+d^{6}\right), \\
x_{3}= & -c\left(a^{6}-a^{4} b^{2}-a^{2} b^{4}+b^{6}-3 a^{4} c^{2}-2 a^{2} b^{2} c^{2}-3 b^{4} c^{2}+3 a^{2} c^{4}+3 b^{2} c^{4}-c^{6}-a^{4} d^{2}\right. \\
& \left.+10 a^{2} b^{2} d^{2}-b^{4} d^{2}-2 a^{2} c^{2} d^{2}-2 b^{2} c^{2} d^{2}+3 c^{4} d^{2}-a^{2} d^{4}-b^{2} d^{4}-3 c^{2} d^{4}+d^{6}\right), \\
x_{4}= & d\left(-a^{6}+a^{4} b^{2}+a^{2} b^{4}-b^{6}+a^{4} c^{2}-10 a^{2} b^{2} c^{2}+b^{4} c^{2}+a^{2} c^{4}+b^{2} c^{4}-c^{6}+3 a^{4} d^{2}+2 a^{2} b^{2} d^{2}\right. \\
& \left.+3 b^{4} d^{2}+2 a^{2} c^{2} d^{2}+2 b^{2} c^{2} d^{2}+3 c^{4} d^{2}-3 a^{2} d^{4}-3 b^{2} d^{4}-3 c^{2} d^{4}+d^{6}\right) .
\end{aligned}
$$

Corollary 2.1 Let $A, B, C \in \mathcal{M}_{n}$ be involutiory matrices and they are mutually commuting, $a, b, c \in \mathbb{C}^{*}$ and $(a+b+c)(a-b+c)(a+b-c)(a-b-c) \neq 0$, then

$$
\begin{equation*}
(a A+b B+c C)^{-1}=\frac{1}{m}(x A+y B+z C+w A B C) \tag{2.2}
\end{equation*}
$$

where

$$
\begin{aligned}
& m=a x_{1}+b x_{2}+c x_{3}+d x_{4}=(a+b+c)(a-b+c)(a+b-c)(a-b-c) \\
& x=a^{3}-a b^{2}-a c^{2}, y=b^{3}-b c^{2}-b a^{2}, z=c^{3}-c a^{2}-c b^{2}, w=2 a b c
\end{aligned}
$$

Proof In Lemma 2.1, put $D=0$ and $d=0$, we will obtain Corollary 2.1.
About group inverses of linear combinations of three tripotent matrices, we give the following Lemmas.

Lemma 2.2 (see [7], Theorem 2.2) Let $T_{1}, T_{2}, T_{3} \in \mathcal{M}_{n} \backslash\{0\}$ be three mutually commuting tripotent matrices and $c_{1}, c_{2}, c_{3} \in \mathbb{C}^{*}$ such that $\left(c_{i}+c_{j}\right)\left(c_{i}-c_{j}\right) \neq 0(i, j=1,2,3$ and $i \neq j$) and

$$
\left(c_{1}+c_{2}+c_{3}\right)\left(c_{1}-c_{2}+c_{3}\right)\left(c_{1}+c_{2}-c_{3}\right)\left(c_{1}-c_{2}-c_{3}\right) \neq 0
$$

then

$$
\mathcal{R}\left(T_{1}^{2}+T_{2}^{2}+T_{3}^{2}\right)=\mathcal{R}\left(c_{1} T_{1}+c_{2} T_{2}+c_{3} T_{3}\right), \mathcal{N}\left(T_{1}^{2}+T_{2}^{2}+T_{3}^{2}\right)=\mathcal{N}\left(c_{1} T_{1}+c_{2} T_{2}+c_{3} T_{3}\right)
$$

$c_{1} T_{1}+c_{2} T_{2}+c_{3} T_{3}$ is group invertible, and

$$
\begin{align*}
\left(c_{1} T_{1}+c_{2} T_{2}+c_{3} T_{3}\right)^{\sharp}= & q\left(T_{1}, T_{2}, T_{3}\right) T_{1}^{2} T_{2}^{2} T_{3}^{2}+p_{c_{1}, c_{2}}\left(T_{1}, T_{2}\right) T_{1}^{2} T_{2}^{2}\left(I_{n}-T_{3}^{2}\right) \\
& +p_{c_{1}, c_{3}}\left(T_{1}, T_{3}\right) T_{1}^{2}\left(I_{n}-T_{2}^{2}\right)+p_{c_{2}, c_{3}}\left(T_{2}, T_{3}\right)\left(I_{n}-T_{1}^{2}\right), \tag{2.3}
\end{align*}
$$

where $p_{a, b}: \mathbb{C}^{2} \rightarrow \mathbb{C}$ and $q: \mathbb{C}^{3} \rightarrow \mathbb{C}$ are the following complex polynomials,

$$
\begin{align*}
p_{a, b}(z, w) & =\frac{b^{2}}{a\left(a^{2}-b^{2}\right)} z w^{2}+\frac{a^{2}}{b\left(b^{2}-a^{2}\right)} z^{2} w+\frac{1}{a} z+\frac{1}{b} w\left(a, b \in \mathbb{C}^{*}, a^{2} \neq b^{2}\right) \\
q(z, w, u) & =\frac{\left(c_{1}^{3}-c_{1} c_{2}^{2}-c_{1} c_{3}^{2}\right) z+\left(c_{2}^{3}-c_{2} c_{3}^{2}-c_{2} c_{1}^{2}\right) w+\left(c_{3}^{3}-c_{3} c_{1}^{2}-c_{3} c_{2}^{2}\right) u+2 c_{1} c_{2} c_{3} z w u}{\left(c_{1}+c_{2}+c_{3}\right)\left(c_{1}-c_{2}+c_{3}\right)\left(c_{1}+c_{2}-c_{3}\right)\left(c_{1}-c_{2}-c_{3}\right)} \tag{2.4}
\end{align*}
$$

In particular, if $T_{1}^{2}+T_{2}^{2}+T_{3}^{2}$ is nonsingular, then $c_{1} T_{1}+c_{2} T_{2}+c_{3} T_{3}$ is nonsingular and $\left(c_{1} T_{1}+c_{2} T_{2}+c_{3} T_{3}\right)^{-1}$ is given by (2.3).

Lemma 2.3 (see [7], Theorem 2.3) Let $T_{1}, T_{2}, T_{3} \in \mathcal{M}_{n}$ be three mutually commuting tripotent matrices, then $T_{1}+T_{2}+T_{3}$ is nonsingular if and only if

$$
I_{n}+T_{1} T_{2}+T_{2} T_{3}+T_{3} T_{1}+T_{1} T_{2} T_{3}
$$

and $T_{1}^{2}+T_{2}^{2}+T_{3}^{2}$ are nonsingular.
Now we give the nonsingularity and group inverses of linear combinations of four tripotent matrices. And we denote

$$
\begin{aligned}
& (a A+b B+c C+d D)^{-1} \\
= & \frac{1}{m}\left(x_{1} A+x_{2} B+x_{3} C+x_{4} D+z_{1} A B C+z_{2} A B D+z_{3} A C D+z_{4} B C D\right) \\
= & h_{a, b, c, d}(A, B, C, D)
\end{aligned}
$$

in (2.1), $\left(c_{1} T_{1}+c_{2} T_{2}+c_{3} T_{3}\right)^{\sharp}=k_{c_{1}, c_{2}, c_{3}}\left(T_{1}, T_{2}, T_{3}\right)$ in (2.3), $p_{a, b}(z, w)$ and $q(z, w, u)$ are the same in (2.4).

Theorem 2.1 Let $T_{1}, T_{2}, T_{3}, T_{4} \in \mathcal{M}_{n} \backslash\{0\}$ be four mutually commuting tripotent matrices and $c_{1}, c_{2}, c_{3}, c_{4} \in \mathbb{C}^{*}$ such that

$$
\begin{aligned}
& \left(c_{i}+c_{j}\right)\left(c_{i}-c_{j}\right) \neq 0(i, j=1,2,3,4 \text { and } i \neq j), \\
& \left(c_{i}+c_{j}+c_{k}\right)\left(c_{i}-c_{j}+c_{k}\right)\left(c_{i}+c_{j}-c_{k}\right)\left(c_{i}-c_{j}-c_{k}\right) \neq 0 \quad(i, j=1,2,3,4 \text { and } i<j<k), \\
& \left(c_{1}+c_{2}+c_{3}+c_{4}\right)\left(c_{1}-c_{2}+c_{3}+c_{4}\right)\left(c_{1}+c_{2}-c_{3}+c_{4}\right)\left(c_{1}+c_{2}+c_{3}-c_{4}\right) \\
& \left(c_{1}-c_{2}-c_{3}+c_{4}\right)\left(c_{1}-c_{2}+c_{3}-c_{4}\right)\left(c_{1}+c_{2}-c_{3}-c_{4}\right)\left(c_{1}-c_{2}-c_{3}-c_{4}\right) \neq 0,
\end{aligned}
$$

then

$$
\begin{aligned}
& \mathcal{R}\left(T_{1}^{2}+T_{2}^{2}+T_{3}^{2}+T_{4}^{2}\right)=\mathcal{R}\left(c_{1} T_{1}+c_{2} T_{2}+c_{3} T_{3}+c_{4} T_{4}\right), \\
& \mathcal{N}\left(T_{1}^{2}+T_{2}^{2}+T_{3}^{2}+T_{4}^{2}\right)=\mathcal{N}\left(c_{1} T_{1}+c_{2} T_{2}+c_{3} T_{3}+c_{4} T_{4}\right),
\end{aligned}
$$

$c_{1} T_{1}+c_{2} T_{2}+c_{3} T_{3}+c_{4} T_{4}$ is group invertible, and

$$
\begin{align*}
& \left(c_{1} T_{1}+c_{2} T_{2}+c_{3} T_{3}+c_{4} T_{4}\right)^{\sharp}=h_{c_{1}, c_{2}, c_{3}, c_{4}}\left(T_{1}, T_{2}, T_{3}, T_{4}\right) T_{1}^{2} T_{2}^{2} T_{3}^{2} T_{4}^{2} \\
& +q\left(T_{1}, T_{2}, T_{3}\right) T_{1}^{2} T_{2}^{2} T_{3}^{2}\left(I_{n}-T_{4}^{2}\right)+k_{c_{1}, c_{2}, c_{4}}\left(T_{1}, T_{2}, T_{4}\right) T_{1}^{2} T_{2}^{2}\left(I_{n}-T_{3}^{2}\right) \\
& +k_{c_{1}, c_{3}, c_{4}}\left(T_{1}, T_{3}, T_{4}\right) T_{1}^{2}\left(I_{n}-T_{2}^{2}\right)+k_{c_{2}, c_{3}, c_{4}}\left(T_{2}, T_{3}, T_{4}\right)\left(I_{n}-T_{1}^{2}\right) . \tag{2.5}
\end{align*}
$$

Proof By (see [9], Exercise 5.10.12), there exist nonsingular matrices $S_{1} \in \mathcal{M}_{n}$ and $X_{1} \in \mathcal{M}_{n-t}$ such that $T_{1}=S_{1}\left(X_{1} \oplus 0\right) S_{1}^{-1}$. The tripotency of T_{1} and the nonsingularity of X_{1} lead to $X_{1}^{2}=I_{n-t}$ as $T_{1} T_{j}=T_{j} T_{1}, j=2,3,4$. We can write matrices T_{2}, T_{3} and T_{4} as follows

$$
T_{2}=S_{1}\left(\begin{array}{cc}
X_{2} & 0 \tag{2.6}\\
0 & E_{2}
\end{array}\right) S_{1}^{-1}, \quad T_{3}=S_{1}\left(\begin{array}{cc}
X_{3} & 0 \\
0 & E_{3}
\end{array}\right) S_{1}^{-1}, \quad T_{4}=S_{1}\left(\begin{array}{cc}
X_{4} & 0 \\
0 & E_{4}
\end{array}\right) S_{1}^{-1}
$$

with $E_{2}, E_{3}, E_{4} \in \mathcal{M}_{t}$, and

$$
\begin{equation*}
X_{i} X_{j}=X_{j} X_{i} \quad(i, j=1,2,3,4) \tag{2.7}
\end{equation*}
$$

Let us notice that matrices $X_{2}, X_{3}, X_{4}, E_{2}, E_{3}, E_{4}$ are tripotent because T_{2}, T_{3} and T_{4} are tripotent. By applying again (see [9], Exercise 5.10.12), there exist nonsingular matrices $S_{2} \in \mathcal{M}_{n-t}$ and $Y_{2} \in \mathcal{M}_{n-t-s}$ such that $X_{2}=S_{2}\left(Y_{2} \oplus 0\right) S_{2}^{-1}$, where $Y_{2}^{2}=I_{n-t-s}$. From (2.7) we can write

$$
X_{1}=S_{2}\left(\begin{array}{cc}
Y_{1} & 0 \tag{2.8}\\
0 & D_{1}
\end{array}\right) S_{2}^{-1}, \quad X_{3}=S_{2}\left(\begin{array}{cc}
Y_{3} & 0 \\
0 & D_{3}
\end{array}\right) S_{2}^{-1}, \quad X_{4}=S_{2}\left(\begin{array}{cc}
Y_{4} & 0 \\
0 & D_{4}
\end{array}\right) S_{2}^{-1}
$$

Observe that $Y_{1}^{2}=I_{n-t-s}, D_{1}^{2}=I_{s}, Y_{i}^{3}=Y_{i}, D_{i}^{3}=D_{i},(i, j=3,4)$ and

$$
\begin{equation*}
Y_{i} Y_{j}=Y_{j} Y_{i} \quad D_{i} D_{j}=D_{j} D_{i} \quad(i, j=1,2,3,4) \tag{2.9}
\end{equation*}
$$

By applying again (see [9], Exercise 5.10.12), there exist nonsingular matrices $S_{3} \in \mathcal{M}_{n-t-s}$ and $Z_{3} \in \mathcal{M}_{n-t-s-r}$ such that $Y_{3}=S_{3}\left(Z_{3} \oplus 0\right) S_{3}^{-1}$, where $Z_{3}^{2}=I_{n-t-s-r}$. From (2.8) we can write

$$
Y_{1}=S_{3}\left(\begin{array}{cc}
Z_{1} & 0 \tag{2.10}\\
0 & C_{1}
\end{array}\right) S_{3}^{-1}, \quad Y_{2}=S_{3}\left(\begin{array}{cc}
Z_{2} & 0 \\
0 & C_{2}
\end{array}\right) S_{3}^{-1}, \quad Y_{4}=S_{3}\left(\begin{array}{cc}
Z_{4} & 0 \\
0 & C_{4}
\end{array}\right) S_{3}^{-1}
$$

Observe that $Z_{1}^{2}=Z_{2}^{2}=I_{n-t-s-r}, C_{1}^{2}=C_{2}^{2}=I_{r}, Z_{4}^{3}=Z_{4}, C_{4}^{3}=C_{4}$ and $Z_{i} Z_{j}=$ $Z_{j} Z_{i}, C_{i} C_{j}=C_{j} C_{i} \quad(i, j=1,2,3,4)$.

Finally, utilize again (see [9], Exercise 5.10.12) to matrix Z_{4} to obtain nonsingular matrices $S_{4} \in \mathcal{M}_{n-t-s-r}$ and $A_{4} \in \mathcal{M}_{u}$ such that $Z_{4}=S_{4}\left(A_{4} \oplus 0\right) S_{4}^{-1}$ with $A_{4}^{2}=I_{u}$. By carrying out the same routine as before, we can write

$$
Z_{1}=S_{4}\left(\begin{array}{cc}
A_{1} & 0 \tag{2.11}\\
0 & B_{1}
\end{array}\right) S_{4}^{-1}, Z_{2}=S_{4}\left(\begin{array}{cc}
A_{2} & 0 \\
0 & B_{2}
\end{array}\right) S_{4}^{-1}, Z_{3}=S_{4}\left(\begin{array}{cc}
A_{3} & 0 \\
0 & B_{3}
\end{array}\right) S_{4}^{-1}
$$

where $A_{i}^{2}=I_{n-t-s-r-u}, B_{i}^{2}=I_{u} \quad(i=1,2,3)$ and $A_{i} A_{j}=A_{j} A_{i}, B_{i} B_{j}=B_{j} B_{i} \quad(i, j=$ $1,2,3,4)$.

Let us define $m=n-t-r-u$. By setting $S=S_{1}\left(S_{2} \oplus I_{t}\right)\left(S_{3} \oplus I_{s} \oplus I_{t}\right)\left(S_{4} \oplus I_{r} \oplus I_{s} \oplus I_{t}\right)$, one easily has

$$
\begin{aligned}
& T_{1}=S\left(A_{1} \oplus B_{1} \oplus C_{1} \oplus D_{1} \oplus 0\right) S^{-1}, T_{2}=S\left(A_{2} \oplus B_{2} \oplus C_{2} \oplus 0 \oplus E_{2}\right) S^{-1} \\
& T_{3}=S\left(A_{3} \oplus B_{3} \oplus 0 \oplus D_{3} \oplus E_{3}\right) S^{-1}, T_{4}=S\left(A_{4} \oplus 0 \oplus C_{4} \oplus D_{4} \oplus E_{4}\right) S^{-1}
\end{aligned}
$$

and the matrices $A_{i}^{2}=I_{m}(i=1,2,3,4) ; B_{i}^{2}=I_{u}(i=1,2,3) ; C_{i}^{2}=I_{r} \quad(i=1,2), C_{4}^{3}=C_{4}$; $D_{1}^{2}=I_{s}, D_{i}^{3}=D_{i}(i=3,4) ; E_{i}^{3}=E_{i} \quad(i=2,3,4)$. In addition, the families $\left\{A_{i}\right\}_{i=1,2,3,4}$, $\left\{B_{i}\right\}_{i=1,2,3},\left\{C_{i}\right\}_{i=1,2,4},\left\{D_{i}\right\}_{i=1,3,4},\left\{E_{i}\right\}_{i=2,3,4}$ are commutative.

Observe that

$$
\begin{equation*}
T_{1}^{2}+T_{2}^{2}+T_{3}^{2}+T_{4}^{2}=S\left[4 I_{m} \oplus 3 I_{u} \oplus\left(C_{1}^{2}+C_{2}^{2}+C_{4}^{2}\right) \oplus\left(D_{1}^{2}+D_{3}^{2}+D_{4}^{2}\right) \oplus\left(E_{2}^{2}+E_{3}^{2}+E_{4}^{2}\right)\right] S^{-1} \tag{2.12}
\end{equation*}
$$

and

$$
\begin{align*}
& c_{1} T_{1}+c_{2} T_{2}+c_{3} T_{3}+c_{4} T_{4}=S\left[\left(c_{1} A_{1}+c_{2} A_{2}+c_{3} A_{3}+c_{4} A_{4}\right) \oplus\left(c_{1} B_{1}+c_{2} B_{2}+c_{3} B_{3}\right)\right. \\
& \left.\oplus\left(c_{1} C_{1}+c_{2} C_{2}+c_{4} C_{4}\right) \oplus\left(c_{1} D_{1}+c_{3} D_{3}+c_{4} D_{4}\right) \oplus\left(c_{2} E_{2}+c_{3} E_{3}+c_{4} E_{4}\right)\right] S^{-1} . \tag{2.13}
\end{align*}
$$

By Lemma 2.1, Corollary 2.1 and Lemma 2.2, we have that $c_{1} A_{1}+c_{2} A_{2}+c_{3} A_{3}+c_{4} A_{4}$ and $c_{1} B_{1}+c_{2} B_{2}+c_{3} B_{3}$ are nonsingular and

$$
\begin{aligned}
& \left(c_{1} A_{1}+c_{2} A_{2}+c_{3} A_{3}+c_{4} A_{4}\right)^{-1}=h_{c_{1}, c_{2}, c_{3}, c_{4}}\left(A_{1}, A_{2}, A_{3}, A_{4}\right), \\
& \left(c_{1} B_{1}+c_{2} B_{2}+c_{3} B_{3}\right)^{-1}=q\left(B_{1}, B_{2}, B_{3}\right) .
\end{aligned}
$$

Since $c_{1} A_{1}+c_{2} A_{2}+c_{3} A_{3}+c_{4} A_{4}$ and $c_{1} B_{1}+c_{2} B_{2}+c_{3} B_{3}$ are nonsingular, then

$$
\mathcal{N}\left(c_{1} A_{1}+c_{2} A_{2}+c_{3} A_{3}+c_{4} A_{4}\right)=\mathcal{N}\left(4 I_{m}\right), \mathcal{N}\left(c_{1} B_{1}+c_{2} B_{2}+c_{3} B_{3}\right)=\mathcal{N}\left(3 I_{u}\right) .
$$

Lemma 2.2 leads to

$$
\begin{aligned}
& \mathcal{N}\left(c_{1} C_{1}+c_{2} C_{2}+c_{4} C_{4}\right)=\mathcal{N}\left(C_{1}^{2}+C_{2}^{2}+C_{4}^{2}\right), \\
& \mathcal{N}\left(c_{1} D_{1}+c_{3} D_{3}+c_{4} D_{4}\right)=\mathcal{N}\left(D_{1}^{2}+D_{3}^{2}+D_{4}^{2}\right), \\
& \mathcal{N}\left(c_{2} E_{2}+c_{3} E_{3}+c_{4} E_{4}\right)=\mathcal{N}\left(E_{2}^{2}+E_{3}^{2}+E_{4}^{2}\right),
\end{aligned}
$$

and analogous identities for the range space. By considering (2.12) and (2.13), and Lemma 2.2 we get that the null space (range space) of $c_{1} T_{1}+c_{2} T_{2}+c_{3} T_{3}+c_{4} T_{4}$ equals to the null space (range space) $T_{1}^{2}+T_{2}^{2}+T_{3}^{2}+T_{4}^{2}$.

By Lemma 2.2 we have the group invertibility of $c_{1} C_{1}+c_{2} C_{2}+c_{4} C_{4}, c_{1} D_{1}+c_{3} D_{3}+c_{4} D_{4}$, and $c_{2} E_{2}+c_{3} E_{3}+c_{4} E_{4}$, we get

$$
\begin{aligned}
& \left(c_{1} C_{1}+c_{2} C_{2}+c_{4} C_{4}\right)^{\sharp}=k_{c_{1}, c_{2}, c_{4}},\left(C_{1}, C_{2}, C_{4}\right), \\
& \left(c_{1} D_{1}+c_{3} D_{3}+c_{4} D_{4}\right)^{\sharp}=k_{c_{1}, c_{3}, c_{4}}\left(D_{1}, D_{3}, D_{4}\right), \\
& \left(c_{2} E_{2}+c_{3} E_{3}+c_{4} E_{4}\right)^{\sharp}=k_{c_{2}, c_{3}, c_{4}}\left(E_{2}, E_{3}, E_{4}\right) .
\end{aligned}
$$

The second part of Lemma 2.3 leads to the group invertibility of $c_{1} T_{1}+c_{2} T_{2}+c_{3} T_{3}+c_{4} T_{4}$ and

$$
\begin{align*}
& \left(c_{1} T_{1}+c_{2} T_{2}+c_{3} T_{3}+c_{4} T_{4}\right)^{\sharp}=S\left(h_{c_{1}, c_{2}, c_{3}, c_{4}}\left(A_{1}, A_{2}, A_{3}, A_{4}\right) \oplus q\left(B_{1}, B_{2}, B_{3}\right)\right. \\
& \left.\left.\oplus k_{c_{1}, c_{2}, c_{4}}, C_{1}, C_{2}, C_{4}\right) \oplus k_{c_{1}, c_{3}, c_{4}}\left(D_{1}, D_{3}, D_{4}\right) \oplus k_{c_{2}, c_{3}, c_{4}}\left(E_{2}, E_{3}, E_{4}\right)\right) S^{-1} . \tag{2.14}
\end{align*}
$$

Now, observe that

$$
\begin{aligned}
& S\left(I_{m} \oplus 0 \oplus 0 \oplus 0 \oplus 0\right) S^{-1}=T_{1}^{2} T_{2}^{2} T_{3}^{2} T_{4}^{2}, \\
& S\left(0 \oplus I_{u} \oplus 0 \oplus 0 \oplus 0\right) S^{-1}=T_{1}^{2} T_{2}^{2} T_{3}^{2}\left(I_{n}-T_{4}^{2}\right),
\end{aligned}
$$

$$
\begin{aligned}
& S\left(0 \oplus 0 \oplus I_{r} \oplus 0 \oplus 0\right) S^{-1}=T_{1}^{2} T_{2}^{2}\left(I_{n}-T_{3}^{2}\right) \\
& S\left(0 \oplus 0 \oplus 0 \oplus I_{s} \oplus 0\right) S^{-1}=T_{1}^{2}\left(I_{n}-T_{2}^{2}\right) \\
& S\left(0 \oplus 0 \oplus 0 \oplus 0 \oplus I_{t}\right) S^{-1}=I_{n}-T_{1}^{2}
\end{aligned}
$$

Thus we have

$$
\begin{align*}
& S\left(h_{c_{1}, c_{2}, c_{3}, c_{4}}\left(A_{1}, A_{2}, A_{3}, A_{4}\right) \oplus q\left(B_{1}, B_{2}, B_{3}\right) \oplus 0 \oplus 0 \oplus 0\right) S^{-1} \\
= & h_{c_{1}, c_{2}, c_{3}, c_{4}}\left(T_{1}, T_{2}, T_{3}, T_{4}\right) T_{1}^{2} T_{2}^{2} T_{3}^{2} T_{4}^{2}+q\left(T_{1}, T_{2}, T_{3}\right) T_{1}^{2} T_{2}^{2} T_{3}^{2}\left(I_{n}-T_{4}^{2}\right), \tag{2.15}\\
& S\left(0 \oplus 0 \oplus k_{c_{1}, c_{2}, c_{4}}\left(C_{1}, C_{2}, C_{4}\right) \oplus 0 \oplus 0\right) S^{-1}=k_{c_{1}, c_{2}, c_{4}}\left(T_{1}, T_{2}, T_{4}\right) T_{1}^{2} T_{2}^{2}\left(I_{n}-T_{3}^{2}\right), \tag{2.16}\\
& S\left(0 \oplus 0 \oplus 0 \oplus k_{c_{1}, c_{3}, c_{4}}\left(D_{1}, D_{3}, D_{4}\right) \oplus 0\right) S^{-1}=k_{c_{1}, c_{3}, c_{4}}\left(T_{1}, T_{3}, T_{4}\right) T_{1}^{2}\left(I_{n}-T_{2}^{2}\right),(2 . \tag{2.17}\\
& S\left(0 \oplus 0 \oplus 0 \oplus 0 \oplus k_{c_{2}, c_{3}, c_{4}}\left(E_{2}, E_{3}, E_{4}\right)\right) S^{-1}=k_{c_{2}, c_{3}, c_{4}}\left(T_{2}, T_{3}, T_{4}\right)\left(I_{n}-T_{1}^{2}\right) . \tag{2.18}
\end{align*}
$$

Considering (2.14)-(2.18) finishes the proof.
Corollary 2.2 Let $T_{1}, T_{2}, T_{3}, T_{4} \in \mathcal{M}_{n} \backslash\{0\}$ be four mutually commuting tripotent matrices and $c_{1}, c_{2}, c_{3}, c_{4} \in \mathbb{C}^{*}$, if $T_{1}^{2}+T_{2}^{2}+T_{3}^{2}+T_{4}^{2}$ is nonsingular, then $c_{1} T_{1}+c_{2} T_{2}+c_{3} T_{3}+c_{4} T_{4}$ is nonsingular and $\left(c_{1} T_{1}+c_{2} T_{2}+c_{3} T_{3}+c_{4} T_{4}\right)^{-1}$ is given by (2.5).

Theorem 2.2 Let $T_{1}, T_{2}, T_{3}, T_{4} \in \mathcal{M}_{n} \backslash\{0\}$ be four mutually commuting tripotent matrices, then $T_{1}+T_{2}+T_{3}+T_{4}$ is nonsingular if and if only
$I_{n}+T_{1} T_{2}+T_{1} T_{3}+T_{1} T_{4}+T_{2} T_{3}+T_{2} T_{4}+T_{3} T_{4}+T_{1} T_{2} T_{3}+T_{1} T_{2} T_{4}+T_{1} T_{3} T_{4}+T_{2} T_{3} T_{4}+T_{1} T_{2} T_{3} T_{4}$ and $T_{1}^{2}+T_{2}^{2}+T_{3}^{2}+T_{4}^{2}$ are nonsingular.

Proof Since T_{1}, T_{2}, T_{3} and T_{4} are tripotent and mutually commutating, they are simultaneously diagonalizable (see, e.g. [11], p.52). Hence there is a single similarity $\operatorname{matrix} S \in \mathcal{M}_{n}$ such that $T_{1}=S \operatorname{diag}\left(\lambda_{1}, \cdots, \lambda_{n}\right) S^{-1}, T_{2}=S \operatorname{diag}\left(\mu_{1}, \cdots, \mu_{n}\right) S^{-1}, T_{3}=$ $S \operatorname{diag}\left(\gamma_{1}, \cdots, \gamma_{n}\right) S^{-1}, \quad T_{4}=S \operatorname{diag}\left(\tau_{1}, \cdots, \tau_{n}\right) S^{-1}$ being $\left\{\lambda_{i}\right\}_{i=1}^{n},\left\{\mu_{i}\right\}_{i=1}^{n},\left\{\gamma_{i}\right\}_{i=1}^{n}$ and $\left\{\tau_{i}\right\}_{i=1}^{n}$ are the ordered sets of eigenvalues of T_{1}, T_{2}, T_{3} and T_{4} with proper multiplicities, respectively. On the other hand,

$$
\begin{align*}
& T_{1}+T_{2}+T_{3}+T_{4}=S \operatorname{diag}\left(\lambda_{1}+\mu_{1}+\gamma_{1}+\tau_{1}, \cdots, \lambda_{n}+\mu_{n}+\gamma_{n}+\tau_{n}\right) S^{-1}(2.19) \tag{2.19}\\
& I_{n}+T_{1} T_{2}+T_{1} T_{3}+T_{1} T_{4}+T_{2} T_{3}+T_{2} T_{4}+T_{3} T_{4}+T_{1} T_{2} T_{3} \\
& +T_{1} T_{2} T_{4}+T_{1} T_{3} T_{4}+T_{2} T_{3} T_{4}+T_{1} T_{2} T_{3} T_{4} \\
= & S \operatorname{diag}\left(g\left(\lambda_{1}+\mu_{1}+\gamma_{1}+\tau_{1}\right), \cdots, g\left(\lambda_{n}+\mu_{n}+\gamma_{n}+\tau_{n}\right)\right) S^{-1} \tag{2.20}
\end{align*}
$$

and

$$
\begin{equation*}
T_{1}^{2}+T_{2}^{2}+T_{3}^{2}+T_{4}^{2}=S \operatorname{diag}\left(\lambda_{1}^{2}+\mu_{1}^{2}+\gamma_{1}^{2}+\tau_{1}^{2}, \cdots, \lambda_{n}^{2}+\mu_{n}^{2}+\gamma_{n}^{2}+\tau_{n}^{2}\right) S^{-1} \tag{2.21}
\end{equation*}
$$

where $g: \mathbb{C}^{4} \rightarrow \mathbb{C}$ is given by

$$
g(x, y, z, w)=1+x y+x z+x w+y z+y w+z w+x y z+x y w+x z w+y z w+x y z w .
$$

Assume that $T_{1}+T_{2}+T_{3}+T_{4}$ is nonsingular. From (2.19) we get $\lambda_{i}+\mu_{i}+\gamma_{i}+\tau_{i} \neq 0$ for any $i=1,2, \cdots, n$ and hence $\left(\lambda_{i}, \mu_{i}, \gamma_{i}, \tau_{i}\right) \in \Phi^{4} \backslash \Omega$ for all $i=1,2, \cdots, n$, where

$$
\begin{aligned}
\Phi= & \{-1,0,1\} \\
\Omega= & \{(0,0,1,-1),(0,0,-1,1),(0,1,0,-1),(0,-1,0,1),(0,1,-1,0),(0,-1,1,0) \\
& (1,0,0,-1),(-1,0,0,1),(1,0,-1,0),(-1,0,1,0),(1,-1,0,0),(-1,1,0,0),(1,1,-1,-1) \\
& (1,-1,1,-1),(1,-1,-1,1),(-1,1,1,-1),(-1,1,-1,1),(-1,-1,1,1),(0,0,0,0)\}
\end{aligned}
$$

Therefore, it is obtained that $g\left(\lambda_{i}+\mu_{i}+\gamma_{i}+\tau_{i}\right) \neq 0$ and $\lambda_{i}^{2}+\mu_{i}^{2}+\gamma_{i}^{2}+\tau_{i}^{2} \neq 0$ for all $i=1,2, \cdots, n$. In view of (2.20) and (2.21) it is seen that

$$
\begin{aligned}
& I_{n}+T_{1} T_{2}+T_{1} T_{3}+T_{1} T_{4}+T_{2} T_{3}+T_{2} T_{4}+T_{3} T_{4} \\
& +T_{1} T_{2} T_{3}+T_{1} T_{2} T_{4}+T_{1} T_{3} T_{4}+T_{2} T_{3} T_{4}+T_{1} T_{2} T_{3} T_{4}
\end{aligned}
$$

and $T_{1}^{2}+T_{2}^{2}+T_{3}^{2}+T_{4}^{2}$ are nonsingular.
Now, assume that

$$
\begin{aligned}
& I_{n}+T_{1} T_{2}+T_{1} T_{3}+T_{1} T_{4}+T_{2} T_{3}+T_{2} T_{4}+T_{3} T_{4} \\
& +T_{1} T_{2} T_{3}+T_{1} T_{2} T_{4}+T_{1} T_{3} T_{4}+T_{2} T_{3} T_{4}+T_{1} T_{2} T_{3} T_{4}
\end{aligned}
$$

and $T_{1}^{2}+T_{2}^{2}+T_{3}^{2}+T_{4}^{2}$ are nonsingular. From the nonsingularity of the first matrix, we get

$$
1+\lambda_{i} \mu_{i}+\lambda_{i} \gamma_{i}+\lambda_{i} \tau_{i}+\mu_{i} \gamma_{i}+\mu_{i} \tau_{i}+\gamma_{i} \tau_{i}+\lambda_{i} \mu_{i} \gamma_{i}+\lambda_{i} \mu_{i} \tau_{i}+\mu_{i} \gamma_{i} \tau_{i}+\lambda_{i} \mu_{i} \gamma_{i} \tau_{i} \neq 0
$$

for all $i=1,2, \cdots, n$. If $T_{1}+T_{2}+T_{3}+T_{4}$ were singular, then there would exist some $j \in$ $\{1,2, \cdots, n\}$ such that $\lambda_{i}+\mu_{i}+\gamma_{i}+\tau_{i}=0$. So, the unique solution satisfying simultaneously these two equations would be $\left(\lambda_{i}, \mu_{i}, \gamma_{i}, \tau_{i}\right)=(0,0,0,0)$. Hence

$$
\lambda_{i}^{2}+\mu_{i}^{2}+\gamma_{i}^{2}+\tau_{i}^{2}=0
$$

which would contradict to the assumption of the nonsingularity of

$$
T_{1}^{2}+T_{2}^{2}+T_{3}^{2}+T_{4}^{2}
$$

So the proof is completed.

References

[1] Baksalary J K, Baksalary O M. Nonsingularity of linear combinations of idempotent matrices[J]. Linear Algebra Appl., 2004, 388: 25-29.
[2] Baksalary J K, Baksalary O M, Özdemir H. A note on linear combination of commuting tripotent matrices[J]. Linear Algebra Appl., 2004, 388: 45-51.
[3] Benítez J, Liu X, Zhu T. Nonsingularity and group invertibility of linear combi-nation of two kpotent matrices[J]. Linear Multilinear Alg., 2010, 58: 1023-1035.
［4］Sarduvan M，Özdemir H．On nonsingularity of linear combinations of tripotent matrices［J］．Acta Universitatis Apulensis，2011，25：159－164．
［5］Zuo K．Nonsingularity of the diffrence and the sum of two idempotent matrices［J］．Linear Algebra Appl．，2010，433：476－482．
［6］Zuo K，Xie T．Nonsingularity of combinations of idempotent matrices［J］．J．Math．（PRC），2009，29： 285－288．
［7］Benítez J，Sarduvany M，Sedat Ülkerz，Halim Özdemirx．On nonsingularity of combinations of three group invertible matrices and three tripotent matrices［J］．Linear and Multilinear Algebra，2012，62： 97－110．
［8］Ben－Israel A，Greville T N E．Generalized inverses：theory and applications（2nd ed．）［M］．CMS Books in Mathematics，New York：Springer－Verlag， 2003.
［9］Meyer C D．Matrix analysis and applied linear algebra［M］．Philadelphia：SIAM， 2000.
［10］Benítez J，Thome N．k－Group periodic matrices［J］．SIAM．J．Matrix Anal．Appl．，2006，28：9－25．
［11］Horn R A，Johnson C R．Matrix analysis［M］．Cambridge：Cambridge University Press， 1985.
［12］Zuo K Z．Nonsingularity of the difference and the sum of two idempotent matrices［J］．Linear Algebra Appl．，2010，433：476－482．

关于四个三幂等阵线性组合的可逆性和群逆

陈引兰，左可正，谢 涛
（湖北师范学院数学与统计学院，湖北 黄石 435002）

摘要：本文研究了四个三幂等阵线性组合的可逆性及群逆．利用矩阵分解的方法，获得了它们可逆及群逆的一些条件，并得到其逆和群逆的计算公式，这些结论完善了 k 幂等阵可逆性理论．

关键词：逆；群逆；线性组合；三幂等阵
MR（2010）主题分类号：15A09 中图分类号：O151．21

[^0]: ＊Received date：2013－04－04 Accepted date：2013－06－07
 Foundation item：Supported by Key Research Project and Youth Research Project of Educational Department of Hubei Province（D20122202；B20122203）．

 Biography：Chen Yinlan（1974－），female，born at Huangshi，Hubei，master，major in the areas of algebra．

