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Abstract: In this paper, we study a two-point boundary value problem of fractional differen-

tial equations with the p-Laplacian operator. By using a fixed-point theorem on cones, we establish

eigenvalue intervals of the problem, which generalizes the conclusions in the case of integer-order

boundary value problems.
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1 Introduction

Fractional calculus [1–2] developed since 17th century. In recent years, fractional dif-
ferential equations have been of great interest. Both fractional differential equations and
differential equations with the p-Laplacian operator are widely applied in different fields.
For details, see [3–10] and references therein.

Goodrich [8] considered a class of fractional boundary value problems of the form
{
−Dν

0+y(t) = f(t, y(t)), 0 < t < 1,

y(i)(0) = 0,
[
Dα

0+y(t)
]
t=1

= 0,

where 0 ≤ i ≤ n− 2, 1 ≤ α ≤ n− 2, ν > 3 satisfying n− 1 < ν ≤ n, n is a given integer, and
Dν

0+, Dα
0+ is the Riemann-Liouville fractional derivative. The author obtained the Green’s

function of this problem and proved that the Green’s function satisfied a Harnack-like in-
equality. By using a fixed point theorem due to Krasnoselskii, the author established the
existence results for at least one positive solution of the problem.

Yang, Zhang and Liu [9] studied the fractional boundary value problem
{

Dα
0+u(t) + f

(
t, u(t), Dβ

0+u(t)
)

= 0, t ∈ (0, 1),

u(i)(0) = 0, 0 ≤ i ≤ n− 2,
[
Dδ

0+u(t)
]
t=1

= 0, 1 ≤ δ ≤ n− 2,
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where f ∈ C([0, 1] × R+ × R, R+), 0 < β ≤ 1, n − 1 < α ≤ n, n > 3 is a given integer,
and Dα

0+, Dβ
0+, Dδ

0+ is the Riemann-Liouville fractional derivative. By means of a fixed point
theorem in a cone, the author obtained the existence results for at least one positive solution.

There were many papers [5, 6] studying eigenvalue problems for boundary value prob-
lems of integer-order differential equations. But there are few papers discussing eigenvalue
problems of fractional boundary value problems with the p-Laplacian operator. Motivated by
these works, we study the the higher-order two-point boundary value problem of fractional
order differential equations with the p-Laplacian operator

{ [
ϕp

(
Dα

0+u(t)
)]′

+ λh(t)f(u(t)) = 0, 0 < t < 1,

u(i)(0) = 0(i = 0, 1, · · · , N − 2), Dβ
0+u(1) = 0,

(1.1)

where ϕp(s) = |s|p−2s, p > 1, 1
p
+ 1

q
= 1, α > 2, λ > 0, 1 ≤ β ≤ N −2, h ∈ C((0, 1), [0,+∞)),

f ∈ C([0,+∞), [0,+∞)), N is the smallest integer greater than or equal to α, Dα
0+, Dβ

0+ is
the Riemann-Liouville fractional derivative.

2 Preliminaries

For the convenience of the reader, we list the necessary definitions from fractional cal-
culus theory here.

Definition 2.1 [7] The Riemann-Liouville fractional integral of order α > 0 of a function

u : (0,∞) → R is given by Iα
0+u(t) = 1

Γ(α)

∫ t

0

(t− s)α−1u(s)ds, provided the right-hand side

is pointwise defined on (0,∞).

Definition 2.2 [7] The Riemann-Liouville fractional derivative of order α > 0 of a
continuous function u : (0,∞) → R is given by

Dα
0+u(t) =

1
Γ(n− α)

(
d

dt

)n ∫ t

0

u(s)
(t− s)α−n+1

ds,

where n = [α] + 1, provided the right-hand side is pointwise defined on (0,∞).

Lemma 2.1 [7] Assume that u ∈ C(0, 1)
⋂

L(0, 1) with a fractional derivative of order
α > 0 that belongs to C(0, 1)

⋂
L(0, 1). Then

Iα
0+Dα

0+u(t) = u(t) + c1t
α−1 + c2t

α−2 + · · ·+ cN tα−N

for some ci ∈ R (i = 1, 2, · · · , N), where N is the smallest integer greater than or equal to
α.

Lemma 2.2 [8] Given y ∈ C[0, 1]. The problem

{ [
ϕp

(
Dα

0+u(t)
)]′

+ y(t) = 0, 0 < t < 1,

u(i)(0) = 0(i = 0, 1, · · · , N − 2), Dβ
0+u(1) = 0

(2.1)
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is equivalent to u(t) =
∫ 1

0

G(t, s)ϕq

(∫ s

0

y(r)dr

)
ds, where

G(t, s) =





tα−1(1− s)α−β−1 − (t− s)α−1

Γ(α)
, 0 ≤ s ≤ t ≤ 1,

tα−1(1− s)α−β−1

Γ(α)
, 0 ≤ t ≤ s ≤ 1.

(2.2)

Lemma 2.3 [8] The function G(t, s) in (2.2) satisfies
(1) G(t, s) > 0, t, s ∈ (0, 1);
(2) max

0≤t≤1
G(t, s) ≤ G(1, s)(s ∈ (0, 1));

(3) min
1
2≤t≤1

G(t, s) ≥ γ0G(1, s)(s ∈ (0, 1)), where 0 < γ0 = min
{

( 1
2)

α−β−1

2β−1
,
(

1
2

)α−1
}
≤ 1

2
.

The following theorem is fundamental in the proofs of our main results.
Lemma 2.4 [6] Let P be a cone in a Banach space X. Assume Ω1,Ω2 are open subsets

of X with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2. If F : P → P is completely continuous such that either
(1) ‖Fu‖ ≤ ‖u‖,∀u ∈ P

⋂
∂Ω1, ‖Fu‖ ≥ ‖u‖,∀u ∈ P

⋂
∂Ω2, or

(2) ‖Fu‖ ≥ ‖u‖,∀u ∈ P
⋂

∂Ω1, ‖Fu‖ ≤ ‖u‖,∀u ∈ P
⋂

∂Ω2.

Then F has a fixed point in P
⋂(

Ω2\Ω1

)
.

3 Main Result

Let E = C([0, 1], R). Then E is a Banach space with the norm ‖u‖ = max
0≤t≤1

|u(t)|. Define

the cone P ⊆ E by P =
{

u ∈ E : u(t) ≥ 0(t ∈ [0, 1]), min
1
2≤t≤1

u(t) ≥ γ0‖u‖
}

. For any u ∈ P,

define Fλ : P → E, (Fλu)(t) = λ

∫ 1

0

G(t, s)ϕq

(∫ s

0

h(r)f(u(r))dr

)
ds. For each u ∈ P , we

get

min
1
2≤t≤1

(Fλu)(t) = min
1
2≤t≤1

λ

∫ 1

0

G(t, s)ϕq

(∫ s

0

h(r)f(u(r))dr

)
ds

≥ λγ0

∫ 1

0

G(1, s)ϕq

(∫ s

0

h(r)f(u(r))dr

)
ds ≥ γ0‖Fλu‖,

FλP ⊆ P. Standard arguments show that Fλ : P → P is completely continuous. u is a
positive solution of (1.1) if and only if u ∈ P is a fixed point of Fλ.

For convenience, we denote

F0 = lim
u→0+

sup
ϕq(f(u))

u
, F∞ = lim

u→+∞
sup

ϕq(f(u))
u

, f0 = lim
u→0+

inf
ϕq(f(u))

u
,

f∞ = lim
u→+∞

inf
ϕq(f(u))

u
,C1 =

∫ 1

0

G(1, s)ϕq

(∫ s

0

h(r)dr

)
ds, C2

= γ2
0

∫ 1

1
2

G(1, s)ϕq

(∫ s

0

h(r)dr

)
ds.
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Theorem 3.1 If f∞C2 > F0C1 holds, then for each λ ∈
(

1
f∞C2

, 1
F0C1

)
, (1.1) has at

least one positive solution. Here we impose 1
f∞C2

= 0 if f∞ = +∞ and 1
F0C1

= +∞ if F0 = 0.

Proof For λ ∈
(

1
f∞C2

, 1
F0C1

)
, let ε > 0 be such that 1

(f∞−ε)C2
≤ λ ≤ 1

(F0+ε)C1
. There

exists r1 > 0 such that f(u) ≤ ϕp [(F0 + ε)u], for 0 < u ≤ r1. If u ∈ P with ‖u‖ = r1,

‖Fλu‖ ≤ λ

∫ 1

0

G(1, s)ϕq

{∫ s

0

h(r)ϕp [(F0 + ε)u(r)] dr

}
ds

≤ λr1 (F0 + ε)
∫ 1

0

G(1, s)ϕq

(∫ s

0

h(r)dr

)
ds = λr1 (F0 + ε) C1 ≤ r1 = ‖u‖.

If we choose Ω1 = {u ∈ E : ‖u‖ < r1}, then ‖Fλu‖ ≤ ‖u‖, for u ∈ P
⋂

∂Ω1. Let r3 > 0 be

such that f(u) ≥ ϕp [(f∞ − ε)u], for u ≥ r3. If u ∈ P with ‖u‖ = r2 = max
{

2r1,
r3
γ0

}
,

‖Fλu‖ ≥ min
1
2≤t≤1

λ

∫ 1

1
2

G(t, s)ϕq

(∫ s

0

h(r)f(u(r))dr

)
ds

≥ λγ0

∫ 1

1
2

G(1, s)ϕq

{∫ s

0

h(r)ϕp [(f∞ − ε) u(r)] dr

}
ds

≥ λ (f∞ − ε) γ2
0‖u‖

∫ 1

1
2

G(1, s)ϕq

(∫ s

0

h(r)dr

)
ds = λ (f∞ − ε) C2‖u‖ ≥ ‖u‖.

If we choose Ω2 = {u ∈ E : ‖u‖ < r2}, then ‖Fλu‖ ≥ ‖u‖, for u ∈ P
⋂

∂Ω2. By Lemma 2.4,
Fλ has a fixed point u ∈ P

⋂(
Ω2\Ω1

)
with r1 ≤ ‖u‖ ≤ r2. The proof is completed.

Theorem 3.2 If f0C2 > F∞C1 holds, then for each λ ∈
(

1
f0C2

, 1
F∞C1

)
, (1.1) has at

least one positive solution. Here we impose 1
f0C2

= 0 if f0 = +∞ and 1
F∞C1

= +∞ if F∞ = 0.

Proof For λ ∈
(

1
f0C2

, 1
F∞C1

)
, let ε > 0 be such that 1

(f0−ε)C2
≤ λ ≤ 1

(F∞+ε)C1
. There

exists r1 > 0 such that f(u) ≥ ϕp [(f0 − ε) u] for 0 < u ≤ r1. If u ∈ P with ‖u‖ = r1, then
similar to the proof of Theorem 3.1, we can obtain that ‖Fλu‖ ≥ ‖u‖.

If we choose Ω1 = {u ∈ E : ‖u‖ < r1}, then ‖Fλu‖ ≥ ‖u‖, for u ∈ P
⋂

∂Ω1. Let r3 > 0
be such that f(u) ≤ ϕp [(F∞ + ε)u], for u ≥ r3. We consider two cases:

Case 1 If f is bounded, there exists M > 0 such that f(u) ≤ ϕp(M)(u ∈ (0,+∞)). Let

r4 = max{2r1, λMC1}. For u ∈ P with ‖u‖ = r4, ‖Fλu‖ ≤ λM

∫ 1

0

G(1, s)ϕq

(∫ s

0

h(r)dr

)
ds ≤

λMC1 ≤ r4 = ‖u‖. Thus ‖Fλu‖ ≤ ‖u‖, for u ∈ ∂Pr4 .

Case 2 If f is unbounded, there exists r5 > max{2r1, r3} such that f(u) ≤ f(r5) for 0 <

u ≤ r5. For u ∈ P with ‖u‖ = r5, ‖Fλu‖ ≤ λr5 (F∞ + ε)
∫ 1

0

G(1, s)ϕq

(∫ s

0

h(r)dr

)
ds ≤

r5 = ‖u‖. Thus ‖Fλu‖ ≤ ‖u‖, for u ∈ ∂Pr5 .

In both Cases 1 and 2, if we set Ω2 = {u ∈ E : ‖u‖ < r2 = max{r4, r5}}, then
‖Fλu‖ ≤ ‖u‖, for u ∈ P

⋂
∂Ω2. By Lemma 2.4, Fλ has a fixed point u ∈ P

⋂(
Ω2\Ω1

)
with

r1 ≤ ‖u‖ ≤ r2. The proof is completed.
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Theorem 3.3 Suppose there exist r2 > r1 > 0 or γ0r1 > r2 > 0 such that

max
0≤u≤r2

f(u) ≤ ϕp

(
r2

λC1

)
, min

γ0r1≤u≤r1

f(u) ≥ ϕp

(
r1

λC2

)
.

Then (1.1) has at least one positive solution u ∈ P .
The proof of Theorem 3.3 is similar to that of Theorem 3.1, we omit it here.
For the reminder of the paper, we will need condition (H1) sup

r>0
min

γ0r≤u≤r
f(u) > 0. Denote

λ1 = sup
r>0

r

C1 max
0≤u≤r

ϕq(f(u))
, λ2 = inf

r>0

r

C2 min
γ0r≤u≤r

ϕq(f(u))
.

In view of the continuity of f(u) and (H1), we have 0 < λ1 ≤ +∞, 0 ≤ λ2 < +∞.
Theorem 3.4 Assume (H1) holds. If f0 = +∞ and f∞ = +∞, then (1.1) has at least

two positive solutions for each λ ∈ (0, λ1).
Proof Define a(r) = r

C1 max
0≤u≤r

ϕq(f(u))
. a(r) : (0,+∞) → (0,+∞) is continuous and

lim
r→0

a(r) = lim
r→+∞

a(r) = 0. There exists r0 ∈ (0,+∞) such that a(r0) = sup
r>0

a(r) = λ1. For

λ ∈ (0, λ1), there exist c1, c2(0 < c1 < r0 < c2 < +∞) with a(c1) = a(c2) = λ,

f(u) ≤ ϕp

(
c1

λC1

)
(u ∈ [0, c1]), f(u) ≤ ϕp

(
c2

λC1

)
(u ∈ [0, c2]).

On the other hand, for f0 = +∞ and f∞ = +∞, there exist d1, d2(0 < d1 < c1 < r0 <

c2 < γ0d2 < +∞) satisfying ϕq(f(u))

u
≥ 1

γ0λC2
, for u ∈ (0, d1]

⋃
[γ0d2,+∞). Thus

min
γ0d1≤u≤d1

f(u) ≥ ϕp

(
d1

λC2

)
, min

γ0d2≤u≤d2

f(u) ≥ ϕp

(
d2

λC2

)
.

By Theorem 3.3, (1.1) has at least two positive solutions for each λ ∈ (0, λ1). The proof is
completed.

Corollary 3.1 Assume (H1) holds. If f0 = +∞ or f∞ = +∞, then (1.1) has at least
one positive solution for each λ ∈ (0, λ1).

Theorem 3.5 Assume (H1) holds. If F0 = 0 and F∞ = 0, then (1.1) has at least two
positive solutions for each λ ∈ (λ2,+∞).

Proof Define b(r) = r
C2 min

γ0r≤u≤r
ϕq(f(u))

. b(r) : (0,+∞) → (0,+∞) is continuous and

lim
r→0

b(r) = lim
r→+∞

b(r) = +∞. There exists r0 ∈ (0,+∞) such that b(r0) = inf
r>0

b(r) = λ2. For

λ ∈ (λ2,+∞), there exist d1, d2(0 < d1 < r0 < d2 < +∞) satisfying b(d1) = b(d2) = λ. Thus

f(u) ≥ ϕp

(
d1

λC2

)
(u ∈ [γ0d1, d1]) , f(u) ≥ ϕp

(
d2

λC2

)
(u ∈ [γ0d2, d2]) .

On the other hand, applying the condition F0 = 0, there exist c1 (0 < c1 < γ0d1) satis-
fying ϕq(f(u))

u
≤ 1

λC1
, for u ∈ (0, c1]. Thus max

0≤u≤c1

f(u) ≤ ϕp

(
c1

λC1

)
. For F∞ = 0, there exists

c3(c3 > d2) satisfying ϕq(f(u))

u
≤ 1

λC1
, for u ∈ (c3,+∞). Let

M = max
0≤u≤c3

f(u), c2 = max {2c3, λC1ϕq(M)} .
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Thus max
0≤u≤c2

f(u) ≤ ϕp

(
c2

λC1

)
. By Theorem 3.3, (1.1) has at least two positive solutions for

each λ ∈ (λ2,+∞). The proof is completed.
Corollary 3.2 Assume (H1) holds. If F0 = 0 or F∞ = 0, then (1.1) has at least one

positive solution for each λ ∈ (λ2,+∞).
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带有p-Laplace算子的分数阶边值问题的特征区间

路月峰1,王亮涛1,2,丁方允1,3

(1.北京工商大学嘉华学院,北京 101118)

(2.烟台大学数学与信息科学学院,山东烟台 264000)

(3.兰州大学数学与统计学院,甘肃兰州 730000)

摘要: 本文研究了一类带有p-Laplace算子的分数阶微分方程两点边值问题. 利用锥上的不动点定理,

得到了这类边值问题的特征区间, 推广了整数阶边值问题情形的结论.
关键词: 分数阶微分方程; p-Laplace算子; 边值问题
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