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Abstract In this paper, we will characterize all types of essential closed surfaces in a class of

surface sum of I-bundle of closed surfaces, and give an application of the classification in the

surface sum of two 3-manifolds.
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1. Introduction

All 3-manifolds in this paper are assumed to be compact and orientable.

Let F be either a properly embedded connected surface in a 3-manifold M or a connected

subsurface of ∂M . If there is an essential simple closed curve on F which bounds a disk in M

or F is a 2-sphere which bounds a 3-ball in M , then we say F is compressible, otherwise, F is

said to be incompressible. If F cuts off a 3-manifold which is homeomorphic to F×I, then we

say F is ∂-parallel in M . If F is an incompressible surface and not ∂-parallel, then F is said to

be essential. If M contains an essential 2-sphere, then M is said to be reducible, otherwise, M

is said to be irreducible.

Let M be a 3-manifold. If M ∼= S × I, where S is a connected, orientable, closed surface,

then M is said to be an I-bundle of closed surface.

A compression body C is a 3-manifold obtained by adding 2-handles to S × I, where S is a

connected closed surface, along a collection of pairwise disjoint simple closed curves on S × {0},

then capping of any resulting 2-sphere boundary components with 3-balls. Denote by ∂+C the

surface S × {1} in ∂C, and ∂−C = ∂C − ∂+C. When ∂−C = ∅, C is a handlebody. When

C = S × I, C is a trivial compression body, i.e. an I–bundle of S.

Let M be a 3-manifold. If there is a closed surface S which cuts M into two compression

bodies V and W with S = ∂+W = ∂+V , then we say M has a Heegaard splitting, denoted by

M = V ∪S W , and S is called a Heegaard surface of M . Moreover, if the genus g(S) of S is
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minimal among all the Heegaard surfaces of M , then g(S) is called the Heegaard genus of M ,

denoted by g(M). If there are essential disks B ⊂ V and D ⊂ W such that ∂B ∩ ∂D = ∅, then

V ∪S W is said to be weakly reducible. Otherwise, it is said to be strongly irreducible.

Let M = V ∪S W be a Heegaard splitting. Then V ∪S W has a thin position as

V ∪S W = (V ′

1 ∪S′

1
W ′

1) ∪H1
. . . ∪Hn−1

(V ′

n ∪S′

n
W ′

n)

where n ≥ 2, each component of H1, . . . , Hn−1 is an incompressible closed surface in M and

V ′

i ∪S′

i
W ′

i is a strongly irreducible Heegaard splitting for 1 ≤ i ≤ n. We call n the length of this

thin position [1].

The distance of a Heegaard splitting was first introduced in [2]:

Let M = V ∪S W be a Heegaard splitting. The distance between two essential simple closed

curves α and β on S, denoted by d(α, β), is the smallest integer n ≥ 0 so that there is a sequence

of essential simple closed curves α0 = α, . . . , αn = β on S such that αi−1 is disjoint from αi for

1 ≤ i ≤ n. The distance of the Heegaard splitting V ∪S W is d(S) = Min
{

d(α, β)
}

, where α

bounds a disk in V and β bounds a disk in W .

Let M1 and M2 be two 3-manifolds, Pi be one component of ∂Mi and Fi be a connected

incompressible subsurface on Pi for i = 1, 2. Let f : F1 → F2 be a homeomorphism. Then

the manifold M obtained by gluing M1 and M2 along F1 and F2 via f is called the surface

sum of M1 and M2 along F1 and F2, and is denoted by M = M1 ∪f M2. Specially, we denote

M = M1∪F M2, where F is the surface Fi (i = 1, 2) in M . Let Pi×[0, 1] be a regular neighborhood

of Pi in Mi. Denote Pi = Pi × {0}, P i = Pi × {1}, M i = Mi − Pi × [0, 1) for i = 1, 2, and

M0 = (P1 × I) ∪F (P2 × I), where I = [0, 1]. Then M = M1 ∪P 1 M0 ∪P 2 M2 and M0 is the

surface sum of I-bundle of closed surfaces P1 and P2 along F .

There are some results about surface sum of 3-manifolds [3, 4]. In this paper, we will charac-

terize all types of essential closed surfaces in a class of surface sum of I-bundle of closed surfaces,

and give an application of the classification in the surface sum of two 3-manifolds. Note that

essential closed surfaces in the annular sum of I-bundle of closed surfaces have been characterized

in [3], so we assume F is not an annular in this paper. The main results are the following.

Theorem 1 Let M0 = (P1 × I)∪F (P2 × I), where Pi is a connected, orientable, closed surface

with g(Pi) ≥ i and F is a connected incompressible planar surface on Pi for i = 1, 2. Suppose

F is separating on one of P1 and P2, say P2, and each curve of ∂F is separating on P2. Then

M0 contains exactly 2n − 2 types of essential closed surfaces up to isotopy and any two types of

the essential closed surfaces must intersect with each other, where n is the component number

of P2 \ intF .

Corollary 1 Let M = M1∪P 1∪M0∪P 2 M2, where Mi is an irreducible, ∂-irreducible 3-manifold,

P i is a component of ∂Mi for i = 1, 2, M0 satisfies the conditions of Theorem 1. If Mi has a

Heegaard splitting Vi ∪Si
Wi with d(Si) ≥ 2(g(Mi)+1) for i = 1, 2. Then any minimal Heegaard

splitting of M has length at most 4.
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Remark 1 In fact, by Corollary 1 we can argue whether Heegaard genus of M1 and M2 is

additive under the corresponding surface sum, so the classification in Theorem 1 makes sense.

Definitions and terms which are not defined here are standard [6, 7].

2. The proof of Theorem 1 and Corollary 1

Recalling the definitions of F , Pi, P i and M0 in Section 1, and denote Pi × I by Ni for

i = 1, 2.

Proof of Theorem 1 Without loss of generality, we may suppose P2\intF = P 1
2 ∪P 2

2 ∪· · ·∪Pn
2 ,

where n is the component number of ∂F . Let S be an essential separated closed surface in M0.

If S is disjoint from F , then S is parallel to P 1 or P 2, a contradiction. Hence S ∩ F 6= ∅. Since

F is an incompressible surface on Pi and Ni (i = 1, 2) is irreducible, S can be isotoped such

that each component of S ∩ F is essential on both S and F . Furthermore, we may assume that

|S ∩F | is minimal up to isotopy of S in M0. Let Si = S ∩Ni for i = 1, 2. Then each component

of S1 and S2 is incompressible. Suppose H is any component of Si, by Lemma 2.3 in [5], H is

∂-parallel in Ni for i = 1, 2. By the minimality of |S ∩ F |, H is not ∂-parallel to F if H is an

outermost component. Let S∗

1 be the outermost component of S1, P ∗

1 ⊂ P1 be the subsurface to

which S∗

1 is ∂-parallel and F ∗ = P ∗

1 ∩ F .

Claim 1 S1 is connected.

Proof Otherwise, since F is non-separating on P1, all components of S1 are nested. As S is

a closed surface in M0, there must exist one component S∗

2 of S2 which is ∂-parallel to P2 and

connects with S∗

1 and another component S∗∗

1 of S1. Since F and each component of ∂F are

separating on P2, S∗

2 is either ∂-parallel to F or there is a boundary compressing disk for S2 in

N2, thus |S ∩ F | will be reduced, a contradiction with that |S ∩ F | is minimal up to isotopy of

S in M0. 2

Claim 2 Each outermost component of S2 cuts off an annular component from F .

Proof Otherwise, suppose there is an outermost component S∗

2 of S2 which cuts off a non-

annular component from F . Let P ∗ ⊂ P2 be the subsurface to which S∗

2 is ∂-parallel. Then we

can take an essential arc b in P ∗ ∩F such that ∂b lies in ∂P ∗. As S1 and S∗

2 are ∂-parallel, there

exists a disk Di in Ni such that ∂Di = bi ∪ b for i = 1, 2, where b1 is an essential arc in S1, b2 is

an essential arc in S∗

2 . Let D = D1 ∪b D2. Thus D is a disk in M0 and D ∩ S = ∂D = b1 ∪ b2 is

an essential simple closed curve on S, hence S is compressible in M0, a contradiction. 2

Claim 3 Not all components of S2 are outermost.

Proof By Claims 1 and 2, if all components of S2 are outermost, then each component of P ∗

1 ∩F

is annular, thus, S is ∂-parallel to (P1 \ intF ) ∪ (P2 \ intF ), a contradiction. 2

Let H be the union of all outermost components of S2, then each component of H cuts off an
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annular component from F and is ∂-parallel to one component of P2 \ intF . By the minimality

of |S ∩ F |, ∂S1 \ ∂H is connected. By Claim 3 not all components of P2 \ intF are contained

by S2, so we may suppose H contains k components of P2 \ intF . Without loss of generality, let

H = S1
2 ∪ S2

2 ∪ · · · ∪ Sk
2 where 1 ≤ k ≤ n − 1, Si

2 is ∂-parallel to P i
2 and ∂Si

2 = ci for 1 ≤ i ≤ k.

Since S2 \ H is ∂-parallel in N2, S1 is ∂-parallel in N1, by boundary compress S2 \ H in N2, we

can always isotopy S into a standard position such that P ∗

1 ∩F is the complement of k essential

annuli in F . We also denote the new surface by S. Let H1 = S2 \ H = (S1
2 )∗ ∪ (S2

2)∗ · · · (Sk
2 )∗,

where (Si
2)

∗ is ∂-parallel to P i
2 and has the same form as Si

2. For simplification, we denote

P ∗

1 ∩ F = F1 ∪ F0 ∪ F2, where F0 and F1 are both the union of k essential annulus in F . F2 is

homeomorphic to F . As S is separating in M0, let M0 = A ∪S B, where B contains F1 ∪ F2.

See Figure 1.

H

B

F2

F0

F1

H1
A

S1

P1 F\int

Figure 1 A position of S with H and H1 have the same form

Claim 4 S is incompressible in A.

Proof Let F1 = B1∪B2∪· · ·∪Bk, where ∂Bi are parallel to ci (1 ≤ i ≤ k). If S is compressible

in A, let D be a compressing disk for S in A such that |D∩F0|, the component number of D∩F0

is minimal among all compressing disk for S in A. Since S1, H and H1 are incompressible in

the respective 3-manifolds, D ∩ F0 6= ∅. As each component of F0 is an essential annular on F ,

by the minimality of |D ∩ F0|, each component of D ∩ F0 is an essential arc in F0. Let α be an

outermost component of D ∩ F0 in D. Then α lies in a component of F0. Since H ∪ H1 is not

connected, α cuts off a disk D∗ from D such that D∗ ∩ F = ∅, ∂D∗ \ α lies in S1 and D∗ lies in

N1. By Claim 2, P1 is compressible in N1, a contradiction. 2

Claim 5 S is incompressible in B.

Proof Otherwise, let D be a compressing disk for S in B such that |D ∩ (F1 ∪ F2)| is minimal

among all compressing disks for S in B. By the proof of Claim 4, D ∩ (F1 ∪ F2) 6= ∅. Since

each component of F1 contains one boundary component lying in the boundary of M0, D can

only intersect each component of F1 in inessential arcs. By the minimality of |D ∩ (F1 ∪ F2)|,

D ∩ F1 = ∅ and each component of D ∩ F2 in F2 is an essential arc. Suppose α is an outermost

component of D ∩ F2 in D. Since each component of H1 is ∂-parallel, α cuts off a disk D∗ from

D and D∗ lies in N1. Now we consider D ∩ F2 in D. If all components of D ∩ F2 in D are
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outermost, by the finiteness of D∩F2, let D∩F2 = α1∪α2∪· · ·∪αn, where αi cuts off a disk Di

from D, ∂Di = αi ∪βi for 1 ≤ i ≤ n. Let D′ = cl(D \∪i=n
i=1 Di) and ∂D′ = c′. Then D′ lies in N2

and c′ lies in H1 ∪F2 and c′ is essential in H1 ∪F2, so P2 is compressible in N2, a contradiction.

If the components of D ∩ F2 are not all outermost, we can always find a non-outermost arc β

of D ∩ F2 in D such that β cuts off a disk Dβ from D and each component of Dβ ∩ F2 is an

outermost component of D ∩F2. Using the same arguments as above, we get a contradiction. 2

By the above arguments, S is an essential closed surface in M0. Since H can be any non-

empty and peoper subset of P2 \ intF , and any two types of the essential closed surfaces in M0

either intersect or ∂-parallel with each other. Then M0 contains (C1
n +C2

n + . . .+Cn−1
n ) = 2n−2

types of essential closed surfaces up to isotopy, where n is the component number of P2 \ intF .

Proof of Corollary 1 By the proof of Theorem 1 in [4], any minimal Heegaard splitting

of M is weakly reducible, so any minimal Heegaard splitting of M has a thin position. Since

Mi (i = 1, 2) has a high distance Heegaard splitting, by a combinational argument we can

deduce any incompressible closed surface which appears in the corresponding thin position can

be isotoped into M0. By Theorem 1, any collection number of non-disjoint, non-isotopic essential

closed surfaces in M0 is 1. As P 1 and P 2 are essential in M , the thin position of any minimal

Heegaard splitting of M has length at most 4.

Remark 2 In a following paper, we hope to give a complete classification of essential closed

surfaces in the surface sum of I-bundle of closed surfaces, but we have to deal with a complicated

case in the combinational argument.
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