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Abstract: Let A = {\,}52; be a sequence of real numbers, and A\, \, 0 as n — co. Suppose

that A\, < Mn~% forn = 1,2,---, where M > 0 is an absolute constant. The present paper

considers the Miintz rational approximation rate in Lfo 1] Spaces and gets

_1
Ru(f,AN)rr < Cryw(f,n”2)re
for 1 < p < 0.
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1. Introduction

Let LP[0,1] be the space of all p-power integrable functions on [0,1], 1 < p < co. When
p = 00, it can be understood as Cjg yj, that is, the space of all continuous functions on [0,1].
For any given real sequence {\,}52 , denote by IL,(A) the set of Miintz polynomials of degree
n, that is, all linear combinations of {:10)‘1,96’\2, e ,x’\"}, and let R, (A) be the Miintz rational

functions of degree n, that is,

Ra(A) = {P(x) . P(2),Q(x) € I,(A), Q(x) > 0,z € [0, 1]} :

Q)
If Q(0) = 0, we require that lim, o4 % exist and be finite. For f € LP[0,1],1 < p < oo, define
Rn ,A P = i f - Py
(F)ew = il (17 =7l
w(f,t)r = sup [|f(z+1t) = f(z)]Lr,
[h|<t
where || - ||z» is the usual LP- norm, that is

1 3
p = z)|?P dz 00
1l {/ (@) } S 1<p<o,
1l = Il = max |f()]

0<z<1
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In the past dozens of years, there have been a few good works on rational Miintz approxi-

(1-3,5-9]  Here, we want to remind the readers of a special Miintz system {z*"}, that

mation rate
is, {A\n} satisfy A, \, 0 (A, \, 0 means \, strictly decreasing to 0), and A, < Mn~2 for every

n > 1. The second named author did the original work on this subject in [8]:

Theorem 1 Given M > 0. Let {\,} be a sequence with X\, \, 0, suppose that A, < Mn~% for
n=1,2,---, then for any f € Cjy ), we have

Ro(f,A) < Crypw(f,n %),

where C); is a positive constant only depending on M.

(7]

Recently, wel” generalized the above result to include the general LP[0, 1] spaces and estab-

lished the following theorem

Theorem 2 Given M > 0. Let {\,} be a sequence with A\, \, 0, and let \,, < Mn~3% for
n=1,2,---. Then for any f € Lﬁ)yl], 1 < p < o0, there is a positive constant Cyr,, only depending
on M and p such that

Rn(f, A)Lp < C'Mypw(f, nié)[‘?.

However, it is not a satisfactory result yet. First, Cas, is a positive constant depending
not only on M but also on p. So a natural problem comes: whether can Cjs;, be replaced by
C)s only depending on M? Secondly, the method used in [7] cannot give any result for p = 1.
These problems could be hard without using the efficient tool, the Hardy-Littlewood maximum
functions, which played a very important role in [7]. The present paper will give positive answers
to these problems by employing a new method and by constructing a new type of Miintz rational

functions. We obtain the following theorem

Theorem 3 Given M > 0. Let {\,} be a real sequence with X\,, \, 0, and let \,, < Mn~% for
n=1,2,---. Then for any f € Lfo,l]’ 1 < p < o0, there is a positive constant Cy; only depending
on M such that

Ro(f, M) rr < Crrw(f,n™ %) 1o

Throughout the paper, C' always denotes an absolute constant, and Cjy; a positive constant

only depending on M. Their values may be different in different circumstances.

2. Auxiliary lemmas

Let Py(z,a0,a1,---,ax) denote the k-th divided difference of (£)* with respect to a at
a=ag,a,- - ,a, that is,

Pof,a0) = (2)™,

P R
Pu(,a0, a1, - ax) = w—1(x, a0, a1, -, ak—1) — Pr—1(x, a1, as, ,ak).

ag — ag
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Set
Py (:E) = P(n+k)2 (:I;a Anz, /\n2+17 T )‘n2+(n+k)2)
fork=1,2,---,n—1, and

Pn(x) = P(Qn)2 (Ia /\5n27)‘5n2+17 R )‘9712)-
By the mean value theorem,

zym log "t (2)
Prlw) = (2) (n+ k)2

)‘n2+(n+k)2 < < Apz, k=1,2,---,n—1,

and )
2\ log'™ (2)
= (2) 5

(=) e (4n2)!
Agnz < M < Agp2.
Define )
T = L_j tp=e"T j=1,2,--,n.
n+1l-—j

In particular, let tg = 1 and t,41 = 0. For any f € C|g 1}, we define

Z?:l(_l)(n+j)2((n+j)2)!f(tj) J T —((n+9)%—(n+i—1)* )P](KL‘)

L" X)) = 2 ; 2
) Z}Ll(—l)<"“>2((n+j)2)'H- g, (DR Py (a)
S S () [Ey oy PO (1og 2)nk)” (2)
- - ()2 —(nti-1)?) 2\ ()% 2\ (from (1), (2))
E] 1Hz 1T ( log e) (e)
2 f@) -
=Ty 162]( ;f it
where
n+z)2—(n+z 1)) (n+5)* N5
[I (-oez) T (2)
Qj(x)

ri(z) = m, j=12-- n.
We estimate r;(z) first.
Lemma 1 For any z € [tj41,t;],0 < j < n, we have
ri(z) < Cye M=kl p=12...n
Proof In fact, from Zhou!®, we have
Q; ' (2)Qr(x) < Cpre= @M=,

By the definition of 74 (), (3) holds.
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Lemma 2 For any f € Lf’o 1p 1 < p < 00, define

K(f, e =i {|lf = gllze + hllg'llzo}
where g € AC|g 1), that is, g is an absolute continuous function on [0, 1], then
K(f,h)pr ~w(f,h)rr, 1<p<oc.
It is a well-known result in [4]. From Lemma 2, we have the following Lemma 3 immediately.

Lemma 3 For any f € Lfo 1],1 < p < oo, there is a g € AC|g q) such that

1 1
1f = gller < Co(fs =)rrs lg'llLe < Cnes(f, —)ir.

n
3. Proof of Theorem 3

In view of Theorem 2, we only need to show Theorem 3 in the case 1 < p < oco. For any

fe L][Do 1 take a function g satisfying the properties of Lemma 3. Furthermore, set
n 1 tp—1
Lo(g) =Y n@)—— [ gu)du
i te—1 — tk Ji,

By the definition of 7 (z), we have L, (1,2) = 1, and L, (g, z) € R(Agp2). In some sense, L, (g, )
is very similar to the usual Kantorovich-type operators in LP[0, 1] spaces although there is still
some minor difference. Here we use g instead of f directly to construct the rational function. It
enables us to avoid the proof of the boundness of operators, which may be very difficult to do.
Note L,(g,z) € R(Ag,2). Theorem 3 will be proved if the following inequality holds:

Ln(g,2) = F@)les < Carw(f, 1)
Applying Lemma 3, we have
129 2) = F@)ler < 12nlg2) = 9@)2s + [1£(2) — 9@l 2o
< n(g,2) = g(@)ls + Culf, =),

so that we only need to show that

1209, 2) = 91 < Cw(f, 1o 0

Assume that 1 < p < co. The case p = 1 can be treated in a similar and easier way. It is
not difficult to verify that, for 1 < j <mn — 1, it holds that

3

[t; —tjy1]| = le? =% — el Tit1| < Cnileijx? <Cn!

and

lto—t1] = [l —e | < =, |ty —tnp1] =e ™ <

S|
S|
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Hence, for any x € [tg41,tk], k=0,1,2,--- n, we have

Without loss of generality, we always assume that Cj; > 1. From Lemma 1, for any = €

[tj+1,%],0 < j < n, we have

—pCuj — k|

ZTW <szep( 2 2
p
-1

<cip” (Ze‘“”) <Ci (6)
s=1

Using (6) and applying the Holder’s inequality repeatedly, we have

1 n to P
1 k—1
IEalo) 0@l < [ S rier— [ o) otwian] @
th—1 — g
0 Jg=1 th
1 n » p—1 noo, 1 p P “ »
S/ ZTI:pﬂ(x) ZT;f (z) PR / / lg'(t)|dt| du| dz
0 k=1 k=1 ty T
TS 1 P pteor| pu P
<Cy e / / (t dt‘du dz
Mo;k()tkfl—tk 5 z|g()|
n+l n ti—1 » 1 p +* p
<cr 3> [ o=t | [l .
1 o1t th—1 — U -
J =

where we take 2* =t;_1, t* =t;, when j <k, and take 2* =1¢;, ¢* =1t,_1, when j > k. We

continue the above process. By using (3), (5) and Hoélder’s inequality again, we have

n+l n tio1 t*
| Ln(g,x) — g(a)]%, < C%, Z Ze—CM\J k\P/2|x t*|p—1 / / lg'(t)[Pdt| dz
j=1 k=1 t z
n+l n t*
<R Yo Y e TR ey — / g/ (1)
j=1 k=1 z*
n+l n t*
Chn Y Y k)| [ g opar
j=1 k=1 »*
n+1 n
<Ol {3 Y e Omlikp2 g / (#)[Pdt] + Z ()t
=1 k=1,k#j z*
= Il + IQ.

It is easy to verify that

1
L <C’m PZ/ (O)Pdt < C2yn P/ g/ (8) [Pt
0

<y llg' O,
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while
n+l n t*
h< Gy 375 ek ke | [ g s
=1 k=1 z*
n+l n th tj
Crynr Yo Yooty | [ g opa | [ g opar
j=1 k=1 tit1 thta
n ty tj
YD S E D DI |} IO R Y T
m=1 lj—kl=m LI"ti-1 th—1
n 1
<O Y O/t / g/ (8) [Pt
m=1 0

n P
< Cpn (Z e‘CM”/2m2> lg'®IE, < Chm~"llg @)L,
m=1
Altogether with Lemma 3, we get

1
1Zn(g:2) = 9(@) e < CRpn Nl (ON7n < CRpw(fs — )1

and thus Inequality (4), consequently. Theorem 3 is proved.
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Lip ) ==[8] Miintz HIEEITHY Jackson Eifhit
EER, ST
(HHIH TR R R, L AN 310018 )

BT WA= {22, MIEMTEES], HYn — oo B, H A 0. AXHEHTY A, <
Ma—d, n=1,2,-- (He M > 0 H—ER50) B Mints R8¢ () BPHRREE I ) 250
WE TR, FBEERHR Ru(f, Ay < Cyw(f,n™2)p, 1<p < oo.
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