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Abstract In thispaper, akind of mechnical solution of glinesispresented This
method baseson thedecomposition method proposed in [9] and is efficient for poly-
nomial lines, rational plines, and evenmore general lines Thismethod can be
alo used for triangulations, rectilinear partitions, and even more general algebraic
curve partitions
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Classif ication AM S(1991) 41A 05, 69> 07/CCL 0174 41

1 Introduction

In recent years, therew ere considerable work on polynomial plines(cf the references).
M ost of then are concerning on the dmensions In [9] a - called decomposition method for
studying multivariate gplinesispresented, thismethod is suitable for polynomial lines, rational
glines, and even more general plines In thispaper, wew ill use thismethod to study mechani-
cal olution of glines The concerning results in [9] used in thispaperw ill be reproved brieflyin
the follow ing for the sake of self- compledness Let = {Q; 1=<i=<u} be a rectilinear partition
of a smply connected domain Q, i e ,for each i, & is homeomorphic to a circle anddn Q isa
piecaw ise linear curve The line ace of snoothness r and degree k on  , concerning a 1- Be-
zout function set F , isdefined as
S()={f C(Q; flo FVQ 3,

w here i- Bezout function setmeansa function set F that i) for afunction f Fand an irreducible
polynomial p, if f vanisheson the curve of p= 0, then there existsan f F such that f = f'p
and, ii) af+ B g F for all scalarsxand Sif f, g F. U sually, F is taken aspolynomial
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Pace, rational function gpace, and analytic function space Egecially, S'( ) is denoted by
Ss«( ) if F ispolynomial spaceof total degreek In recent years there has been considerablework
on detem ining the dimension of Sk( ). For ,letvi= (xi, yi), 1=<i=<0be itsverticesand vi, 1
< i< & be the inner vertices W e denote by I:i= {j; v; is adjacent to vi} and
(o= x)y- yvi) - (yi- y)(x- xi)

(xi- x)?+ (yi- yi)? '
It iswell- know ([10]) that to study multivariate $linesinS™ *( )one needsonly to study con-

li,j =

formality conditions

‘EQi,j Li'=0 1=<i=< 6, (1)
i

where gi.j= (- 1)™ ‘g;.i are called snoothness cofactors For(1), it holds”
Lanma 1L et F bea 1- Bezout function set, Then (1) is equivalent to
CTJ_ZI & Bt = - pimea(y - yi) + pim(x - xi), (2)

O<m=r 1<i=<6,
where pim, 1=m=r are sme functions in F (pi.o= pi~1= 0), and ;= yi- y;and Bij= Xj- Xi,

andCn= —, [ if m= n= 0, othew ise it equals zera (2) iscalled thef irst decanposition

(m- n)!
o (1)

(1) and (2) show that in essential glines are the kernel of amodule homomorphisn if F isa
ring; othew ise it is the kernel of a transformation By using decomposition method, one can
study thisproblen by only analysing matricesw ith scalar entries instead of dealingw ith matrices
w ith polynom ial entries as done in [2]

Pr oof

AZI‘CILJ I = _ELqi,J(OG,j(X- xi) + Bily- y))'

T, OO x) Ty y)”

ECT EquO(irfjm,Bjj(X - x) "My - y)"
m=0 i
Fram above and (1) we know that y- yi isa divisor of j};qi,joo-’,; So there existspix  F such that
EquOd,j =- piily- vy,
i Ii
- pia(x- x)"+ ECT EC]i,jO(.'rfjmﬁjj(X - ox)T ™My - y)™ !
m=1 i
D ecomposing continuously, wemay find that there alo exist pi2, pis, , pirsuch that
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Crmz qi,jod,-ij-i'jjz Pim(X - Xi) - pimea(y - vyi), 0O=m=rr,
ya

where pio= pi.+1= Q O

Comparing each other (1) and (2), it isfound that the olution gpace of (1) is the kernelof
module homomorphisn (or transformation if F is not a ring)

f: F°o FY,
where § is the number of inner edgesof , and f={f1, f2, ,fq}, fi= 2 1,q.ll;, while the
lution pace of (2) is the kernel of module homomorphisn
f: FO% L prY%
w here
f={fim 1<5i<8®, 1=<m=r}
and
fin= € X" fl- Pum (X = X) + Pumea(y - ¥,

where pio= pi+1=Q O
2 Main Realts

In this section, wew ill describe the gpproach of mechanical olution of lines To thisend,
wew rite (2) inmatrix fom

AQ = C, (3)

w hereQ isthe function vector formed by all gi,;, C is the function vector formed by the right hand
sideof (2), and A is the correponding scalar coefficient matrix. Noww e give out the process of
mechanical solution of (3).
I) IfA isof full rank and the number of its columnsisno less than that of its rows, sl such a
matrix is called a good matrix and (2) is then called a good systam of linearequationsforQ, (3)
can be olved directly by dealingw ith scalar matrix A. In this case, obviously, the free function
variantsof (3) arefunctionsp.:in C and anumber of & rank (A ) g.; inQ. Other functionsg; in
Q are fixed consequently and it then stops the process of solution
) If A isnot agood matrix, i e, A isnot of full rank or the number of its row s is great

than that of its columns, it can be deduced from (3) that

AQ=C (4)
and a numberN 1= (1+ r)&- rank (A) of equations about pi
W
Zl ZO avij(pii(x - xi) - piiraly- y)), 1=t=Ny, (5
— 37 —
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whereA is thematrix formed by some row sof A such that rank (A ) = rank (A ) and A is a good
matrix and & . ;are some know n scalars, obtained by dealingw ithmatrix A. Noting pi,o= pir 1=

0, (5) becomes
&

& &
(Zl 21 atlipii)x - (Zl Zl atli piy)y - Zl 21 (xiall - yal.)pii= 0, (6)

1<t=N.
Thus, to olve (3), it needsonly to lve (6). For a 1- Bezout function set F, we have
Lenma 2 |Ifg F, thereexist uniquely afunctiongs F intwo variantsand two functionsys,
g2z F inonevariant such that
g=9(0,0) + gu(x) x + gz(y) y + 2gsxy.
The proof of this lanma isobvious In this note, the variant of a function are omitted if it is in
two variants, and itw ill bew ritten out ifthe function is in one variant Such decomposition of a
function in F asL enma 2 is called symmetric To obtain theminmal set of generatorsof the -
lution gace of a system of equations such as (3), w e have to decomposize functions into its sym-
metric forms For example, for polynomials g:, gzand gsof degree k, we lve
gix+ goy+ gs= Q ()

It is easy to get that the dimension of the solution paceof this equation isk (k+ 2). For a general
decomposition of gs that gs= gs1x + gs2y, (7) isequivalent to

g1= g4y - 0Qs1,

g2= - Q04X - Q32

gs= gs1X *+ gs2y,
where gs1, gszand gsare polynomialsof degree k- 1 It iseasy to check that 3{x'y’; i,j= 0, i
+ j=k- 1} isnotaminimal set of generatorsof the solution paceof (7) ,wherendM_, M }isa

n

M ulti- set, i e, agroup of naturally connected things inw hich it is allow ed that two things are
the sane But for the symmetric decompositiongs= gs1(x) x + gs2(y) y + 2gssxy, (7) isequiv-
alent to

g1= gay - gai(x) - gasy,
g2= - gax- Qs2(y) - gssx, (8)
gs= ga1(x) x + ga2(y) y + 2933Xxy,

w here gs 1, gs2, gsarepolynomialsof degreek- 1, whilegssisapolynomial of degreek- 2 Itis

easy to check that multi- set

{x; 0<i<k- 1} {y;0=<j=<k- 1} {xy5i,j=0 i+ j=<k- 2}
{x'y; i,j= 0, i+ j<k- 1}
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isaminimal set of generatorsof the olution gpace of (7).

Similar to (8), there exist p{2, pd, q1(x),q%(y) F, such that (6) isequivalent to

Z Z allipii= p3y+ pdy+ ol (x),

ZZat.le.,—pf”x- pAx - g3(y), 1< t<N, (9)

Z Z xiai - yadiDpui= g x) x+ g8 (y) y + 208 xy,

1 1

L enma 2 show s that (9) will give out theminimal set of generatorsof the solution pace of (6).
It isnot difficut to see that the symmetric decompositionw ill result in aminimal set of generators

of the lution pace of (6). If (9) is a good systan of equations forpi;, (6) can be lved by

considering only the scalar coefficient matrix A 1 of (9).

1) If (9) isnot agood system of equations for pi.;, then, except a good systemof equar

tionsfor pij, anumber of N 2= N 1- rnak (A 1) eguations
Ny
Z (a?:(pBy+ ply+ g X)) + a0 x- p¥x- q%(y))
-1

(2

+ agi, 3(q(1)

(x) x + g3 (y) y+ 2p@ xy))

=y Z (a(z) (1)y+ pI(Z}) + at(2|)3(q(1) (y) + p(z) X))
Ny
+ X Z (a0 - pQ) + a@s(@W (x) + ply)) + Z (a?:1g% (x) - a%.q%(y))
-1
=0, 1< t<Ng (10)
will be obtained, where, smilar to a;, a®?; are known scalars To =lve (10) continuously,

there exist pi2  F in wo variants, g3 (x),g'2(y) F inone variant, and scalar variants c¢:”

such that (10) is equivalent to

Ny Ny Ny

)0y = @ _ 2.02) y + @@
Zl a?pB= (p3 Z a?:p3) y Zlat, ) 2pii

Ny

+ g3 (x) - Z a? 39 (x),

1= t=Nyg (11)

Z a‘Z) pl(lg - (2) Z a(2|)3p|(2)) y - Z a(2) I(2)
Ny

+ qi3(y) - Z ai?aq'3 (y),
1
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and

x g3 (x) + c?,

Ny

Z a?1q (x)
1

Ny

Z al(zl) 1CIi(,12) (y)
1

M) If (11) isagood systen of equatiosfor pi%, 1<i<N 1, and then (12) isobviously al-

1<t=<N2: (12)

y a2 (y) + ¢,

0 a good system of equations for qi(,li (x), qi(,l% (y), 1= i=<N, theprocess can be finished If
(11) and/or (12) are not good system sof equations, w e repeat the above p rocesses continuously.
Noting that px(,i,)and qf,i,) (i= 1) arepolynomialsof degree <k- r- i if F isthepolynomial gpace of
total degree =k, it holds the follow ing
Theoren 1 If F isthepolynanial space o total degree =k, then the above processes  mechani-
cal solution w ill be teminated w ithin f inite steps and, according toL enma 2, will result to the
minimal set o generators o the solution space o (6).

The follow ing conjecture sean s right
Conjecturel Theoren 1 kespsright for all 1- B ezout f unction sets
Note 1. The scalarmatricesobtained from abovemechanical solution processes are all indepen-

dent of F.
3 Example

Up to now, there areonly fev papersto consider S'( ). In this sectionwew ill study some
Pline aces and Pline rings by using decomposition method Our results are represented in ex-
plicit form w hich isvery usfulfor studying both gline acesand gline rings Further study may

be found in our other papers
31 Continuous plineson triangulation

L et be a triangulation and S°( ) is continuous line aceon , concerning 1- Bezmut
function set F. For  being a trigulation, there existsat least an inner vertex denoted by v, and
two other boundary vertices denotedby vi and vz such that v, vi, and vz are the verticesof a trian-
glein . Denotebyvs, , vetheverticesin ofjoiningw ith v, the conformality condition for v
is

€
Zl gli=Q (13)

By setting I;= aili+ Bil2, 3=<j=¢ the above equation becomes
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Q= - a% + pl,
Z (14)
02 = - Zlchﬁj - pla
wherep F. If vistheonly inner vetex of , (14) isan explict olution of (13). By induction,
noting that g1 and gz do not gppear in other conformality conditions, (14) togetherw ith an exp lic-
it olution of the conformality conditionsof S°( {&}) will be an explicit olution of (13), the
conformality conditionsof S°( ). At the sane time, theminimalset of generatorsof gline ring
S°( ) isalo obtained In particular, since there are &~ 26 free polynom ials of degree of k- 1,
and & free polynom ials of degree of k- 2, the dimension of polynomial line paceSt( ) is

dims?( ) = ';‘(k+ 1) (k+ 2) + ‘Jz‘k(k+ 1) (8- 28) + ‘Jz‘k(k- 16

= 2+ Dk+ 2+ KB+ kk+ D (B- I,
where 6, & and d are the numbers of inner edges, inner verticesand boundary vertices, regpec-
tively.
3 2 Snooth Splineson Triangulations

Let and F be the same as above and S*( ) be snooth 9line paceon . Then (2) has
the form
CTzLOdfijin,jQi,j =- pimaly- y)+ pim(x- x), 0=m =2 1<i<®, (15)
w here g.i= - @i, pim, 1=m =2 are some functionsin F, and pio= pi 3= Q W rite (8) inmatrix
form
AQ = B, (16)

w hereQ is the function vector formed by all g.;, B is the function vector formed by the left hand
side of (15), andA is the correpponding coefficient matrix In particular, if taking S*'( ) asS:
( ), thenB= 0, Q isa scalar vector, andA reanainsunchanged Thus, for amost all triangula-
tions, A isnot singular and its colunn number is larger than or equal to its row number ([1]).

This show s that for amost all triangulations, w e can derive from (16) an explicit solution of (2),
the confomality conditionsof S*( ), by dealing only w ith scalar matrix A.
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