Essential Closed Surfaces in a Class of Surface Sum of *I*-Bundle of Closed Surfaces

Shu Xin WANG*, Rui Feng QIU

School of Mathematical Sciences, Dalian University of Technology, Liaoning 116024, P. R. China

Abstract In this paper, we will characterize all types of essential closed surfaces in a class of surface sum of *I*-bundle of closed surfaces, and give an application of the classification in the surface sum of two 3-manifolds.

Keywords essential surface; surface sum; length of thin position.

Document code A MR(2010) Subject Classification 57M50; 57N10 Chinese Library Classification 0189.21; 0189.31

1. Introduction

All 3-manifolds in this paper are assumed to be compact and orientable.

Let F be either a properly embedded connected surface in a 3-manifold M or a connected subsurface of ∂M . If there is an essential simple closed curve on F which bounds a disk in Mor F is a 2-sphere which bounds a 3-ball in M, then we say F is compressible, otherwise, F is said to be incompressible. If F cuts off a 3-manifold which is homeomorphic to $F \times I$, then we say F is ∂ -parallel in M. If F is an incompressible surface and not ∂ -parallel, then F is said to be essential. If M contains an essential 2-sphere, then M is said to be reducible, otherwise, Mis said to be irreducible.

Let M be a 3-manifold. If $M \cong S \times I$, where S is a connected, orientable, closed surface, then M is said to be an I-bundle of closed surface.

A compression body C is a 3-manifold obtained by adding 2-handles to $S \times I$, where S is a connected closed surface, along a collection of pairwise disjoint simple closed curves on $S \times \{0\}$, then capping of any resulting 2-sphere boundary components with 3-balls. Denote by $\partial + C$ the surface $S \times \{1\}$ in ∂C , and $\partial_{-}C = \partial C - \partial_{+}C$. When $\partial_{-}C = \emptyset$, C is a handlebody. When $C = S \times I$, C is a trivial compression body, i.e. an I-bundle of S.

Let M be a 3-manifold. If there is a closed surface S which cuts M into two compression bodies V and W with $S = \partial_+ W = \partial_+ V$, then we say M has a Heegaard splitting, denoted by $M = V \cup_S W$, and S is called a Heegaard surface of M. Moreover, if the genus g(S) of S is

Received August 4, 2010; Accepted January 18, 2011

Supported by the National Natural Science Foundation of China (Grant Nos. 10625102; 10901029). * Corresponding author

E-mail address: shuxin_wang@163.com (S. X. WANG)

minimal among all the Heegaard surfaces of M, then g(S) is called the Heegaard genus of M, denoted by g(M). If there are essential disks $B \subset V$ and $D \subset W$ such that $\partial B \cap \partial D = \emptyset$, then $V \cup_S W$ is said to be weakly reducible. Otherwise, it is said to be strongly irreducible.

Let $M = V \cup_S W$ be a Heegaard splitting. Then $V \cup_S W$ has a thin position as

$$V \cup_S W = (V'_1 \cup_{S'_1} W'_1) \cup_{H_1} \ldots \cup_{H_{n-1}} (V'_n \cup_{S'_n} W'_n)$$

where $n \geq 2$, each component of H_1, \ldots, H_{n-1} is an incompressible closed surface in M and $V'_i \cup_{S'_i} W'_i$ is a strongly irreducible Heegaard splitting for $1 \leq i \leq n$. We call n the length of this thin position [1].

The distance of a Heegaard splitting was first introduced in [2]:

Let $M = V \cup_S W$ be a Heegaard splitting. The distance between two essential simple closed curves α and β on S, denoted by $d(\alpha, \beta)$, is the smallest integer $n \ge 0$ so that there is a sequence of essential simple closed curves $\alpha_0 = \alpha, \ldots, \alpha_n = \beta$ on S such that α_{i-1} is disjoint from α_i for $1 \le i \le n$. The distance of the Heegaard splitting $V \cup_S W$ is $d(S) = Min\{d(\alpha, \beta)\}$, where α bounds a disk in V and β bounds a disk in W.

Let M_1 and M_2 be two 3-manifolds, P_i be one component of ∂M_i and F_i be a connected incompressible subsurface on P_i for i = 1, 2. Let $f : F_1 \to F_2$ be a homeomorphism. Then the manifold M obtained by gluing M_1 and M_2 along F_1 and F_2 via f is called the surface sum of M_1 and M_2 along F_1 and F_2 , and is denoted by $M = M_1 \cup_f M_2$. Specially, we denote $M = M_1 \cup_F M_2$, where F is the surface F_i (i = 1, 2) in M. Let $P_i \times [0, 1]$ be a regular neighborhood of P_i in M_i . Denote $P_i = P_i \times \{0\}$, $P^i = P_i \times \{1\}$, $M^i = M_i - P_i \times [0, 1)$ for i = 1, 2, and $M^0 = (P_1 \times I) \cup_F (P_2 \times I)$, where I = [0, 1]. Then $M = M^1 \cup_{P^1} M^0 \cup_{P^2} M^2$ and M^0 is the surface sum of I-bundle of closed surfaces P_1 and P_2 along F.

There are some results about surface sum of 3-manifolds [3, 4]. In this paper, we will characterize all types of essential closed surfaces in a class of surface sum of *I*-bundle of closed surfaces, and give an application of the classification in the surface sum of two 3-manifolds. Note that essential closed surfaces in the annular sum of *I*-bundle of closed surfaces have been characterized in [3], so we assume F is not an annular in this paper. The main results are the following.

Theorem 1 Let $M^0 = (P_1 \times I) \cup_F (P_2 \times I)$, where P_i is a connected, orientable, closed surface with $g(P_i) \ge i$ and F is a connected incompressible planar surface on P_i for i = 1, 2. Suppose F is separating on one of P_1 and P_2 , say P_2 , and each curve of ∂F is separating on P_2 . Then M^0 contains exactly $2^n - 2$ types of essential closed surfaces up to isotopy and any two types of the essential closed surfaces must intersect with each other, where n is the component number of $P_2 \setminus \text{int } F$.

Corollary 1 Let $M = M_1 \cup_{P^1} \cup M^0 \cup_{P^2} M_2$, where M_i is an irreducible, ∂ -irreducible 3-manifold, P^i is a component of ∂M_i for $i = 1, 2, M^0$ satisfies the conditions of Theorem 1. If M_i has a Heegaard splitting $V_i \cup_{S_i} W_i$ with $d(S_i) \ge 2(g(M_i) + 1)$ for i = 1, 2. Then any minimal Heegaard splitting of M has length at most 4. **Remark 1** In fact, by Corollary 1 we can argue whether Heegaard genus of M_1 and M_2 is additive under the corresponding surface sum, so the classification in Theorem 1 makes sense.

Definitions and terms which are not defined here are standard [6, 7].

2. The proof of Theorem 1 and Corollary 1

Recalling the definitions of F, P_i , P^i and M^0 in Section 1, and denote $P_i \times I$ by N_i for i = 1, 2.

Proof of Theorem 1 Without loss of generality, we may suppose $P_2 \setminus \operatorname{int} F = P_2^1 \cup P_2^2 \cup \cdots \cup P_2^n$, where *n* is the component number of ∂F . Let *S* be an essential separated closed surface in M^0 . If *S* is disjoint from *F*, then *S* is parallel to P^1 or P^2 , a contradiction. Hence $S \cap F \neq \emptyset$. Since *F* is an incompressible surface on P_i and N_i (i = 1, 2) is irreducible, *S* can be isotoped such that each component of $S \cap F$ is essential on both *S* and *F*. Furthermore, we may assume that $|S \cap F|$ is minimal up to isotopy of *S* in M^0 . Let $S_i = S \cap N_i$ for i = 1, 2. Then each component of S_1 and S_2 is incompressible. Suppose *H* is any component of S_i , by Lemma 2.3 in [5], *H* is ∂ -parallel in N_i for i = 1, 2. By the minimality of $|S \cap F|$, *H* is not ∂ -parallel to *F* if *H* is an outermost component. Let S_1^* be the outermost component of $S_1, P_1^* \subset P_1$ be the subsurface to which S_1^* is ∂ -parallel and $F^* = P_1^* \cap F$.

Claim 1 S_1 is connected.

Proof Otherwise, since F is non-separating on P_1 , all components of S_1 are nested. As S is a closed surface in M^0 , there must exist one component S_2^* of S_2 which is ∂ -parallel to P_2 and connects with S_1^* and another component S_1^{**} of S_1 . Since F and each component of ∂F are separating on P_2 , S_2^* is either ∂ -parallel to F or there is a boundary compressing disk for S_2 in N_2 , thus $|S \cap F|$ will be reduced, a contradiction with that $|S \cap F|$ is minimal up to isotopy of S in M^0 . \Box

Claim 2 Each outermost component of S_2 cuts off an annular component from F.

Proof Otherwise, suppose there is an outermost component S_2^* of S_2 which cuts off a nonannular component from F. Let $P^* \subset P_2$ be the subsurface to which S_2^* is ∂ -parallel. Then we can take an essential arc b in $P^* \cap F$ such that ∂b lies in ∂P^* . As S_1 and S_2^* are ∂ -parallel, there exists a disk D_i in N_i such that $\partial D_i = b_i \cup b$ for i = 1, 2, where b_1 is an essential arc in S_1 , b_2 is an essential arc in S_2^* . Let $D = D_1 \cup_b D_2$. Thus D is a disk in M^0 and $D \cap S = \partial D = b_1 \cup b_2$ is an essential simple closed curve on S, hence S is compressible in M^0 , a contradiction. \Box

Claim 3 Not all components of S_2 are outermost.

Proof By Claims 1 and 2, if all components of S_2 are outermost, then each component of $P_1^* \cap F$ is annular, thus, S is ∂ -parallel to $(P_1 \setminus \text{int } F) \cup (P_2 \setminus \text{int } F)$, a contradiction. \Box

Let H be the union of all outermost components of S_2 , then each component of H cuts off an

annular component from F and is ∂ -parallel to one component of $P_2 \setminus \operatorname{int} F$. By the minimality of $|S \cap F|$, $\partial S_1 \setminus \partial H$ is connected. By Claim 3 not all components of $P_2 \setminus \operatorname{int} F$ are contained by S_2 , so we may suppose H contains k components of $P_2 \setminus \operatorname{int} F$. Without loss of generality, let $H = S_2^1 \cup S_2^2 \cup \cdots \cup S_2^k$ where $1 \leq k \leq n-1$, S_2^i is ∂ -parallel to P_2^i and $\partial S_2^i = c_i$ for $1 \leq i \leq k$. Since $S_2 \setminus H$ is ∂ -parallel in N_2 , S_1 is ∂ -parallel in N_1 , by boundary compress $S_2 \setminus H$ in N_2 , we can always isotopy S into a standard position such that $P_1^* \cap F$ is the complement of k essential annuli in F. We also denote the new surface by S. Let $H_1 = S_2 \setminus H = (S_2^1)^* \cup (S_2^2)^* \cdots (S_2^k)^*$, where $(S_2^i)^*$ is ∂ -parallel to P_2^i and has the same form as S_2^i . For simplification, we denote $P_1^* \cap F = F_1 \cup F_0 \cup F_2$, where F_0 and F_1 are both the union of k essential annulus in F. F_2 is homeomorphic to F. As S is separating in M^0 , let $M^0 = A \cup_S B$, where B contains $F_1 \cup F_2$. See Figure 1.

Figure 1 A position of S with H and H_1 have the same form

Claim 4 S is incompressible in A.

Proof Let $F_1 = B_1 \cup B_2 \cup \cdots \cup B_k$, where ∂B_i are parallel to c_i $(1 \le i \le k)$. If S is compressible in A, let D be a compressing disk for S in A such that $|D \cap F_0|$, the component number of $D \cap F_0$ is minimal among all compressing disk for S in A. Since S_1 , H and H_1 are incompressible in the respective 3-manifolds, $D \cap F_0 \ne \emptyset$. As each component of F_0 is an essential annular on F, by the minimality of $|D \cap F_0|$, each component of $D \cap F_0$ is an essential arc in F_0 . Let α be an outermost component of $D \cap F_0$ in D. Then α lies in a component of F_0 . Since $H \cup H_1$ is not connected, α cuts off a disk D^* from D such that $D^* \cap F = \emptyset$, $\partial D^* \setminus \alpha$ lies in S_1 and D^* lies in N_1 . By Claim 2, P_1 is compressible in N_1 , a contradiction. \Box

Claim 5 S is incompressible in B.

Proof Otherwise, let D be a compressing disk for S in B such that $|D \cap (F_1 \cup F_2)|$ is minimal among all compressing disks for S in B. By the proof of Claim 4, $D \cap (F_1 \cup F_2) \neq \emptyset$. Since each component of F_1 contains one boundary component lying in the boundary of M^0 , D can only intersect each component of F_1 in inessential arcs. By the minimality of $|D \cap (F_1 \cup F_2)|$, $D \cap F_1 = \emptyset$ and each component of $D \cap F_2$ in F_2 is an essential arc. Suppose α is an outermost component of $D \cap F_2$ in D. Since each component of H_1 is ∂ -parallel, α cuts off a disk D^* from D and D^* lies in N_1 . Now we consider $D \cap F_2$ in D. If all components of $D \cap F_2$ in D are outermost, by the finiteness of $D \cap F_2$, let $D \cap F_2 = \alpha_1 \cup \alpha_2 \cup \cdots \cup \alpha_n$, where α_i cuts off a disk D_i from D, $\partial D_i = \alpha_i \cup \beta_i$ for $1 \le i \le n$. Let $D' = cl(D \setminus \bigcup_{i=1}^{i=n} D_i)$ and $\partial D' = c'$. Then D' lies in N_2 and c' lies in $H_1 \cup F_2$ and c' is essential in $H_1 \cup F_2$, so P_2 is compressible in N_2 , a contradiction. If the components of $D \cap F_2$ are not all outermost, we can always find a non-outermost arc β of $D \cap F_2$ in D such that β cuts off a disk D_β from D and each component of $D_\beta \cap F_2$ is an outermost component of $D \cap F_2$. Using the same arguments as above, we get a contradiction. \Box

By the above arguments, S is an essential closed surface in M^0 . Since H can be any nonempty and peoper subset of $P_2 \setminus \text{int } F$, and any two types of the essential closed surfaces in M^0 either intersect or ∂ -parallel with each other. Then M^0 contains $(C_n^1 + C_n^2 + \ldots + C_n^{n-1}) = 2^n - 2$ types of essential closed surfaces up to isotopy, where n is the component number of $P_2 \setminus \text{int } F$.

Proof of Corollary 1 By the proof of Theorem 1 in [4], any minimal Heegaard splitting of M is weakly reducible, so any minimal Heegaard splitting of M has a thin position. Since M_i (i = 1, 2) has a high distance Heegaard splitting, by a combinational argument we can deduce any incompressible closed surface which appears in the corresponding thin position can be isotoped into M^0 . By Theorem 1, any collection number of non-disjoint, non-isotopic essential closed surfaces in M^0 is 1. As P^1 and P^2 are essential in M, the thin position of any minimal Heegaard splitting of M has length at most 4.

Remark 2 In a following paper, we hope to give a complete classification of essential closed surfaces in the surface sum of I-bundle of closed surfaces, but we have to deal with a complicated case in the combinational argument.

References

- SCHARLEMANN M, THOMPSON A. Thin position for 3-manifold [J]. Contemp. Math., 1994, 164: 231– 238.
- [2] HEMPEL J. 3-manifolds as viewed from the curve complex [J]. Topology, 2001, 40(3): 631–657.
- [3] DU Kun, MA Jiming, QIU Ruifeng, et al. Heegaard genera of annular 3-manifolds [J]. J. Knot Theory Ramifications, 2011, 20(4): 1–20.
- [4] QIU Ruifeng, WANG Shicheng, ZHANG Mingxing. The Heegaard genera of surface sums [J]. Topology Appl., 2010, 157(9): 1593–1601.
- SCHARLEMANN M. Proximity in the curve complex: boundary reduction and bicompressible surfaces [J]. Pacific J. Math., 2006, 228(2): 325–348.
- [6] HEMPEL J. 3-Manifolds [M]. AMS Chelsea Publishing, Providence, RI, 2004.
- [7] JACO W. Lectures on Three-Manifold Topology [M]. American Mathematical Society, Providence, R.I., 1980.