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1. Introduction

Let {Xn, n ≥ 1} be a sequence of i.i.d. random variables and {ani, 1 ≤ i ≤ n, n ≥ 1} be

an array of constants. The limiting behavior of weighted sums
∑n

i=1 aniXi has been studied by

many authors. For the strong laws of large numbers, see Bai and Cheng [1], Chen and Gan [5],

Choi and Sung [6], Cuzick [7], Sung [15], Teicher [18], Wu [19] and others. For the laws of the

single logarithm, see Bai et al. [2], Chen and Gan [5], Li et al. [10], Li and Tomkins [11] and

others.

Bai and Cheng [1] and Cuzick [7] (1 < p < 2 and p = 1, respectively) proved the Marcinkiewicz-

Zygmund strong laws of large numbers n−1/p
∑n

i=1 aniXi → 0 a.s. when {X, Xn, n ≥ 1} is a

sequence of i.i.d. random variables with EX = 0 and E|X |β < ∞, and {ani, 1 ≤ i ≤ n, n ≥ 1}
is an array of constants satisfying

Aα = lim sup
n→∞

Aα,n < ∞, Aα
α,n = n−1

n
∑

i=1

|ani|α, (1)

where 0 < α, β < ∞, and 1/p = 1/α + 1/β.

Bai et al. [2] proved the following laws of the single logarithm

lim sup
n→∞

|∑n
i=1 aniXi|√
n log n

≤
√

2A2
2EX2 a.s.
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when {X, Xn, n ≥ 1} is a sequence of i.i.d. random variables with EX = 0, E|X |β < ∞
and {ani, 1 ≤ i ≤ n, n ≥ 1} is an array of constants satisfying (1) for α > 0, β > 0 and

1/α + 1/β = 1/2.

Chen and Gan [5] proved the above result of Bai et al. [2] under a weaker moment condition

E(|X |β/(log |X |)β/2) < ∞. Sung [16] obtained a version of the result of Chen and Gan [5] in a

Banach space setting.

The main purpose of this paper is to establish the strong laws of large numbers and the law

of the single logarithm for weighted sums of identically distributed NOD random variables (its

definition is given below). These results extend the corresponding results of Chen and Gan [5]

from independent case to NOD setting.

Definition A finite family of random variables {Xi, 1 ≤ i ≤ k} is said to be

(a) Negatively upper orthant dependent (NUOD) if

P (Xi > xi, i = 1, 2, . . . , k) ≤
k

∏

i=1

P (Xi > xi) (2)

for ∀x1, x2, . . . , xk ∈ R;

(b) Negatively lower orthant dependent(NLOD) if

P (Xi ≤ xi, i = 1, 2, . . . , k) ≤
k

∏

i=1

P (Xi ≤ xi) (3)

for ∀x1, x2, . . . , xk ∈ R;

(c) Negatively orthant dependent (NOD) if both (2) and (3) hold.

A sequence of random variables {Xn, n ≥ 1} is said to be NOD if for each n, X1, X2, . . . , Xn

are NOD.

This definition was introduced by Joag-Dev and Proschan [9]. Obviously, an independent

random variables sequence is NOD. Joag-Dev and Proschan [9] pointed out that NA must be

NOD and NOD is not necessarily NA. This shows that NOD is strictly weaker than NA. Since

NA sequences have wide applications in multivariate statistical analysis and reliability, the notion

of NA random variables has received more and more attention in recent years. There are many

papers about NA random variables, while papers about NOD random variables are too few. The

following is not necessarily an exhaustive list of such papers: Bozorgnia et al. [4], Gan and Chen

[8]), Joag-Dev and Proschan [9], Qiu [12], Qiu et al. [13], Taylor et al. [17].

For the proof of the theorems in this paper, we need the following lemmas:

Lemma 1 ([4]) Let {Xn, n ≥ 1} be a sequence of NOD random variables.

1) If {fn, n ≥ 1} is a sequence of real measurable functions all of which are monotone

increasing (or all monotone decreasing), then {fn(Xn), n ≥ 1} is a sequence of NOD random

variables.

2) If {Xn, n ≥ 1} is a sequence of nonnegative NOD random variables, then E(
∏n

j=1 Xj) ≤
∏n

j=1 E(Xj), ∀n ≥ 2 provided the expectations are finite.
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Lemma 2 ([13]) Let {Xni, 1 ≤ i ≤ kn, n ≥ 1} be an array of rowwise NOD random variables

with EXni = 0 for all 1 ≤ i ≤ kn, n ≥ 1. Let {an, n ≥ 1} be a sequence of positive constants

and φ(x) be a real function such that for some δ > 0

sup
x>δ

x

φ(x)
< ∞ and sup

0≤x≤δ

x2

φ(x)
< ∞.

Suppose that

(i)
∑∞

n=1 an

∑kn

i=1 P (|Xni| > ǫ) < ∞ for all ε > 0,

(ii)
∑kn

i=1 Eφ(|Xni|) → 0 as n → ∞,

(iii)
∑∞

n=1 an(
∑kn

i=1 Eφ(|Xni|))J < ∞ for some J ≥ 1.

Then
∞
∑

n=1

anP
(

|
kn
∑

i=1

Xni| > ε
)

< ∞ for any ε > 0.

Lemma 3 ([14]) If X ≤ 1 a.s., then E exp(X) ≤ exp(EX + EX2).

Throughout this paper, C will represent positive constants whose value may change at each

occurrence.

2. Main results

Theorem 1 Let 0 < p < 2, 0 < α, β < ∞, and 1/p = 1/α+1/β. Assume that ϕ(x) = x1/βl(x),

where l(x) > 0 (x > 0) is a slowly varying function. Let {X, Xn, n ≥ 1} be a sequence of

identically distributed NOD random variables and {ani, 1 ≤ i ≤ n, n ≥ 1} be an array of

constants satisfying (1). If Eϕ−(|X |) < ∞, where ϕ− is the inverse of ϕ, and if 1 ≤ p < 2, we

moreover assume that EX = 0, then

lim
n→∞

n−1/p(l(n))−1
n

∑

i=1

aniXi = 0 a.s. (4)

Conversely if (4) is true for any coefficient arrays satisfying (1), then Eϕ−(|X |) < ∞ and if

1 ≤ p < 2, we further have EX = 0.

Proof Without loss of generality, we may assume that ani ≥ 0 for 1 ≤ i ≤ n and n ≥ 1. For

∀γ : 0 < γ < α, by (1) and Hölder’s inequality, we have

n
∑

i=1

|ani|γ = (

n
∑

i=1

|ani|α)γ/α(

n
∑

i=1

1)1−γ/α ≤ Cn. (5)

For ∀γ : γ ≥ α, by (1) and the Cr-inequality, we have

n
∑

i=1

|ani|γ ≤
n

∑

i=1

(|ani|α)γ/α ≤ (

n
∑

i=1

|ani|α)γ/α ≤ Cnγ/α. (6)

Define Xni = n1/βl(n)I(Xi > n1/βl(n)) + XiI(|Xi| ≤ n1/βl(n)) − n1/βl(n)I(Xi < −n1/βl(n)),

Yni = Xi − Xni for 1 ≤ i ≤ n and n ≥ 1. Note that Eϕ−(|X |) < ∞ is equivalent to
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∑∞
n=1 P (|Xn| > n1/βl(n)) < ∞, hence we have by the Borel-Cantelli lemma that

n−1/p(l(n))−1|
n

∑

i=1

aniYni| ≤ n−1/p(l(n))−1 max
1≤i≤n

|ani|
n

∑

i=1

|Yni|

≤ Aα,nn−1/β(l(n))−1
n

∑

i=1

|Yni| → 0 a.s. n → ∞. (7)

Since ϕ(x) (x > 0) is a regularly varying function with exponent 1/β, by Theorem 1.5.12 of

Bingham et al. [3], ϕ− is a regularly varying function with exponent β, then Eϕ−(|X |) < ∞
implies

E|X |v < ∞ for all v ∈ (0, β). (8)

Next we will prove that

Dn
def
= n−1/p(l(n))−1

n
∑

i=1

EaniXni → 0, n → ∞. (9)

If 0 < p < 1 and 0 < α ≤ 1, by (6) and (8), we have

|Dn| ≤ n−1/p(l(n))−1
n

∑

i=1

aniE|Xni|p|Xni|1−p

≤ Cn−1/p+1/α(l(n))−1(n1/βl(n))1−pE|X |p = Cn−p/β(l(n))−p → 0, n → ∞.

If 0 < p < 1 and α > 1, by (5) and (8), we have

|Dn| ≤ n−1/p(l(n))−1
n

∑

i=1

aniE|Xni|p|Xni|1−p

≤ Cn−1/p+1(l(n))−1(n1/βl(n))1−pE|X |p = Cn(p−1)/α(l(n))−p → 0, n → ∞.

If 1 ≤ p < 2, we have that α, β > p from 1/p = 1/α+ 1/β. We take v ∈ (max{1, (1− 1/α)β}, β).

By (5) and (8) and EX = 0, we have

|Dn| ≤ 2n−1/p(l(n))−1
n

∑

i=1

aniE|X |I(|X | > n1/βl(n))

= 2n−1/p(l(n))−1
n

∑

i=1

aniE|X |v|X |1−vI(|X | > n1/βl(n))

≤ Cn−1/p(l(n))−1 · n · n(1−v)/β(l(n))1−vE|X |v

≤ Cn1−1/α−v/β(l(n))−v → 0, n → ∞.

Therefore (9) holds. To prove (4), by (7) and (9), it is enough to show that

lim
n→∞

n−1/p(l(n))−1
n

∑

i=1

ani(Xni − EXni) = 0 a.s.

Hence it suffices to prove that

∞
∑

n=1

P
(

n−1/p(l(n))−1
∣

∣

∣

n
∑

i=1

ani(Xni − EXni)
∣

∣

∣
> ǫ

)

< ∞, ∀ǫ > 0. (10)
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By Lemma 1 we can conclude that for each n ≥ 1, {n−1/p(l(n))−1ani(Xni − EXni), 1 ≤ i ≤ n}
is a sequence of NOD random variables. To prove (10), we will apply Lemma 2 with an = 1

and φ(x) = x2. Take q such that q > max{α, β}. By Markov’s inequality, (6), Cr-inequality and

Jensen’s inequality, we have

∞
∑

n=1

n
∑

i=1

P (|ani(Xni − EXni)| > ǫn1/pl(n))

≤ C

∞
∑

n=1

n−q/p(l(n))−q
n

∑

i=1

E|ani(Xni − EXni)|q

≤ C
∞
∑

n=1

n−q/p+q/α(l(n))−q{E|X |qI(|X | ≤ n1/βl(n)) + nq/β(l(n))qP (|X | > n1/βl(n))}

≤
∞
∑

n=1

n−q/β(l(n))−qE|X |qI(|X | ≤ n1/βl(n)) + C

∞
∑

n=1

P (|X | > n1/βl(n))

≤ CEϕ−(|X |) < ∞. (11)

Thus condition (i) of Lemma 2 is satisfied. Taking v ∈ (max{0, β(1 − 2/α)}, β), by (5), (6) and

(8) and Cr-inequality, we have

n
∑

i=1

n−2/p(l(n))−2a2
niE(Xni − EXni)

2

≤ n−2/p(l(n))−2
n

∑

i=1

a2
niEX2

ni

≤ Cn−2/p(l(n))−2
n

∑

i=1

a2
ni{EX2I(|X | ≤ n1/βl(n)) + n2/β(l(n))2P (|X | > n1/βl(n))}

≤























Cn−v/β(l(n))−v, 0 < α < 2, 0 < β ≤ 2

Cn−2/β(l(n))−2, 0 < α < 2, β > 2

Cn−v/β−2/α+1(l(n))−v, α ≥ 2, 0 < β ≤ 2

Cn1−2/p(l(n))−2, α ≥ 2, β > 2

−→ 0, n → ∞.

Thus condition (ii) of Lemma 2 is satisfied. Taking J such that J > max{β/v, β/2, 1/(v/β +

2/α − 1), 1/(2/p− 1)}, then

∞
∑

n=1

(

n
∑

i=1

a2
nin

−2/p(l(n))−2E(Xni − EXni)
2
)J

≤























C
∑∞

n=1 n−Jv/β(l(n))−Jv, 0 < α < 2, 0 < β ≤ 2

C
∑∞

n=1 n−2J/β(l(n))−2J , 0 < α < 2, β > 2

C
∑∞

n=1 n−J(v/β+2/α−1)(l(n))−Jv, α ≥ 2, 0 < β ≤ 2

C
∑∞

n=1 n−J(2/p−1)(l(n))−2J , α ≥ 2, β > 2

< ∞.

Thus condition (iii) of Lemma 2 is satisfied, and (10) holds.
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Necessity. See the proof of Bai and Cheng [1]. 2

Theorem 2 Let 0 < p < 2, 0 < α ≤ 2, α < β < ∞, and 1/p = 1/α + 1/β. Assume that

ϕ(x) = x1/βl(x), where l(x) > 0 (x > 0) is a slowly varying function. Let {X, Xn,−∞ < n < ∞}
be a sequence of identically distributed NOD random variables and let {bni,−∞ < i < ∞, n ≥ 1}
be a double infinite array of constants satisfying

Bα = lim sup
n→∞

Bα,n < ∞, Bα
α,n = n−1

∞
∑

i=−∞

|bni|α. (12)

If Eϕ−(|X |) < ∞, where ϕ− is the inverse of ϕ, and if 1 < α ≤ 2, we moreover assume that

EX = 0, then

lim
n→∞

n−1/p(l(n))−1
∞
∑

i=−∞

bniXi = 0 a.s. (13)

Conversely, if (13) is true for any coefficient arrays satisfying (12), then Eϕ−(|X |) < ∞ and if

1 < α ≤ 2, we further have EX = 0.

Proof Without loss of generality, we may assume that bni ≥ 0 for −∞ < i < ∞ and n ≥ 1.

Case 1 0 < α ≤ 1.

We define Xni, Yni as in Theorem 1. Similarly to the proof of Theorem 1, we have

n−1/p(l(n))−1

∣

∣

∣

∣

∣

∞
∑

i=−∞

bniYni

∣

∣

∣

∣

∣

→ 0 a.s.

Since 0 < α < β, by (8) and (12) we have

∣

∣

∣
n−1/p(l(n))−1

∞
∑

i=−∞

EbniXni

∣

∣

∣
≤ n−1/p(l(n))−1

∞
∑

i=−∞

bα
nib

1−α
ni E|Xni|α|Xni|1−α

≤ Cn−1/p(l(n))−1n(n1/α)1−α(n1/βl(n))1−αE|X |α ≤ Cn−α/β(l(n))−α → 0, n → ∞.

Therefore, to prove (13), it is enough to show that

∞
∑

n=1

P
(

n−1/p(l(n))−1
∣

∣

∣

∞
∑

i=−∞

bni(Xni − EXni)
∣

∣

∣
> ǫ

)

< ∞, ∀ǫ > 0. (14)

Similarly to the proof of (11), we have

∞
∑

n=1

∞
∑

i=−∞

P (|bni(Xni − EXni)| > ǫn1/pl(n)) ≤ CEϕ−(|X |) < ∞.
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Taking v ∈ (max{0, β(1 − 2/α)}, β), by (8) and Cr-inequality, we have

∞
∑

i=−∞

n−2/p(l(n))−2b2
niE(Xni − EXni)

2

≤ n−2/p(l(n))−2
∞
∑

i=−∞

b2
niEX2

ni

≤ Cn−2/p(l(n))−2
∞
∑

i=−∞

bα
nib

2−α
ni {EX2I(|X | ≤ n1/βl(n)) + n2/β(l(n))2P (|X | > n1/βl(n))}

≤ Cn−2/p(l(n))−2n(n1/α)2−α(n1/βl(n))2−αE|X |α = Cn−α/β(l(n))−α → 0, n → ∞.

Taking J such that Jα/β > 1, then we have

∞
∑

n=1

(

∞
∑

i=−∞

b2
nin

−2/p(l(n))−2E(Xni − EXni)
2
)J

< ∞.

Therefore, (14) holds in the case 0 < α ≤ 1.

Case 2 1 < α ≤ 2.

To prove (13), we will apply Lemma 2 with an = 1 and φ(x) = xα. Similarly to the proof of

(2.10) and (2.11) of Chen and Gan [5], we have

∞
∑

n=1

∞
∑

i=−∞

P (|n−1/p(l(n))−1bniXi| > ǫ) < ∞.

By (8) and α > p, we have

∞
∑

i=−∞

E(n−1/p(l(n))−1bniXi)
α = E|X |α

∞
∑

i=−∞

n−α/p(l(n))−αbα
ni

≤ Cn1−α/p(l(n))−α → 0, n → ∞.

Taking J such that J(1 − α/p) < −1, then we have

∞
∑

n=1

(

∞
∑

i=−∞

E(n−1/p(l(n))−1bniXi)
α
)J

≤ C

∞
∑

n=1

nJ(1−α/p)(l(n))−Jα < ∞.

Therefore, by Lemma 2, (13) holds.

Necessity. See the proof of Bai and Cheng [1]. 2

Theorem 3 Let 0 < α, β < ∞ and 1/2 = 1/α + 1/β. Let {X, Xn, n ≥ 1} be a sequence of

identically distributed NOD random variables with EX = 0. Let {ani, 1 ≤ i ≤ n, n ≥ 1} be an

array of constants satisfying (1). If E(|X |β/(log |X |)β/2) < ∞, then

lim sup
n→∞

|∑n
i=1 aniXi|√
n log n

≤ 4
√

A2
2EX2. (15)

Conversely, if (15) is true for any coefficient arrays satisfying (1), then E(|X |β/(log |X |)β/2) < ∞
and EX = 0.

Proof Define b =
√

A2
2E|X |2/4, Xni = bn1/β(log n)1/2(Xi > bn1/β(log n)1/2) + XiI(|Xi| ≤
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bn1/β(log n)1/2) − bn1/β(log n)1/2I(Xi < −bn1/β(log n)1/2), Yni = Xn − Xni for 1 ≤ i ≤ n and

n ≥ 1. Note that E(|X |β/(log |X |)β/2) < ∞ is equivalent to
∑∞

n=1 P (|X | > ǫn1/β(log n)1/2) < ∞
for any ǫ > 0. Then by the Borel-Cantelli Lemma, we obtain that

|∑n
i=1 aniYni|√
n log n

≤ Cn1/α
∑n

i=1 |Yni|√
n log n

=
C

∑n
i=1 |Yni|

n1/β
√

log n
→ 0 a.s. (16)

Since EX = 0 and x1−β(log x)β/2 (x ≥ 3) is a decreasing function, for any A ⊆ {1, 2, . . . , n}, by

(5), we have

1√
n logn

∣

∣

∣

∑

i∈A

aniEXni

∣

∣

∣
≤ 1√

n log n

∣

∣

∣

∑

i∈A

aniEXI(|X | > bn1/β(log n)1/2)
∣

∣

∣
+

1√
n logn

∑

i∈A

|ani|bn1/β(log n)1/2P (|X | > bn1/β(log n)1/2)

≤ 2
1√

n log n

n
∑

i=1

|ani|E|X |I(|X | > bn1/β(log n)1/2)

≤ Cn√
n logn

E
|X |β

(log |X |)β/2
· |X |1−β(log |X |)β/2I(|X | > bn1/β(log n)1/2)

≤ Cn−1/αE
|X |β

(log |X |)β/2
→ 0, n → ∞. (17)

For any n ≥ 1, let

Sn = {i : 1 ≤ i ≤ n and |ani| > n1/α/ log n}, Tn = {i : 1 ≤ i ≤ n and |ani| ≤ n1/α/ logn}.

To prove (15), by (16) and (17), it is enough to show that

lim
n→∞

|∑i∈Sn

ani(Xni − EXni)|√
n log n

= 0 a.s. (18)

and

lim sup
n→∞

|∑i∈Tn ani(Xni − EXni)|√
n log n

≤ 4
√

A2
2EX2 a.s. (19)

Firstly we prove (18). It suffices to prove that

lim
n→∞

|∑i∈Sn

a+
ni(Xni − EXni)|√
n log n

= 0 a.s. (20)

and

lim
n→∞

|∑i∈Sn

a−
ni(Xni − EXni)|√
n log n

= 0 a.s. (21)

Obviously, {a+
ni(Xni − EXni)/

√
n log n, i ∈ Sn} and {a−

ni(Xni − EXni)/
√

n logn, i ∈ Sn} are

sequences of NOD random variables for each n ≥ 1. To prove (20), let an = 1 in Lemma 2.
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Taking q > max{α, β}, we get by Markov inequality, Cr-inequality and Jensen inequality that

∞
∑

n=2

∑

i∈Sn

P

( |a+
ni(Xni − EXni)|√

n logn
> ǫ

)

≤
∞
∑

n=2

2q−1

ǫq

n
∑

i=1

E(|a+
niXni|)q

(n log n)q/2

≤ C

∞
∑

n=2

1

(n log n)q/2

n
∑

i=1

|ani|qE|X |qI(|X | ≤ bn1/β(log n)1/2)+

C

∞
∑

n=2

1

(n log n)q/2

n
∑

i=1

|ani|q
(

n1/β(log n)1/2
)q

P (|X | > bn1/β(log n)1/2)

≤ C

∞
∑

i=2

E|X |qI
(

b(i − 1)1/β(log(i − 1))1/2 < |X | ≤ bi1/β(log i)1/2
)

∞
∑

n=i

nq/α

(n log n)q/2
+

C

∞
∑

n=1

P (|X | > bn1/β(log n)1/2)

≤ C
∞
∑

i=2

E|X |qI
(

b(i − 1)1/β(log(i − 1))1/2 < |X | ≤ bi1/β(log i)1/2
)

·

1

iq/2−q/α−1(log i)q/2
+ CE

|X |β
(log |X |)β/2

≤ CE
(

|X |β/(log |X |)β/2
)

< ∞.

Note that α > 2, ♯Sn ≤ C(log n)α and EX2 < ∞, we have that

∑

i∈Sn

E
(a+

ni(Xni − EXni)√
n log n

)2

≤
∑

i∈Sn

a2
niE|X |2

n logn

≤ Cn2/α(log n)α

n logn
≤ C

(log n)α

n2/β log n
→ 0, n → ∞.

We can choose J such that 2J/β > 1, then

∞
∑

n=1

(

∑

i∈Sn

E
(a+

ni(Xni − EXni)√
2n log n

)2)J

≤ C

∞
∑

n=1

( (log n)α

n2/β log n

)J

< ∞.

Thus, (20) holds. Similarly to the proof of (20), (21) holds.

Secondly, we prove (19). By the Borel-Cantelli Lemma, it is enough to prove that for any

η > 0, we have

∞
∑

n=1

P
( |∑i∈Tn ani(Xni − EXni)|√

n logn
> 4

√

A2
2E|X |2 + 2η

)

< ∞. (22)

Define δ = 2
√

A2
2E|X |2 + η. To prove (22), it is enough to show that

∞
∑

n=1

P
( |∑i∈Tn a+

ni(Xni − EXni)|√
n logn

> δ
)

< ∞, (23)

and
∞
∑

n=1

P
( |∑i∈Tn a−

ni(Xni − EXni)|√
n logn

> δ
)

< ∞. (24)
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Note that {a+
ni(Xni − EXni)/

√
n logn, i ∈ Tn} and {a−

ni(Xni − EXni)/
√

n logn, i ∈ Tn} are

sequences of NOD random variables for each n ≥ 1. Since |ani(Xni−EXni)/
√

n logn| ≤ 2b/ logn

for any i ∈ Tn and n ≥ 1, by Lemmas 1 and 3, for any 0 < tn ≤ log n/(2b) = 2 log n/
√

A2
2E|X |2,

we can get that

P
(

∑

i∈Tn a+
ni(Xni − EXni)√
n log n

> δ
)

= P
(

exp
( tn

∑

i∈Tn a+
ni(Xni − EXni)√
n logn

)

> exp(tnδ)
)

≤ exp(−tnδ)
∏

i∈Tn

E exp
(

tn
a+

ni(Xni − EXni)√
n log n

)

≤ exp(−tnδ)
∏

i∈Tn

exp
(

t2n
(a+

ni)
2E(Xni − EXni)

2

n log n

)

≤ exp
(

− tnδ + t2n

∑n
i=1 a2

niEX2
ni

n log n

)

≤ exp
(

−tnδ + t2nA2
2E|X |2/ log n

)

.

Taking tn = log n/
√

A2
2E|X |2, we get that

∞
∑

n=1

P
(

∑

i∈Tn a+
ni(Xni − EXni)√
n log n

> δ
)

≤
∞
∑

n=1

n−1−η/
√

A2

2
E|X|2 < ∞.

Considering {−a+
ni(Xni − EXni)/

√
n logn, i ∈ Tn} and using the above result gives

∞
∑

n=1

P
(

∑

i∈Tn −a+
ni(Xni − EXni)√
n log n

> δ
)

≤
∞
∑

n=1

n−1−η/
√

A2

2
E|X|2 < ∞.

Therefore, (23) holds. Similarly to the proof of (23), (24) holds.

Necessity. See the proof of Bai and Cheng [1].
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