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1. Introduction

Let {X,,n > 1} be a sequence of i.i.d. random variables and {an;,1 < i < n,n > 1} be
an array of constants. The limiting behavior of weighted sums >, a,; X; has been studied by
many authors. For the strong laws of large numbers, see Bai and Cheng [1], Chen and Gan [5],
Choi and Sung [6], Cuzick [7], Sung [15], Teicher [18], Wu [19] and others. For the laws of the
single logarithm, see Bai et al. [2], Chen and Gan [5], Li et al. [10], Li and Tomkins [11] and
others.

Bai and Cheng [1] and Cuzick [7] (1 < p < 2 and p = 1, respectively) proved the Marcinkiewicz-
Zygmund strong laws of large numbers n~/? Yo aniX; — 0 as. when {X,X,,n > 1} is a
sequence of i.i.d. random variables with EX = 0 and E|X|? < oo, and {ani, 1 <i <n, n > 1}

is an array of constants satisfying

n—oo

n
Aq =limsup Agn <00, AY, =n"" Z |ani]“, (1)
i=1

where 0 < o, 8 < o0, and 1/p=1/a+1/0.
Bai et al. [2] proved the following laws of the single logarithm

v ani X
lim sup % </243EX? as.

n—oo
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when {X, X,,,n
and {an;,1 < i
1a+1/8=1/2.
Chen and Gan [5] proved the above result of Bai et al. [2] under a weaker moment condition
E(|X|%/(log|X])8/?) < co. Sung [16] obtained a version of the result of Chen and Gan [5] in a

Banach space setting.

> 1} is a sequence of i.i.d. random variables with EX = 0, E|X|® < oo
<

n,n > 1} is an array of constants satisfying (1) for « > 0,8 > 0 and

The main purpose of this paper is to establish the strong laws of large numbers and the law
of the single logarithm for weighted sums of identically distributed NOD random variables (its
definition is given below). These results extend the corresponding results of Chen and Gan [5]

from independent case to NOD setting.
Definition A finite family of random variables {X;,1 < i < k} is said to be

(a) Negatively upper orthant dependent (NUOD) if

P(X: >z i=1,2,... .k < [[P(X; > ) 2)

—

Il
-

for Vri,zo,...,xr € R;
(b) Negatively lower orthant dependent(NLOD) if

—.

Il
-

for Vxy,xa,..., 2, € R;

(c) Negatively orthant dependent (NOD) if both (2) and (3) hold.

A sequence of random variables { X,,,n > 1} is said to be NOD if for each n, X1, Xa,..., X,
are NOD.

This definition was introduced by Joag-Dev and Proschan [9]. Obviously, an independent
random variables sequence is NOD. Joag-Dev and Proschan [9] pointed out that NA must be
NOD and NOD is not necessarily NA. This shows that NOD is strictly weaker than NA. Since
NA sequences have wide applications in multivariate statistical analysis and reliability, the notion
of NA random variables has received more and more attention in recent years. There are many
papers about NA random variables, while papers about NOD random variables are too few. The
following is not necessarily an exhaustive list of such papers: Bozorgnia et al. [4], Gan and Chen
[8]), Joag-Dev and Proschan [9], Qiu [12], Qiu et al. [13], Taylor et al. [17].

For the proof of the theorems in this paper, we need the following lemmas:

Lemma 1 ([4]) Let {X,,n > 1} be a sequence of NOD random variables.

1) If {fn,n > 1} is a sequence of real measurable functions all of which are monotone
increasing (or all monotone decreasing), then {f,(X,),n > 1} is a sequence of NOD random
variables.

2) If {X,,n > 1} is a sequence of nonnegative NOD random variables, then E(H?Zl X;) <
[Tj=, E(X;),¥n > 2 provided the expectations are finite.
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Lemma 2 ([13]) Let {X,;,1 < i < ky,n > 1} be an array of rowwise NOD random variables
with EX,; =0 for all 1 <i < k,, n > 1. Let {a,,n > 1} be a sequence of positive constants
and ¢(x) be a real function such that for some § > 0

X .IQ
sup —— < oo and sup < 00.

z>6 O(7) 0<z<s O(x)
Suppose that
(i) Yoolyian Ef;l P(|Xpni| > €) < oo foralle >0,
(i) i) Bo(|Xnil) = 0 as n — oo,
(i) 07, an(Zfﬁl E¢(|Xni]))! < oo for some J > 1.

Then
oo kn
ZanPO ZXm| > 6) < oo forany e > 0.
n=1 =1

Lemma 3 ([14]) If X <1 a.s., then Fexp(X) < exp(EX + EX?).
Throughout this paper, C will represent positive constants whose value may change at each

occurrence.

2. Main results

Theorem 1 Let 0 < p <2,0< a, 3 < 00, and 1/p=1/a+1/8. Assume that p(z) = z/°1(z),
where I(z) > 0 (z > 0) is a slowly varying function. Let {X,X,,n > 1} be a sequence of
identically distributed NOD random variables and {an;,1 < i < n,n > 1} be an array of
constants satisfying (1). If Eo~ (| X]|) < oo, where ¢~ is the inverse of ¢, and if 1 < p < 2, we
moreover assume that EX = 0, then

lim n 1/p Zam X; =0 a.s. (4)

n—oo

Conversely if (4) is true for any coefficient arrays satistying (1), then E¢~ (| X|) < oo and if
1 < p < 2, we further have EX = 0.

Proof Without loss of generality, we may assume that a,; > 0 for 1 < ¢ < n and n > 1. For
Vv :0 <7y < a, by (1) and Holder’s inequality, we have

n

> lani” = (zn: |ans| )/ zn:1 1=v/e < On. (5)
1=1 1=1

i=1
For V7 : v > a, by (1) and the C,-inequality, we have

n

S ol < < D onit?) < Zm oyrle < ople, (6)
=1

Define X,,; = n'/B1(n)I[(X; > n*/Pl(n)) + X;1(|X;| < n'/Pl(n)) — n*/PIi(n)I(X; < —n'/Bl(n)),
Yi = Xi — Xy for 1 < i < nand n > 1. Note that Fo~(|X|) < oo is equivalent to



1084 D. H. QIU and P. Y. CHEN

S P(]X,| > n'/Pl(n)) < co, hence we have by the Borel-Cantelli lemma that

71/1)( )7 ZamYnl| < nil/p( (n))~ Jpax |an1| Z [Vl

=1
< Agn VP (1(n Z|Ym|—>0 a.s. M — 00. (7)
i=1
Since ¢(x) (x > 0) is a regularly varying function with exponent 1/3, by Theorem 1.5.12 of
Bingham et al. [3], ¢~ is a regularly varying function with exponent 3, then Ep~ (| X]) < oo
implies
E|X|" < oo forall ve(0,p5). (8)

Next we will prove that

Dndz _1/p( ZEameHO n — 00. 9)
=1

If0<p<land 0<a<1,by(6)and (8), we have

|Dn| < nY2(1(n ZamE|Xm|p|Xm|1 P
i=1
< o~ YPHYe ()T M PI(n) P EIX P = Cn P B(1(n) P — 0, n — oco.

If0<p<1landa>1, by (5) and (8), we have

[ Dy < nil/p( Zaan|Xm| | Xl 7P
=1
< Cn~ VP (1)) T (M PI(n)) P EIX P = CnPTY/(1(n) TP = 0, n — co.

If 1 < p <2, we have that a, 8 > p from 1/p = 1/a+ 1/8. We take v € (max{1, (1—1/a)8}, 5).
By (5) and (8) and EX = 0, we have

|D,| < 20 YP(I(n ZamE|X|I(|X| > n'/Pl(n))
=1
=2~ Y?(I(n ZamE|X| XU I()X| > n'/8l(n))

i=1
< Cn~YP(U(n) ™t n 0B () TV EIX

< Ot Vemv/B(I(n))™" - 0, n— oo,
Therefore (9) holds. To prove (4), by (7) and (9), it is enough to show that

n—oo

lim n_l/p(l(n))_l Zam-(Xm- —EX,;)=0 a.s.
i=1

Hence it suffices to prove that

i P(n*/?(l(n))*l‘ zn: i (Xni — EX i)
=1

n=1

> e) < o0, Ve> 0. (10)
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By Lemma 1 we can conclude that for each n > 1, {n="P(I(n)) " an;(Xni — EXp;),1 <i < n}
is a sequence of NOD random variables. To prove (10), we will apply Lemma 2 with a,, = 1
and ¢(r) = x2. Take ¢ such that ¢ > max{a, 3}. By Markov’s inequality, (6), C,-inequality and
Jensen’s inequality, we have

o0

Z (|ani(Xni — EXpi)| > enl/pl(n))

=1
Zn_q“’ ZE|anz ni — m)|q

< Czn_q“’*q/a( (n)"HEIX|UI(1X] < n'/PUn)) + 0P (1(n)) " P(IX] > n'/P1(n))}

n=1

< 3w A U) XX < 071 + € 3 PUX] > 0 i)

n=1

< CEy (| X]) < 0. (11)

—

n=

Thus condition (i) of Lemma 2 is satisfied. Taking v € (max{0,3(1 —2/a)}, ), by (5), (6) and
(8) and C.-inequality, we have

Z n_z/p(l(n))_Qagn-E(Xm- — EXyi)®
<n~?P((n))2 ZamEXQ

< Cn=2/r(U(n)) 2 2 B AEXT(X] < n/PU(m) + ¥/ 1) FP(X] > 0710}
i=1

Cn=v/P(I(n))™", 0<a <2, 0<B<2

Cn=2P((n))™2, 0<a<2 3>2

Cn~v/A=2/e+l(|(n))™, a>2, 0< B <2

Cnlﬁ/p(g(n))*?’ a>2, 4>2

— 0, n — 0.

IN

Thus condition (ii) of Lemma 2 is satisfied. Taking J such that J > max{3/v,5/2,1/(v/0 +
2/a—1),1/(2/p—1)}, then

i(Za n72/p 2E(X —EXm‘)Q)

J

CY 0 n=B(In)™", 0<a<?2, 0<B<2
Y n~28(1n)"27, 0<a<2, B>2
O  nIW/B+2/a=l(((n))=" 0 >2, 0< B <2
CYoy n 7= ((n) " a>2, B> 2

IN

< 00.

Thus condition (iii) of Lemma 2 is satisfied, and (10) holds.
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Necessity. See the proof of Bai and Cheng [1]. O

Theorem 2 Let 0 < p <2, 0<a<2 a<f <oo,and 1/p =1/a+ 1/5. Assume that
o(x) = 2'/81(z), where l(z) > 0 (z > 0) is a slowly varying function. Let {X, X, —00 < n < 0o}
be a sequence of identically distributed NOD random variables and let {b,;, —co < i < co,n > 1}

be a double infinite array of constants satisfying

By =limsup By <00, B, =n"" Y |bul* (12)

n—oo .
1=—0Q

If Eo~ (| X]|) < oo, where ¢~ is the inverse of ¢, and if 1 < o < 2, we moreover assume that
EX =0, then

lim o /P(I(n)™" Y bpiXi =0 as. (13)

Conversely, if (13) is true for any coefficient arrays satisfying (12), then E¢~(|X|) < oo and if
1 < a <2, we further have EX = 0.

Proof Without loss of generality, we may assume that b,; > 0 for —oco < i < 0o and n > 1.
Casel O0<a<l.

We define X,,;, Y;,; as in Theorem 1. Similarly to the proof of Theorem 1, we have

nPAM) T D bniYai| = 0 as.
Since 0 < o < 3, by (8) and (12) we have
n~=YP(1(n) Z Ebyi Xni| < n YP(I( Z b2 DL B X i | X |

< Cn~YP(I(n) tn(nY ) (M PL(n) O E|X | < Cn~P(I(n)) " = 0, n — oco.

Therefore, to prove (13), it is enough to show that

5 o] £ nare -

1=—00

> e) < o0, Ve>D0. (14)

Similarly to the proof of (11), we have

oo oo

>N P(bni(Xpi — EXy)| > en'/Pl(n)) < CEp™ (IX]) < oc.

n=1i=—oco
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Taking v € (max{0, (1 — 2/a)}, 5), by (8) and C,-inequality, we have

S 0 P (U(n) 2, B(X s — EX i)

1=—00

S”_2/p(l(”))_2 Z bf”-EX?”-

1=—00

ni’ni

< Cn2/o()( Z b b2 L EX2I(1X| < nY/PU(n)) + 02/ (1(n))2P(IX| > n/P1(n))}

< Cn~2P(1(n)) 2n(nt/ )22 (M P1(n)) >~ E|X|* = Cn~P(I(n)) ™% — 0, n — oco.
Taking J such that Ja/8 > 1, then we have

J

i( i b2/ (1(n)) "2 E(Xns —EXm-)Q) < oo.

n=1 i=—o0

Therefore, (14) holds in the case 0 < o < 1.

Case 2 1 <a<2.
To prove (13), we will apply Lemma 2 with a,, = 1 and ¢(z) = z%. Similarly to the proof of
(2.10) and (2.11) of Chen and Gan [5], we have

Z Z (In= P (U(n) " bniXi| > €) < o0

n=1i=—oco

By (8) and o > p, we have

S2 BV Um) b X = BIXIT 3 nm o),

i=—00 i=—00

< Cn'=P(I(n))™™ =0, n — oco.

Taking J such that J(1 — a/p) < —1, then we have

oo

Z( 3 Em VP (U(n)  baiXo) ) <C’Zn (1=a/p) (1(n)) =7 < o0.

n=1 i=—o0
Therefore, by Lemma 2, (13) holds.
Necessity. See the proof of Bai and Cheng [1]. O

Theorem 3 Let 0 < o, 3 < 00 and 1/2 = 1/a+ 1/8. Let {X,X,,n > 1} be a sequence of
identically distributed NOD random variables with EX = 0. Let {an;,1 < i <mn,n > 1} be an
array of constants satisfying (1). If E(|X|?/(log|X|)?/?) < oo, then
| 2o ani X /
li =L Y <4y JAZEX2. 15
17?1_?01? vnlogn (15)

Conversely, if (15) is true for any coefficient arrays satistying (1), then E(|X|%/(log |X|)?/?) < oo
and EX = 0.

Proof Define b = /AZE|X|2/4, X,; = bn'/P(logn)'/2(X; > bn'/P(logn)'/?) + XiI(|X;| <



1088 D. H. QIU and P. Y. CHEN

bnt/P(logn)'/?) — bn'/B(logn)/2I(X; < —bn'/Plogn)/?),Yn: = X, — Xy for 1 < i < n and
n > 1. Note that E(|X|?/(log|X|)?/?) < oo is equivalent to _°7 , P(|X| > en'/P(logn)'/?) < oo
for any € > 0. Then by the Borel-Cantelli Lemma, we obtain that

|Z?:1 aniYnil < Cnl/e Z?:l | Yo _ CZ _1 Yl

Vnlogn — Vnlogn nl/By/logn

Since EX = 0 and z' % (logx)?/? (z > 3) is a decreasing function, for any A C {1,2,...,n}, by
(5), we have

—0 as. (16)

EXI(|X| > n'/P(logn)t/?)|+

\/nlogn‘ Zam

Z |ani|bn/? (logn) /2 P(|X| > bn'/? (log n)*/?)

’ﬂZE'X’ﬂZ
\/nlogn‘ Za

\/W

22— m‘EXIX>b1/ﬁ1 1/2

< m@ |EIX|T(|X] > bn/?(log n)/?)

Cn X7 -
S E AX 1B 1og | XDP2I(1X | > bnt/P(1 1/2
= Vnlogn  (log|X|)%/2 | X" (log [ X )"/ ZI(|X| > bn'/"(logn)™/7)
X8
< CTFUQE# — 0, n— oo. (17)
(log [ X])772

For any n > 1, let
S, ={i:1<i<nand |an| >n'*/logn}, Tn={i:1<i<nand |an| <n%/logn}.
To prove (15), by (16) and (17), it is enough to show that

| ZiGSn ani(Xni - Ean)|

li =0 as. 18
nooo vnlogn a-s (18)
and
i ni an - Ean
lim sup |2 iern anil ) <44/AZEX? as. (19)
n— 00 \/TLlOgTL
Firstly we prove (18). It suffices to prove that
i a+' an - Ean
lim 12ty Gl N as (20)
n—00 vnlogn
and
i [ an - Ean
lim [ 2ies, il I _ 0 as. (21)
n—00 vnlogn

Obviously, {a;},(Xni — EXy)/v/nlogn,i € S,} and {a,,(Xni — EXp;)//nlogn,i € S,} are

sequences of NOD random variables for each n > 1. To prove (20), let a,, = 1 in Lemma 2.
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Taking ¢ > max{«, 8}, we get by Markov inequality, C,-inequality and Jensen inequality that

i — B X i 2071 N E(lal, X))
ZZ ( \/W ) Z Z nlognq/2

n=21€S,

> : " 1/8 1/2
<O g o ol EIX T < 2 (dog )4

oo

1 - q
O ooy 2 il (n'/2ogm)/2)" P(IX| > bn'/ (1og n) /%)
n =1

2
— (nlog n)4/ “
na/«

<Y EIX|I (b(i — 1)Y8(log(i — 1))V/2 < |X| < bil/ﬁ(logi)lﬂ) 3

L
2
i—2 “— (nlog n)e/

C Z P(IX| > bn*/P(logn)'/?)

n=1
<Y EIX|I (b(i —1)Y8(log(i — 1))V/2 < |X| < bil/ﬁ(logi)lﬂ) :
1=2
1 X
cB—l__
@l (logiyil? - (log | X[
< CE (1X)/(log| X|)""?) < ox.

Note that o > 2, £S,, < C(logn)® and EX? < oo, we have that

Z E(a;’z_z(X"Z _EXM))2 < 2165 aan|X|2
vnlogn nlogn

i€Sn

2/a e e
SCn (logn) < (logn) 0, n—

nlogn ~ n2PBlogn
We can choose J such that 2.J/8 > 1, then
= at (Xpi — EXp =/ (logn)® \“/
B( e )) <03 (i) <>
Z(Z 2nlogn g n2/Blogn =

n=1 €S,
Thus, (20) holds. Similarly to the proof of (20), (21) holds.

Secondly, we prove (19). By the Borel-Cantelli Lemma, it is enough to prove that for any
n > 0, we have

([ 2icrn ani(Xni — EXp)|
P{=== > 44/ AZE|X |2 4+ 2n) < oo. 22
> ( Vnlogn VABEIXP +20) < o0 (22)

Define § = 24/ A3E|X|? + 7. To prove (22), it is enough to show that

| Zze n nz( - EXHZ)|
g ( : \/nlogn > 5) < %0, (23)
and
(| Ziern ni(Xni — EXni)|
ZP( T e >5) < . (24)

n=1
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Note that {a.(X,; — EXp;)/v/nlogn,i € T,} and {a,;(Xn; — EXy;)/v/nlogn,i € T,} are
sequences of NOD random variables for each n > 1. Since |an;(Xpi— EXyi)/v/nlogn| < 2b/logn
for any i € T}, and n > 1, by Lemmas 1 and 3, for any 0 < ¢,, < logn/(2b) = 2logn/+/A3E|X|?,

we can get that

P(EzETn anz( ) > 5) _ P( exp ( ZzETn anz( ))
vnlogn vnlogn

< exp(—t,0) H Eexp (tn

1€T,

< exp(—t,0) H exp (ti
i€T,

2 D G EXZ

" nlogn

> exp(tn5))

a:;-(Xm- - EXM))
vnlogn

(ayi)* E(Xni — EXm‘)Q)
nlogn

< exp ( — 1,0 + ) < exp (—tnd + tiA§E|X|2/logn) .

Taking ¢, = logn/\/A3E|X|?, we get that

ZP(ZiGTn i (Xni — EXpi) - 5) < anlfn/\/AgElXP < .
n=1 Y TLIOg?’L a n=1

Considering {—a.,(X,; — EX,;)/v/nlogn,i € T, } and using the above result gives

ZP(ZiGTn pi(Xni — EXni) - 5) < Zn—l—n/\/AgEIXP < 0.
n=1 Y TLIOg?’L n=1

Therefore, (23) holds. Similarly to the proof of (23), (24) holds.
Necessity. See the proof of Bai and Cheng [1].
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