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Abstract: Let Λ = {λn}
∞

n=1 be a sequence of real numbers, and λn ց 0 as n → ∞. Suppose

that λn ≤ Mn−
1
2 for n = 1, 2, · · ·, where M > 0 is an absolute constant. The present paper

considers the Müntz rational approximation rate in L
p

[0,1]
spaces and gets

Rn(f, Λ)Lp ≤ CMω(f, n
−

1
2 )Lp

for 1 ≤ p ≤ ∞.
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1. Introduction

Let Lp[0, 1] be the space of all p-power integrable functions on [0,1], 1 ≤ p ≤ ∞. When

p = ∞, it can be understood as C[0,1], that is, the space of all continuous functions on [0,1].

For any given real sequence {λn}
∞
n=1, denote by Πn(Λ) the set of Müntz polynomials of degree

n, that is, all linear combinations of {xλ1 , xλ2 , · · · , xλn}, and let Rn(Λ) be the Müntz rational

functions of degree n, that is,

Rn(Λ) =

{

P (x)

Q(x)
: P (x), Q(x) ∈ Πn(Λ), Q(x) ≥ 0, x ∈ [0, 1]

}

.

If Q(0) = 0, we require that limx→0+
P (x)
Q(x) exist and be finite. For f ∈ Lp[0, 1], 1 ≤ p ≤ ∞, define

Rn(f, Λ)Lp = inf
r∈Rn(Λ)

‖f − r‖Lp ,

ω(f, t)Lp = sup
|h|≤t

‖f(x + t) − f(x)‖Lp ,

where ‖ · ‖Lp is the usual Lp- norm, that is

‖f‖Lp =

{
∫ 1

0

|f(x)|p dx

}

1
p

, 1 ≤ p < ∞,

‖f‖L∞ = ‖f‖C = max
0≤x≤1

|f(x)|.
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In the past dozens of years, there have been a few good works on rational Müntz approxi-

mation rate[1−3,5−9]. Here, we want to remind the readers of a special Müntz system {xλn}, that

is, {λn} satisfy λn ց 0 (λn ց 0 means λn strictly decreasing to 0), and λn ≤ Mn− 1
2 for every

n ≥ 1. The second named author did the original work on this subject in [8]:

Theorem 1 Given M > 0. Let {λn} be a sequence with λn ց 0, suppose that λn ≤ Mn− 1
2 for

n = 1, 2, · · ·, then for any f ∈ C[0,1], we have

Rn(f, Λ) ≤ CMω(f, n− 1
2 ),

where CM is a positive constant only depending on M .

Recently, we[7] generalized the above result to include the general Lp[0, 1] spaces and estab-

lished the following theorem

Theorem 2 Given M > 0. Let {λn} be a sequence with λn ց 0, and let λn ≤ Mn− 1
2 for

n = 1, 2, · · ·. Then for any f ∈ L
p
[0,1], 1 < p ≤ ∞, there is a positive constant CM,p only depending

on M and p such that

Rn(f, Λ)Lp ≤ CM,pω(f, n− 1
2 )Lp .

However, it is not a satisfactory result yet. First, CM,p is a positive constant depending

not only on M but also on p. So a natural problem comes: whether can CM,p be replaced by

CM only depending on M? Secondly, the method used in [7] cannot give any result for p = 1.

These problems could be hard without using the efficient tool, the Hardy-Littlewood maximum

functions, which played a very important role in [7]. The present paper will give positive answers

to these problems by employing a new method and by constructing a new type of Müntz rational

functions. We obtain the following theorem

Theorem 3 Given M > 0. Let {λn} be a real sequence with λn ց 0, and let λn ≤ Mn− 1
2 for

n = 1, 2, · · ·. Then for any f ∈ L
p
[0,1], 1 ≤ p ≤ ∞, there is a positive constant CM only depending

on M such that

Rn(f, Λ)Lp ≤ CMω(f, n− 1
2 )Lp .

Throughout the paper, C always denotes an absolute constant, and CM a positive constant

only depending on M . Their values may be different in different circumstances.

2. Auxiliary lemmas

Let Pk(x, a0, a1, · · · , ak) denote the k-th divided difference of (x
e )α with respect to α at

α = a0, a1, · · · , ak, that is,

P0(x, a0) = (
x

e
)a0 ,

Pk(x, a0, a1, · · · , ak) =
Pk−1(x, a0, a1, · · · , ak−1) − Pk−1(x, a1, a2, · · · , ak)

a0 − ak
.
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Set

Pk(x) = P(n+k)2 (x, λn2 , λn2+1, · · · , λn2+(n+k)2)

for k = 1, 2, · · · , n − 1, and

Pn(x) = P(2n)2(x, λ5n2 , λ5n2+1, · · · , λ9n2).

By the mean value theorem,

Pk(x) =
(x

e

)ηk log(n+k)2(x
e )

((n + k)2)!
, (1)

λn2+(n+k)2 ≤ ηk ≤ λn2 , k = 1, 2, · · · , n − 1,

and

Pn(x) =
(x

e

)ηn log4n2

(x
e )

(4n2)!
, (2)

λ9n2 ≤ ηn ≤ λ5n2 .

Define

xj =
n + 1

n + 1 − j
, tj = e1−xj , j = 1, 2, · · · , n.

In particular, let t0 = 1 and tn+1 = 0. For any f ∈ C[0,1], we define

Ln(f, x) =

∑n
j=1(−1)(n+j)2((n + j)2)!f(tj)

∏j
i=1 x

−((n+i)2−(n+i−1)2)
i Pj(x)

∑n
j=1(−1)(n+j)2((n + j)2)!

∏j
i=1 x

−((n+i)2−(n+i−1)2)
i Pj(x)

=

∑n
j=1 f(tj)

∏j
i=1 x

−((n+i)2−(n+i−1)2)
i (− log x

e )(n+j)2
(

x
e

)ηj

∑n
j=1

∏j
i=1 x

−((n+i)2−(n+i−1)2)
i

(

− log x
e

)(n+j)2 (x
e

)ηj
(from (1), (2))

:=

∑n
j=1 f(tj)Qj(x)
∑n

j=1 Qj(x)
:=

n
∑

j=1

f(tj)rj(x),

where

Qj(x) :=

j
∏

i=1

x
−((n+i)2−(n+i−1)2)
i

(

− log
x

e

)(n+j)2 (x

e

)ηj

,

rj(x) :=
Qj(x)

∑n
j=1 Qj(x)

, j = 1, 2, · · · , n.

We estimate rj(x) first.

Lemma 1 For any x ∈ [tj+1, tj ], 0 ≤ j ≤ n, we have

rk(x) ≤ CMe−CM |j−k|, k = 1, 2, · · · , n. (3)

Proof In fact, from Zhou[8], we have

Q−1
j (x)Qk(x) ≤ CMe−CM |j−k|.

By the definition of rk(x), (3) holds.
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Lemma 2 For any f ∈ L
p
[0,1], 1 ≤ p ≤ ∞, define

K(f, h)Lp = inf
g
{‖f − g‖Lp + h‖g′‖Lp} ,

where g ∈ AC[0,1], that is, g is an absolute continuous function on [0, 1], then

K(f, h)Lp ∼ ω(f, h)Lp , 1 ≤ p ≤ ∞.

It is a well-known result in [4]. From Lemma 2, we have the following Lemma 3 immediately.

Lemma 3 For any f ∈ L
p
[0,1], 1 ≤ p ≤ ∞, there is a g ∈ AC[0,1] such that

‖f − g‖Lp ≤ Cω(f,
1

n
)Lp , ‖g′‖Lp ≤ Cnω(f,

1

n
)Lp .

3. Proof of Theorem 3

In view of Theorem 2, we only need to show Theorem 3 in the case 1 ≤ p < ∞. For any

f ∈ L
p
[0,1], take a function g satisfying the properties of Lemma 3. Furthermore, set

Ln(g, x) =
n
∑

k=1

rk(x)
1

tk−1 − tk

∫ tk−1

tk

g(u)du.

By the definition of rk(x), we have Ln(1, x) = 1, and Ln(g, x) ∈ R(Λ9n2). In some sense, Ln(g, x)

is very similar to the usual Kantorovich-type operators in Lp[0, 1] spaces although there is still

some minor difference. Here we use g instead of f directly to construct the rational function. It

enables us to avoid the proof of the boundness of operators, which may be very difficult to do.

Note Ln(g, x) ∈ R(Λ9n2). Theorem 3 will be proved if the following inequality holds:

‖Ln(g, x) − f(x)‖Lp ≤ CMω(f,
1

n
)Lp .

Applying Lemma 3, we have

‖Ln(g, x) − f(x)‖Lp ≤ ‖Ln(g, x) − g(x)‖Lp + ‖f(x) − g(x)‖Lp

≤ ‖Ln(g, x) − g(x)‖Lp + Cω(f,
1

n
)Lp ,

so that we only need to show that

‖Ln(g, x) − g(x)‖Lp ≤ Cω(f,
1

n
)Lp . (4)

Assume that 1 < p < ∞. The case p = 1 can be treated in a similar and easier way. It is

not difficult to verify that, for 1 ≤ j ≤ n − 1, it holds that

|tj − tj+1| = |e1−xj − e1−xj+1 | ≤ Cn−1e−xjx2
j ≤ Cn−1,

and

|t0 − t1| = |1 − e−
1
n | ≤

1

n
, |tn − tn+1| = e−n ≤

1

n
.
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Hence, for any x ∈ [tk+1, tk], k = 0, 1, 2, · · · , n, we have

|x − tj | ≤ C (|k − j|) + 1)n−1, j = 0, 1, 2, · · · , n. (5)

Without loss of generality, we always assume that CM ≥ 1. From Lemma 1, for any x ∈

[tj+1, tj ], 0 ≤ j ≤ n, we have

n
∑

k=1

r
p

2p−2

k (x) ≤ C
p

2p−2

M

n
∑

k=1

exp

(

−pCM |j − k|

2p − 2

)

≤ C
p

2p−2

M

(

∞
∑

s=1

e−Cs/2

)

p

p−1

≤ C
p

p−1

M . (6)

Using (6) and applying the Hölder’s inequality repeatedly, we have

‖Ln(g, x) − g(x)‖p
Lp ≤

∫ 1

0

∣

∣

∣

∣

∣

n
∑

k=1

rk(x)
1

tk−1 − tk

∫ tk−1

tk

|g(u) − g(x)|du

∣

∣

∣

∣

∣

p

dx

≤

∫ 1

0

(

n
∑

k=1

r
p

2p−2

k (x)

)p−1( n
∑

k=1

r
p

2

k (x)

∣

∣

∣

∣

1

tk−1 − tk

∣

∣

∣

∣

p ∣
∣

∣

∣

∫ tk−1

tk

∣

∣

∣

∣

∫ u

x

|g′(t)|dt

∣

∣

∣

∣

du

∣

∣

∣

∣

p

dx

)

≤ C
p
M

∫ 1

0

n
∑

k=1

r
p

2

k (x)

∣

∣

∣

∣

1

tk−1 − tk

∣

∣

∣

∣

p ∣
∣

∣

∣

∫ tk−1

tk

∣

∣

∣

∣

∫ u

x

|g′(t)|dt

∣

∣

∣

∣

du

∣

∣

∣

∣

p

dx

≤ C
p
M

n+1
∑

j=1

n
∑

k=1

∫ tj−1

tj

r
p

2

k (x)

∣

∣

∣

∣

1

tk−1 − tk

∣

∣

∣

∣

p

|tk − tk−1|
p

∣

∣

∣

∣

∣

∫ t∗

x∗

|g′(t)|dt

∣

∣

∣

∣

∣

p

dx,

where we take x∗ = tj−1, t∗ = tk, when j < k, and take x∗ = tj , t∗ = tk−1, when j ≥ k. We

continue the above process. By using (3), (5) and Hölder’s inequality again, we have

‖Ln(g, x) − g(x)‖p
Lp ≤ C

p
M

n+1
∑

j=1

n
∑

k=1

e−CM |j−k|p/2|x∗ − t∗|p−1

∫ tj−1

tj

∣

∣

∣

∣

∣

∫ t∗

x∗

|g′(t)|pdt

∣

∣

∣

∣

∣

dx

≤ C
p
M

n+1
∑

j=1

n
∑

k=1

e−CM |j−k|p/2|x∗ − t∗|p−1|tj−1 − tj |

∣

∣

∣

∣

∣

∫ t∗

x∗

|g′(t)|pdt

∣

∣

∣

∣

∣

≤ C
p
Mn−p

n+1
∑

j=1

n
∑

k=1

e−C|j−k|p/2(|j − k|p + 1)

∣

∣

∣

∣

∣

∫ t∗

x∗

|g′(t)|pdt

∣

∣

∣

∣

∣

≤ C
p
Mn−p







n+1
∑

j=1

n
∑

k=1,k 6=j

e−CM |j−k|p/2|j − k|p

∣

∣

∣

∣

∣

∫ t∗

x∗

|g′(t)|pdt

∣

∣

∣

∣

∣

+

n
∑

j=1

∣

∣

∣

∣

∣

∫ t∗

x∗

|g′(t)|pdt

∣

∣

∣

∣

∣







:= I1 + I2.

It is easy to verify that

I2 ≤ C
p
Mn−p

n
∑

j=1

∫ tj−1

tj

|g′(t)|pdt ≤ C
p
Mn−p

∫ 1

0

|g′(t)|pdt

≤ C
p
Mn−p‖g′(t)‖p

Lp ,
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while

I1 ≤ C
p
Mn−p







n+1
∑

j=1

n
∑

k=1

e−CM |j−k|p/2|j − k|p

∣

∣

∣

∣

∣

∫ t∗

x∗

|g′(t)|pdt

∣

∣

∣

∣

∣







≤ C
p
Mn−p

n+1
∑

j=1

n
∑

k=1

e−CM |j−k|p/2|j − k|p

[∣

∣

∣

∣

∣

∫ tk

tj+1

|g′(t)|pdt

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ tj

tk+1

|g′(t)|pdt

∣

∣

∣

∣

∣

]

≤ C
p
Mn−p

n
∑

m=1

e−CMmp/2mp
∑

|j−k|=m

[∣

∣

∣

∣

∣

∫ tk

tj−1

|g′(t)|pdt

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ tj

tk−1

|g′(t)|pdt

∣

∣

∣

∣

∣

]

≤ C
p
Mn−p

n
∑

m=1

e−CMmp/2mp+1

∫ 1

0

|g′(t)|pdt

≤ C
p
Mn−p

(

n
∑

m=1

e−CMm/2m2

)p

‖g′(t)‖p
Lp ≤ C

p
Mn−p‖g′(t)‖p

Lp .

Altogether with Lemma 3, we get

‖Ln(g, x) − g(x)‖p
Lp ≤ C

p
Mn−p‖g′(t)‖p

Lp ≤ C
p
Mω(f,

1

n
)p
Lp ,

and thus Inequality (4), consequently. Theorem 3 is proved.
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{xλn} with λn ց 0 [J]. J. Zhejiang Univ. Sci. Ed., 2005, 32: 253–255. (in Chinese)
[8] ZHOU Song-ping. A note on rational approximation rate for Müntz system {xλn} with λn ց 0 [J]. Anal.
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[9] ZHOU Song-ping. On Müntz rational approximation [J]. Constr. Approx., 1993, 9: 435-444.

L
p
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