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1 Introduction

Let C be the field of complex numbers and C∗ = C−0. For a positive integer n ,let Mn

be the set of all n×n complex matrices over C. The symbols rank(A), A∗, R(A), and N (A)
stand for the rank, conjugate transpose, the range space, and the null space of A ∈ Mn,
respectively. Recall that a matrixA ∈Mn is tripotent if A3 = A.

The nonsingularity of linear combinations of idempotent matrices and k-potent matrices
was studied in, for example [1–4]. The nonsingularities of the combinations c1P +c2Q−c3PQ

and c1P + c2Q− c3PQ− c4QP − c5PQP of two idempotent matrices P, Q were investigated
in [5] and [6], respectively. The considerations of this paper are inspired by Beńıtez et al. [7].
They established necessary and sufficient conditions for the nonsingularity of combinations
T = c1T1 + c2T2 + c3T3 − c4(T1T2 + T3T1 + T2T3) of three trioptent matrices and gave some
formulae for the inverse of T = c1T1 + c2T2 + c3T3 − c4(T1T2 + T3T1 + T2T3) under some
conditions.

In this paper we consider a combination of the form

T = c1T1 + c2T2 + c3T3 + c4T4, (1.1)

where c1, c2, c3, c4 ∈ C∗ and T1, T2, T3, T4 ∈ Mn are three tripotent matrices. The purpose
of this paper is mainly twofold: first, to establish necessary and sufficient conditions for the
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nonsingularity of combinations of form (1.1); second, to give some formulae for the inverse
of them.

Now, let us give the following additional concepts and properties. A given matrix
A ∈Mn is said to be group invertible if there exists a matrixX ∈Mn such that

AXA = A;XAX = X;AX = XA (1.2)

hold. If such an X∈Mn exists, then it is unique, customarily denoted byA] (see e.g. [8]). A
matrix A ∈ Mn is group invertible if and only if there exist nonsingular S ∈ Mn, C ∈ Mr

such that A = S(C⊕0)S−1,r being the rank of A (see [9], Exercise 5.10.12). In this situation,
one has A] = S(C−1 ⊕ 0)S−1. This latter representation implies that any diagonalizable
matrix is group invertible. Moreover, it is well known that A ∈ Mn is nonsingular if and
only if N (A) = 0. Furthermore, if A ∈ Mn and k is a natural number greater than 1, then
A satisfiesAk = A if and only if A is diagonalizable and the spectrum of A is contained in
k−1
√

1 ∪ 0 (see e.g. [10]).
Special types of matrices, such as idempotents, tripotents, etc., are very useful in many

contexts and they have been extensively studied in the literature. For example, quadratic
forms with idempotent matrices are used extensively in statistical theory. So it is worth
to stress and spread these kinds of results. Evidently, if T is a tripotent matrix, then T is
group invertible and T ] = T . Many of the results given in this work will be given in terms
of group invertible matrices.

2 Main Results and Proofs

If A ∈Mn satisfying A2 = In , We call A an involutory matrix. On the inverse of linear
combinations of involutory matrices, we have the following results.

Lemma 2.1 Let A,B, C, D ∈ Mn be involutory matrices and they are mutually
commuting, a, b, c, d ∈ C∗ and

(a + b + c + d)(a− b + c + d)(a + b− c + d)(a + b + c− d)

(a− b− c + d)(a− b + c− d)(a + b− c− d)(a− b− c− d) 6= 0,

then

(aA + bB + cC + dD)−1

=
1
m

(x1A + x2B + x3C + x4D + z1ABC + z2ABD + z3ACD + z4BCD), (2.1)

where

m = ax1 + bx2 + cx3 + dx4 = (a + b + c + d)(a− b + c + d)(a + b− c + d)

(a + b + c− d)(a− b− c + d)(a− b + c− d)(a + b− c− d)(a− b− c− d),

z1 = 2bc(a5 − 2a3b2 + ab4 − 2a3c2 − 2ab2c2 + ac4 + 2a3d2 + 2ab2d2 + 2ac2d2 − 3ad4),

z2 = 2bd(a5 − 2a3b2 + ab4 + 2a3c2 + 2ab2c2 − 3ac4 − 2a3d2 − 2ab2d2 + 2ac2d2 + ad4),

z3 = 2cd(a5 + 2a3b2 − 3ab4 − 2a3c2 + 2ab2c2 + ac4 − 2a3d2 + 2ab2d2 − 2ac2d2 + ad4),
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z4 = 2bcd(−3a4 + 2a2b2 + b4 + 2a2c2 − 2b2c2 + c4 + 2a2d2 − 2b2d2 − 2c2d2 + d4),

x1 = −(−a7 + 3a5b2 − 3a3b4 + ab6 + 3a5c2 − 2a3b2c2 − ab4c2 − 3a3c4 − ab2c4 + ac6 + 3a5d2

−2a3b2d2 − ab4d2 − 2a3c2d2 + 10ab2c2d2 − ac4d2 − 3a3d4 − ab2d4 − ac2d4 + ad6),

x2 = −b(a6 − 3a4b2 + 3a2b4 − b6 − a4c2 − 2a2b2c2 + 3ab4c2 − a2c4 − 3b2c4 + c6 − a4d2

−2a2b2d2 + 3b4d2 + 10a2c2d2 − 2b2c4d2 − c4d2 − a2d4 − 3b2d4 − c2d4 + d6),

x3 = −c(a6 − a4b2 − a2b4 + b6 − 3a4c2 − 2a2b2c2 − 3b4c2 + 3a2c4 + 3b2c4 − c6 − a4d2

+10a2b2d2 − b4d2 − 2a2c2d2 − 2b2c2d2 + 3c4d2 − a2d4 − b2d4 − 3c2d4 + d6),

x4 = d(−a6 + a4b2 + a2b4 − b6 + a4c2 − 10a2b2c2 + b4c2 + a2c4 + b2c4 − c6 + 3a4d2 + 2a2b2d2

+3b4d2 + 2a2c2d2 + 2b2c2d2 + 3c4d2 − 3a2d4 − 3b2d4 − 3c2d4 + d6).

Corollary 2.1 Let A,B, C ∈ Mn be involutiory matrices and they are mutually
commuting, a, b, c ∈ C∗ and (a + b + c)(a− b + c)(a + b− c)(a− b− c) 6= 0, then

(aA + bB + cC)−1 =
1
m

(xA + yB + zC + wABC), (2.2)

where

m = ax1 + bx2 + cx3 + dx4 = (a + b + c)(a− b + c)(a + b− c)(a− b− c),

x = a3 − ab2 − ac2, y = b3 − bc2 − ba2, z = c3 − ca2 − cb2, w = 2abc.

Proof In Lemma 2.1, put D = 0 and d = 0, we will obtain Corollary 2.1.
About group inverses of linear combinations of three tripotent matrices, we give the

following Lemmas.
Lemma 2.2 (see [7], Theorem 2.2) Let T1, T2, T3 ∈ Mn \ {0} be three mutually

commuting tripotent matrices and c1, c2, c3 ∈ C∗ such that (ci + cj)(ci− cj) 6= 0 (i, j = 1, 2, 3
and i 6= j) and

(c1 + c2 + c3)(c1 − c2 + c3)(c1 + c2 − c3)(c1 − c2 − c3) 6= 0,

then

R(T 2
1 + T 2

2 + T 2
3 ) = R(c1T1 + c2T2 + c3T3),N (T 2

1 + T 2
2 + T 2

3 ) = N (c1T1 + c2T2 + c3T3),

c1T1 + c2T2 + c3T3 is group invertible, and

(c1T1 + c2T2 + c3T3)] = q(T1, T2, T3)T 2
1 T 2

2 T 2
3 + pc1,c2(T1, T2)T 2

1 T 2
2 (In − T 2

3 )

+pc1,c3(T1, T3)T 2
1 (In − T 2

2 ) + pc2,c3(T2, T3)(In − T 2
1 ), (2.3)

where pa,b : C2 → C and q : C3 → C are the following complex polynomials,

pa,b(z, w) =
b2

a(a2 − b2)
zw2 +

a2

b(b2 − a2)
z2w +

1
a
z +

1
b
w (a, b ∈ C∗, a2 6= b2),

q(z, w, u) =
(c3

1 − c1c
2
2 − c1c

2
3)z + (c3

2 − c2c
2
3 − c2c

2
1)w + (c3

3 − c3c
2
1 − c3c

2
2)u + 2c1c2c3zwu

(c1 + c2 + c3)(c1 − c2 + c3)(c1 + c2 − c3)(c1 − c2 − c3)
.

(2.4)
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In particular, if T 2
1 + T 2

2 + T 2
3 is nonsingular, then c1T1 + c2T2 + c3T3 is nonsingular and

(c1T1 + c2T2 + c3T3)−1 is given by (2.3).
Lemma 2.3 (see [7], Theorem 2.3) Let T1, T2, T3 ∈Mn be three mutually commuting

tripotent matrices, then T1 + T2 + T3 is nonsingular if and only if

In + T1T2 + T2T3 + T3T1 + T1T2T3

and T 2
1 + T 2

2 + T 2
3 are nonsingular.

Now we give the nonsingularity and group inverses of linear combinations of four tripo-
tent matrices. And we denote

(aA + bB + cC + dD)−1

=
1
m

(x1A + x2B + x3C + x4D + z1ABC + z2ABD + z3ACD + z4BCD)

= ha,b,c,d(A,B, C, D)

in (2.1), (c1T1 + c2T2 + c3T3)] = kc1,c2,c3(T1, T2, T3) in (2.3), pa,b(z, w) and q(z, w, u) are the
same in (2.4).

Theorem 2.1 Let T1, T2, T3, T4 ∈ Mn \ {0} be four mutually commuting tripotent
matrices and c1, c2, c3, c4 ∈ C∗ such that

(ci + cj)(ci − cj) 6= 0 (i, j = 1, 2, 3, 4 and i 6= j),

(ci + cj + ck)(ci − cj + ck)(ci + cj − ck)(ci − cj − ck) 6= 0 (i, j = 1, 2, 3, 4 and i < j < k),

(c1 + c2 + c3 + c4)(c1 − c2 + c3 + c4)(c1 + c2 − c3 + c4)(c1 + c2 + c3 − c4)

(c1 − c2 − c3 + c4)(c1 − c2 + c3 − c4)(c1 + c2 − c3 − c4)(c1 − c2 − c3 − c4) 6= 0,

then

R(T 2
1 + T 2

2 + T 2
3 + T 2

4 ) = R(c1T1 + c2T2 + c3T3 + c4T4),

N (T 2
1 + T 2

2 + T 2
3 + T 2

4 ) = N (c1T1 + c2T2 + c3T3 + c4T4),

c1T1 + c2T2 + c3T3 + c4T4 is group invertible, and

(c1T1 + c2T2 + c3T3 + c4T4)] = hc1,c2,c3,c4(T1, T2, T3, T4)T 2
1 T 2

2 T 2
3 T 2

4

+q(T1, T2, T3)T 2
1 T 2

2 T 2
3 (In − T 2

4 ) + kc1,c2,c4(T1, T2, T4)T 2
1 T 2

2 (In − T 2
3 )

+kc1,c3,c4(T1, T3, T4)T 2
1 (In − T 2

2 ) + kc2,c3,c4(T2, T3, T4)(In − T 2
1 ). (2.5)

Proof By (see [9], Exercise 5.10.12), there exist nonsingular matrices S1 ∈ Mn and
X1 ∈ Mn−t such that T1 = S1(X1 ⊕ 0)S−1

1 . The tripotency of T1 and the nonsingularity of
X1 lead to X2

1 = In−t as T1Tj = TjT1, j = 2, 3, 4. We can write matrices T2, T3 and T4 as
follows

T2 = S1

(
X2 0
0 E2

)
S−1

1 , T3 = S1

(
X3 0
0 E3

)
S−1

1 , T4 = S1

(
X4 0
0 E4

)
S−1

1 (2.6)
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with E2, E3, E4 ∈Mt, and

XiXj = XjXi (i, j = 1, 2, 3, 4). (2.7)

Let us notice that matrices X2, X3, X4, E2, E3, E4 are tripotent because T2, T3 and T4 are
tripotent. By applying again ( see [9], Exercise 5.10.12), there exist nonsingular matrices
S2 ∈ Mn−t and Y2 ∈ Mn−t−s such that X2 = S2(Y2 ⊕ 0)S−1

2 ,where Y 2
2 = In−t−s. From

(2.7) we can write

X1 = S2

(
Y1 0
0 D1

)
S−1

2 , X3 = S2

(
Y3 0
0 D3

)
S−1

2 , X4 = S2

(
Y4 0
0 D4

)
S−1

2 .(2.8)

Observe that Y 2
1 = In−t−s, D

2
1 = Is, Y

3
i = Yi, D

3
i = Di, (i, j = 3, 4) and

YiYj = YjYi DiDj = DjDi (i, j = 1, 2, 3, 4). (2.9)

By applying again (see [9], Exercise 5.10.12), there exist nonsingular matrices S3 ∈Mn−t−s

and Z3 ∈ Mn−t−s−r such that Y3 = S3(Z3 ⊕ 0)S−1
3 , where Z2

3 = In−t−s−r. From (2.8) we
can write

Y1 = S3

(
Z1 0
0 C1

)
S−1

3 , Y2 = S3

(
Z2 0
0 C2

)
S−1

3 , Y4 = S3

(
Z4 0
0 C4

)
S−1

3 .(2.10)

Observe that Z2
1 = Z2

2 = In−t−s−r, C
2
1 = C2

2 = Ir, Z
3
4 = Z4, C

3
4 = C4 and ZiZj =

ZjZi, CiCj = CjCi (i, j = 1, 2, 3, 4).
Finally, utilize again ( see [9], Exercise 5.10.12) to matrix Z4 to obtain nonsingular

matrices S4 ∈ Mn−t−s−r and A4 ∈ Mu such that Z4 = S4(A4 ⊕ 0)S−1
4 with A2

4 = Iu. By
carrying out the same routine as before, we can write

Z1 = S4

(
A1 0
0 B1

)
S−1

4 , Z2 = S4

(
A2 0
0 B2

)
S−1

4 , Z3 = S4

(
A3 0
0 B3

)
S−1

4 . (2.11)

where A2
i = In−t−s−r−u, B2

i = Iu (i = 1, 2, 3) and AiAj = AjAi, BiBj = BjBi (i, j =
1, 2, 3, 4).

Let us define m = n−t−r−u. By setting S = S1(S2⊕It)(S3⊕Is⊕It)(S4⊕Ir⊕Is⊕It),
one easily has

T1 = S(A1 ⊕B1 ⊕ C1 ⊕D1 ⊕ 0)S−1, T2 = S(A2 ⊕B2 ⊕ C2 ⊕ 0⊕ E2)S−1,

T3 = S(A3 ⊕B3 ⊕ 0⊕D3 ⊕ E3)S−1, T4 = S(A4 ⊕ 0⊕ C4 ⊕D4 ⊕ E4)S−1,

and the matrices A2
i = Im (i = 1, 2, 3, 4); B2

i = Iu (i = 1, 2, 3); C2
i = Ir (i = 1, 2), C3

4 = C4;
D2

1 = Is, D
3
i = Di(i = 3, 4); E3

i = Ei (i = 2, 3, 4). In addition, the families {Ai}i=1,2,3,4,
{Bi}i=1,2,3, {Ci}i=1,2,4, {Di}i=1,3,4 ,{Ei}i=2,3,4 are commutative.
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Observe that

T 2
1 +T 2

2 +T 2
3 +T 2

4 = S[4Im⊕3Iu⊕(C2
1 +C2

2 +C2
4 )⊕(D2

1+D2
3+D2

4)⊕(E2
2+E2

3+E2
4)]S−1 (2.12)

and

c1T1 + c2T2 + c3T3 + c4T4 = S[(c1A1 + c2A2 + c3A3 + c4A4)⊕ (c1B1 + c2B2 + c3B3)

⊕(c1C1 + c2C2 + c4C4)⊕ (c1D1 + c3D3 + c4D4)⊕ (c2E2 + c3E3 + c4E4)]S−1. (2.13)

By Lemma 2.1, Corollary 2.1 and Lemma 2.2, we have that c1A1 + c2A2 + c3A3 + c4A4

and c1B1 + c2B2 + c3B3 are nonsingular and

(c1A1 + c2A2 + c3A3 + c4A4)−1 = hc1,c2,c3,c4(A1, A2, A3, A4),

(c1B1 + c2B2 + c3B3)−1 = q(B1, B2, B3).

Since c1A1 + c2A2 + c3A3 + c4A4 and c1B1 + c2B2 + c3B3 are nonsingular, then

N (c1A1 + c2A2 + c3A3 + c4A4) = N (4Im),N (c1B1 + c2B2 + c3B3) = N (3Iu).

Lemma 2.2 leads to

N (c1C1 + c2C2 + c4C4) = N (C2
1 + C2

2 + C2
4 ),

N (c1D1 + c3D3 + c4D4) = N (D2
1 + D2

3 + D2
4),

N (c2E2 + c3E3 + c4E4) = N (E2
2 + E2

3 + E2
4),

and analogous identities for the range space. By considering (2.12) and (2.13), and Lemma
2.2 we get that the null space (range space) of c1T1 + c2T2 + c3T3 + c4T4 equals to the null
space (range space)T 2

1 + T 2
2 + T 2

3 + T 2
4 .

By Lemma 2.2 we have the group invertibility of c1C1+c2C2+c4C4, c1D1+c3D3+c4D4,
and c2E2 + c3E3 + c4E4, we get

(c1C1 + c2C2 + c4C4)] = kc1,c2,c4,(C1, C2, C4),

(c1D1 + c3D3 + c4D4)] = kc1,c3,c4(D1, D3, D4),

(c2E2 + c3E3 + c4E4)] = kc2,c3,c4(E2, E3, E4).

The second part of Lemma 2.3 leads to the group invertibility of c1T1 + c2T2 + c3T3 + c4T4

and

(c1T1 + c2T2 + c3T3 + c4T4)] = S(hc1,c2,c3,c4(A1, A2, A3, A4)⊕ q(B1, B2, B3)

⊕kc1,c2,c4,(C1, C2, C4)⊕ kc1,c3,c4(D1, D3, D4)⊕ kc2,c3,c4(E2, E3, E4))S−1. (2.14)

Now, observe that

S(Im ⊕ 0⊕ 0⊕ 0⊕ 0)S−1 = T 2
1 T 2

2 T 2
3 T 2

4 ,

S(0⊕ Iu ⊕ 0⊕ 0⊕ 0)S−1 = T 2
1 T 2

2 T 2
3 (In − T 2

4 ),
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S(0⊕ 0⊕ Ir ⊕ 0⊕ 0)S−1 = T 2
1 T 2

2 (In − T 2
3 ),

S(0⊕ 0⊕ 0⊕ Is ⊕ 0)S−1 = T 2
1 (In − T 2

2 ),

S(0⊕ 0⊕ 0⊕ 0⊕ It)S−1 = In − T 2
1 .

Thus we have

S(hc1,c2,c3,c4(A1, A2, A3, A4)⊕ q(B1, B2, B3)⊕ 0⊕ 0⊕ 0)S−1

= hc1,c2,c3,c4(T1, T2, T3, T4)T 2
1 T 2

2 T 2
3 T 2

4 + q(T1, T2, T3)T 2
1 T 2

2 T 2
3 (In − T 2

4 ), (2.15)

S(0⊕ 0⊕ kc1,c2,c4,(C1, C2, C4)⊕ 0⊕ 0)S−1 = kc1,c2,c4,(T1, T2, T4)T 2
1 T 2

2 (In − T 2
3 ),

(2.16)

S(0⊕ 0⊕ 0⊕ kc1,c3,c4(D1, D3, D4)⊕ 0)S−1 = kc1,c3,c4(T1, T3, T4)T 2
1 (In − T 2

2 ), (2.17)

S(0⊕ 0⊕ 0⊕ 0⊕ kc2,c3,c4(E2, E3, E4))S−1 = kc2,c3,c4(T2, T3, T4)(In − T 2
1 ). (2.18)

Considering (2.14)–(2.18) finishes the proof.
Corollary 2.2 Let T1, T2, T3, T4 ∈ Mn \ {0} be four mutually commuting tripotent

matrices and c1, c2, c3, c4 ∈ C∗,if T 2
1 +T 2

2 +T 2
3 +T 2

4 is nonsingular,then c1T1+c2T2+c3T3+c4T4

is nonsingular and (c1T1 + c2T2 + c3T3 + c4T4)−1 is given by (2.5).
Theorem 2.2 Let T1, T2, T3, T4 ∈ Mn \ {0} be four mutually commuting tripotent

matrices, then T1 + T2 + T3 + T4 is nonsingular if and if only

In +T1T2+T1T3+T1T4+T2T3+T2T4+T3T4+T1T2T3+T1T2T4+T1T3T4+T2T3T4+T1T2T3T4

and T 2
1 + T 2

2 + T 2
3 + T 2

4 are nonsingular.
Proof Since T1, T2, T3 and T4 are tripotent and mutually commutating, they are

simultaneously diagonalizable (see, e.g. [11], p.52). Hence there is a single similarity
matrix S ∈ Mn such that T1 = Sdiag(λ1, · · · , λn)S−1, T2 = Sdiag(µ1, · · · , µn)S−1, T3 =
Sdiag(γ1, · · · , γn)S−1, T4 = Sdiag(τ1, · · · , τn)S−1 being {λi}n

i=1, {µi}n
i=1, {γi}n

i=1 and {τi}n
i=1

are the ordered sets of eigenvalues of T1, T2, T3 and T4 with proper multiplicities, respectively.
On the other hand,

T1 + T2 + T3 + T4 = Sdiag(λ1 + µ1 + γ1 + τ1, · · · , λn + µn + γn + τn)S−1 (2.19)

In + T1T2 + T1T3 + T1T4 + T2T3 + T2T4 + T3T4 + T1T2T3

+T1T2T4 + T1T3T4 + T2T3T4 + T1T2T3T4

= Sdiag(g(λ1 + µ1 + γ1 + τ1), · · · , g(λn + µn + γn + τn))S−1 (2.20)

and

T 2
1 + T 2

2 + T 2
3 + T 2

4 = Sdiag(λ2
1 + µ2

1 + γ2
1 + τ2

1 , · · · , λ2
n + µ2

n + γ2
n + τ2

n)S−1, (2.21)

where g : C4 → C is given by

g(x, y, z, w) = 1 + xy + xz + xw + yz + yw + zw + xyz + xyw + xzw + yzw + xyzw.
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Assume that T1 + T2 + T3 + T4 is nonsingular. From (2.19) we get λi + µi + γi + τi 6= 0
for any i = 1, 2, · · · , n and hence (λi, µi, γi, τi) ∈ Φ4 \ Ω for all i = 1, 2, · · · , n , where

Φ = {−1, 0, 1},
Ω = {(0, 0, 1,−1), (0, 0,−1, 1), (0, 1, 0,−1), (0,−1, 0, 1), (0, 1,−1, 0), (0,−1, 1, 0),

(1, 0, 0,−1), (−1, 0, 0, 1), (1, 0,−1, 0), (−1, 0, 1, 0), (1,−1, 0, 0), (−1, 1, 0, 0), (1, 1,−1,−1),

(1,−1, 1,−1), (1,−1,−1, 1), (−1, 1, 1,−1), (−1, 1,−1, 1), (−1,−1, 1, 1), (0, 0, 0, 0)}.

Therefore, it is obtained that g(λi + µi + γi + τi) 6= 0 and λ2
i + µ2

i + γ2
i + τ2

i 6= 0 for all
i = 1, 2, · · · , n. In view of (2.20) and (2.21) it is seen that

In + T1T2 + T1T3 + T1T4 + T2T3 + T2T4 + T3T4

+T1T2T3 + T1T2T4 + T1T3T4 + T2T3T4 + T1T2T3T4

and T 2
1 + T 2

2 + T 2
3 + T 2

4 are nonsingular.
Now, assume that

In + T1T2 + T1T3 + T1T4 + T2T3 + T2T4 + T3T4

+T1T2T3 + T1T2T4 + T1T3T4 + T2T3T4 + T1T2T3T4

and T 2
1 + T 2

2 + T 2
3 + T 2

4 are nonsingular. From the nonsingularity of the first matrix, we get

1 + λiµi + λiγi + λiτi + µiγi + µiτi + γiτi + λiµiγi + λiµiτi + µiγiτi + λiµiγiτi 6= 0

for all i = 1, 2, · · · , n. If T1 + T2 + T3 + T4 were singular, then there would exist some j ∈
{1, 2, · · · , n} such that λi +µi +γi +τi = 0. So, the unique solution satisfying simultaneously
these two equations would be (λi, µi, γi, τi) = (0, 0, 0, 0). Hence

λ2
i + µ2

i + γ2
i + τ2

i = 0,

which would contradict to the assumption of the nonsingularity of

T 2
1 + T 2

2 + T 2
3 + T 2

4 .

So the proof is completed.
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关于四个三幂等阵线性组合的可逆性和群逆

陈引兰 ,左可正 ,谢 涛

(湖北师范学院数学与统计学院，湖北黄石 435002)

摘要: 本文研究了四个三幂等阵线性组合的可逆性及群逆. 利用矩阵分解的方法, 获得了它们可逆及

群逆的一些条件, 并得到其逆和群逆的计算公式, 这些结论完善了k幂等阵可逆性理论.
关键词: 逆; 群逆; 线性组合; 三幂等阵
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