Essential Closed Surfaces in a Class of Surface Sum of I-Bundle of Closed Surfaces

Shu Xin WANG*, Rui Feng QIU
School of Mathematical Sciences, Dalian University of Technology, Liaoning 116024, P. R. China

Abstract

In this paper, we will characterize all types of essential closed surfaces in a class of surface sum of I-bundle of closed surfaces, and give an application of the classification in the surface sum of two 3-manifolds.

Keywords essential surface; surface sum; length of thin position.
Document code A
MR(2010) Subject Classification 57M50; 57N10
Chinese Library Classification O189.21; O189.31

1. Introduction

All 3-manifolds in this paper are assumed to be compact and orientable.
Let F be either a properly embedded connected surface in a 3 -manifold M or a connected subsurface of ∂M. If there is an essential simple closed curve on F which bounds a disk in M or F is a 2 -sphere which bounds a 3 -ball in M, then we say F is compressible, otherwise, F is said to be incompressible. If F cuts off a 3-manifold which is homeomorphic to $F \times I$, then we say F is ∂-parallel in M. If F is an incompressible surface and not ∂-parallel, then F is said to be essential. If M contains an essential 2-sphere, then M is said to be reducible, otherwise, M is said to be irreducible.

Let M be a 3-manifold. If $M \cong S \times I$, where S is a connected, orientable, closed surface, then M is said to be an I-bundle of closed surface.

A compression body C is a 3 -manifold obtained by adding 2 -handles to $S \times I$, where S is a connected closed surface, along a collection of pairwise disjoint simple closed curves on $S \times\{0\}$, then capping of any resulting 2 -sphere boundary components with 3 -balls. Denote by $\partial+C$ the surface $S \times\{1\}$ in ∂C, and $\partial_{-} C=\partial C-\partial_{+} C$. When $\partial_{-} C=\emptyset, C$ is a handlebody. When $C=S \times I, C$ is a trivial compression body, i.e. an I-bundle of S.

Let M be a 3 -manifold. If there is a closed surface S which cuts M into two compression bodies V and W with $S=\partial_{+} W=\partial_{+} V$, then we say M has a Heegaard splitting, denoted by $M=V \cup_{S} W$, and S is called a Heegaard surface of M. Moreover, if the genus $g(S)$ of S is

[^0]minimal among all the Heegaard surfaces of M, then $g(S)$ is called the Heegaard genus of M, denoted by $g(M)$. If there are essential disks $B \subset V$ and $D \subset W$ such that $\partial B \cap \partial D=\emptyset$, then $V \cup_{S} W$ is said to be weakly reducible. Otherwise, it is said to be strongly irreducible.

Let $M=V \cup_{S} W$ be a Heegaard splitting. Then $V \cup_{S} W$ has a thin position as

$$
V \cup_{S} W=\left(V_{1}^{\prime} \cup_{S_{1}^{\prime}} W_{1}^{\prime}\right) \cup_{H_{1}} \ldots \cup_{H_{n-1}}\left(V_{n}^{\prime} \cup_{S_{n}^{\prime}} W_{n}^{\prime}\right)
$$

where $n \geq 2$, each component of H_{1}, \ldots, H_{n-1} is an incompressible closed surface in M and $V_{i}^{\prime} \cup_{S_{i}^{\prime}} W_{i}^{\prime}$ is a strongly irreducible Heegaard splitting for $1 \leq i \leq n$. We call n the length of this thin position [1].

The distance of a Heegaard splitting was first introduced in [2]:
Let $M=V \cup_{S} W$ be a Heegaard splitting. The distance between two essential simple closed curves α and β on S, denoted by $d(\alpha, \beta)$, is the smallest integer $n \geq 0$ so that there is a sequence of essential simple closed curves $\alpha_{0}=\alpha, \ldots, \alpha_{n}=\beta$ on S such that α_{i-1} is disjoint from α_{i} for $1 \leq i \leq n$. The distance of the Heegaard splitting $V \cup_{S} W$ is $d(S)=\operatorname{Min}\{d(\alpha, \beta)\}$, where α bounds a disk in V and β bounds a disk in W.

Let M_{1} and M_{2} be two 3-manifolds, P_{i} be one component of ∂M_{i} and F_{i} be a connected incompressible subsurface on P_{i} for $i=1,2$. Let $f: F_{1} \rightarrow F_{2}$ be a homeomorphism. Then the manifold M obtained by gluing M_{1} and M_{2} along F_{1} and F_{2} via f is called the surface sum of M_{1} and M_{2} along F_{1} and F_{2}, and is denoted by $M=M_{1} \cup_{f} M_{2}$. Specially, we denote $M=M_{1} \cup_{F} M_{2}$, where F is the surface $F_{i}(i=1,2)$ in M. Let $P_{i} \times[0,1]$ be a regular neighborhood of P_{i} in M_{i}. Denote $P_{i}=P_{i} \times\{0\}, P^{i}=P_{i} \times\{1\}, M^{i}=M_{i}-P_{i} \times[0,1)$ for $i=1,2$, and $M^{0}=\left(P_{1} \times I\right) \cup_{F}\left(P_{2} \times I\right)$, where $I=[0,1]$. Then $M=M^{1} \cup_{P^{1}} M^{0} \cup_{P^{2}} M^{2}$ and M^{0} is the surface sum of I-bundle of closed surfaces P_{1} and P_{2} along F.

There are some results about surface sum of 3 -manifolds $[3,4]$. In this paper, we will characterize all types of essential closed surfaces in a class of surface sum of I-bundle of closed surfaces, and give an application of the classification in the surface sum of two 3-manifolds. Note that essential closed surfaces in the annular sum of I-bundle of closed surfaces have been characterized in [3], so we assume F is not an annular in this paper. The main results are the following.

Theorem 1 Let $M^{0}=\left(P_{1} \times I\right) \cup_{F}\left(P_{2} \times I\right)$, where P_{i} is a connected, orientable, closed surface with $g\left(P_{i}\right) \geq i$ and F is a connected incompressible planar surface on P_{i} for $i=1,2$. Suppose F is separating on one of P_{1} and P_{2}, say P_{2}, and each curve of ∂F is separating on P_{2}. Then M^{0} contains exactly $2^{n}-2$ types of essential closed surfaces up to isotopy and any two types of the essential closed surfaces must intersect with each other, where n is the component number of $P_{2} \backslash \operatorname{int} F$.

Corollary 1 Let $M=M_{1} \cup_{P^{1}} \cup M^{0} \cup_{P^{2}} M_{2}$, where M_{i} is an irreducible, ∂-irreducible 3-manifold, P^{i} is a component of ∂M_{i} for $i=1,2, M^{0}$ satisfies the conditions of Theorem 1. If M_{i} has a Heegaard splitting $V_{i} \cup_{S_{i}} W_{i}$ with $d\left(S_{i}\right) \geq 2\left(g\left(M_{i}\right)+1\right)$ for $i=1,2$. Then any minimal Heegaard splitting of M has length at most 4.

Remark 1 In fact, by Corollary 1 we can argue whether Heegaard genus of M_{1} and M_{2} is additive under the corresponding surface sum, so the classification in Theorem 1 makes sense.

Definitions and terms which are not defined here are standard $[6,7]$.

2. The proof of Theorem 1 and Corollary 1

Recalling the definitions of F, P_{i}, P^{i} and M^{0} in Section 1, and denote $P_{i} \times I$ by N_{i} for $i=1,2$.

Proof of Theorem 1 Without loss of generality, we may suppose $P_{2} \backslash \operatorname{int} F=P_{2}^{1} \cup P_{2}^{2} \cup \cdots \cup P_{2}^{n}$, where n is the component number of ∂F. Let S be an essential separated closed surface in M^{0}. If S is disjoint from F, then S is parallel to P^{1} or P^{2}, a contradiction. Hence $S \cap F \neq \emptyset$. Since F is an incompressible surface on P_{i} and $N_{i}(i=1,2)$ is irreducible, S can be isotoped such that each component of $S \cap F$ is essential on both S and F. Furthermore, we may assume that $|S \cap F|$ is minimal up to isotopy of S in M^{0}. Let $S_{i}=S \cap N_{i}$ for $i=1,2$. Then each component of S_{1} and S_{2} is incompressible. Suppose H is any component of S_{i}, by Lemma 2.3 in [5], H is ∂-parallel in N_{i} for $i=1,2$. By the minimality of $|S \cap F|, H$ is not ∂-parallel to F if H is an outermost component. Let S_{1}^{*} be the outermost component of $S_{1}, P_{1}^{*} \subset P_{1}$ be the subsurface to which S_{1}^{*} is ∂-parallel and $F^{*}=P_{1}^{*} \cap F$.

Claim $1 S_{1}$ is connected.
Proof Otherwise, since F is non-separating on P_{1}, all components of S_{1} are nested. As S is a closed surface in M^{0}, there must exist one component S_{2}^{*} of S_{2} which is ∂-parallel to P_{2} and connects with S_{1}^{*} and another component $S_{1}^{* *}$ of S_{1}. Since F and each component of ∂F are separating on P_{2}, S_{2}^{*} is either ∂-parallel to F or there is a boundary compressing disk for S_{2} in N_{2}, thus $|S \cap F|$ will be reduced, a contradiction with that $|S \cap F|$ is minimal up to isotopy of S in M^{0} 。

Claim 2 Each outermost component of S_{2} cuts off an annular component from F.
Proof Otherwise, suppose there is an outermost component S_{2}^{*} of S_{2} which cuts off a nonannular component from F. Let $P^{*} \subset P_{2}$ be the subsurface to which S_{2}^{*} is ∂-parallel. Then we can take an essential arc b in $P^{*} \cap F$ such that ∂b lies in ∂P^{*}. As S_{1} and S_{2}^{*} are ∂-parallel, there exists a disk D_{i} in N_{i} such that $\partial D_{i}=b_{i} \cup b$ for $i=1,2$, where b_{1} is an essential arc in S_{1}, b_{2} is an essential arc in S_{2}^{*}. Let $D=D_{1} \cup_{b} D_{2}$. Thus D is a disk in M^{0} and $D \cap S=\partial D=b_{1} \cup b_{2}$ is an essential simple closed curve on S, hence S is compressible in M^{0}, a contradiction.

Claim 3 Not all components of S_{2} are outermost.
Proof By Claims 1 and 2, if all components of S_{2} are outermost, then each component of $P_{1}^{*} \cap F$ is annular, thus, S is ∂-parallel to $\left(P_{1} \backslash \operatorname{int} F\right) \cup\left(P_{2} \backslash \operatorname{int} F\right)$, a contradiction.

Let H be the union of all outermost components of S_{2}, then each component of H cuts off an
annular component from F and is ∂-parallel to one component of $P_{2} \backslash \operatorname{int} F$. By the minimality of $|S \cap F|, \partial S_{1} \backslash \partial H$ is connected. By Claim 3 not all components of $P_{2} \backslash$ int F are contained by S_{2}, so we may suppose H contains k components of $P_{2} \backslash \operatorname{int} F$. Without loss of generality, let $H=S_{2}^{1} \cup S_{2}^{2} \cup \cdots \cup S_{2}^{k}$ where $1 \leq k \leq n-1, S_{2}^{i}$ is ∂-parallel to P_{2}^{i} and $\partial S_{2}^{i}=c_{i}$ for $1 \leq i \leq k$. Since $S_{2} \backslash H$ is ∂-parallel in N_{2}, S_{1} is ∂-parallel in N_{1}, by boundary compress $S_{2} \backslash H$ in N_{2}, we can always isotopy S into a standard position such that $P_{1}^{*} \cap F$ is the complement of k essential annuli in F. We also denote the new surface by S. Let $H_{1}=S_{2} \backslash H=\left(S_{2}^{1}\right)^{*} \cup\left(S_{2}^{2}\right)^{*} \cdots\left(S_{2}^{k}\right)^{*}$, where $\left(S_{2}^{i}\right)^{*}$ is ∂-parallel to P_{2}^{i} and has the same form as S_{2}^{i}. For simplification, we denote $P_{1}^{*} \cap F=F_{1} \cup F_{0} \cup F_{2}$, where F_{0} and F_{1} are both the union of k essential annulus in $F . F_{2}$ is homeomorphic to F. As S is separating in M^{0}, let $M^{0}=A \cup_{S} B$, where B contains $F_{1} \cup F_{2}$. See Figure 1.

Figure 1 A position of S with H and H_{1} have the same form

Claim $4 S$ is incompressible in A.
Proof Let $F_{1}=B_{1} \cup B_{2} \cup \cdots \cup B_{k}$, where ∂B_{i} are parallel to $c_{i}(1 \leq i \leq k)$. If S is compressible in A, let D be a compressing disk for S in A such that $\left|D \cap F_{0}\right|$, the component number of $D \cap F_{0}$ is minimal among all compressing disk for S in A. Since S_{1}, H and H_{1} are incompressible in the respective 3-manifolds, $D \cap F_{0} \neq \emptyset$. As each component of F_{0} is an essential annular on F, by the minimality of $\left|D \cap F_{0}\right|$, each component of $D \cap F_{0}$ is an essential arc in F_{0}. Let α be an outermost component of $D \cap F_{0}$ in D. Then α lies in a component of F_{0}. Since $H \cup H_{1}$ is not connected, α cuts off a disk D^{*} from D such that $D^{*} \cap F=\emptyset, \partial D^{*} \backslash \alpha$ lies in S_{1} and D^{*} lies in N_{1}. By Claim 2, P_{1} is compressible in N_{1}, a contradiction.

Claim $5 S$ is incompressible in B.
Proof Otherwise, let D be a compressing disk for S in B such that $\left|D \cap\left(F_{1} \cup F_{2}\right)\right|$ is minimal among all compressing disks for S in B. By the proof of Claim 4, $D \cap\left(F_{1} \cup F_{2}\right) \neq \emptyset$. Since each component of F_{1} contains one boundary component lying in the boundary of M^{0}, D can only intersect each component of F_{1} in inessential arcs. By the minimality of $\left|D \cap\left(F_{1} \cup F_{2}\right)\right|$, $D \cap F_{1}=\emptyset$ and each component of $D \cap F_{2}$ in F_{2} is an essential arc. Suppose α is an outermost component of $D \cap F_{2}$ in D. Since each component of H_{1} is ∂-parallel, α cuts off a disk D^{*} from D and D^{*} lies in N_{1}. Now we consider $D \cap F_{2}$ in D. If all components of $D \cap F_{2}$ in D are
outermost, by the finiteness of $D \cap F_{2}$, let $D \cap F_{2}=\alpha_{1} \cup \alpha_{2} \cup \cdots \cup \alpha_{n}$, where α_{i} cuts off a disk D_{i} from $D, \partial D_{i}=\alpha_{i} \cup \beta_{i}$ for $1 \leq i \leq n$. Let $D^{\prime}=c l\left(D \backslash \cup_{i=1}^{i=n} D_{i}\right)$ and $\partial D^{\prime}=c^{\prime}$. Then D^{\prime} lies in N_{2} and c^{\prime} lies in $H_{1} \cup F_{2}$ and c^{\prime} is essential in $H_{1} \cup F_{2}$, so P_{2} is compressible in N_{2}, a contradiction. If the components of $D \cap F_{2}$ are not all outermost, we can always find a non-outermost arc β of $D \cap F_{2}$ in D such that β cuts off a disk D_{β} from D and each component of $D_{\beta} \cap F_{2}$ is an outermost component of $D \cap F_{2}$. Using the same arguments as above, we get a contradiction.

By the above arguments, S is an essential closed surface in M^{0}. Since H can be any nonempty and peoper subset of $P_{2} \backslash \operatorname{int} F$, and any two types of the essential closed surfaces in M^{0} either intersect or ∂-parallel with each other. Then M^{0} contains $\left(C_{n}^{1}+C_{n}^{2}+\ldots+C_{n}^{n-1}\right)=2^{n}-2$ types of essential closed surfaces up to isotopy, where n is the component number of $P_{2} \backslash \operatorname{int} F$.

Proof of Corollary 1 By the proof of Theorem 1 in [4], any minimal Heegaard splitting of M is weakly reducible, so any minimal Heegaard splitting of M has a thin position. Since $M_{i}(i=1,2)$ has a high distance Heegaard splitting, by a combinational argument we can deduce any incompressible closed surface which appears in the corresponding thin position can be isotoped into M^{0}. By Theorem 1, any collection number of non-disjoint, non-isotopic essential closed surfaces in M^{0} is 1 . As P^{1} and P^{2} are essential in M, the thin position of any minimal Heegaard splitting of M has length at most 4.

Remark 2 In a following paper, we hope to give a complete classification of essential closed surfaces in the surface sum of I-bundle of closed surfaces, but we have to deal with a complicated case in the combinational argument.

References

[1] SCHARLEMANN M, THOMPSON A. Thin position for 3-manifold [J]. Contemp. Math., 1994, 164: 231238.
[2] HEMPEL J. 3-manifolds as viewed from the curve complex [J]. Topology, 2001, 40(3): 631-657.
[3] DU Kun, MA Jiming, QIU Ruifeng, et al. Heegaard genera of annular 3-manifolds [J]. J. Knot Theory Ramifications, 2011, 20(4): 1-20.
[4] QIU Ruifeng, WANG Shicheng, ZHANG Mingxing. The Heegaard genera of surface sums [J]. Topology Appl., 2010, 157(9): 1593-1601.
[5] SCHARLEMANN M. Proximity in the curve complex: boundary reduction and bicompressible surfaces [J]. Pacific J. Math., 2006, 228(2): 325-348.
[6] HEMPEL J. 3-Manifolds [M]. AMS Chelsea Publishing, Providence, RI, 2004.
[7] JACO W. Lectures on Three-Manifold Topology [M]. American Mathematical Society, Providence, R.I., 1980.

[^0]: Received August 4, 2010; Accepted January 18, 2011
 Supported by the National Natural Science Foundation of China (Grant Nos. 10625102; 10901029).

 * Corresponding author

 E-mail address: shuxin_wang@163.com (S. X. WANG)

