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Abstract In this paper, on the basis of the theories and methods of ecology and ordinary

differential equations, an ecological model with an impulsive control strategy is established.

By using the theories of impulsive equations, small amplitude perturbation skills and compar-

ison technique, we get the condition which guarantees the global asymptotical stability of the

prey-x-eradication and predator-y-eradication periodic solution. It is proved that the system

is permanent. Furthermore, numerical simulations are also illustrated which agree well with

our theoretical analysis. All these results may be useful in study of the dynamic complexity of

ecosystems.
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1. Introduction

The research of the last two decades demonstrates that very complex dynamics can arise in

continuous time food chain models with three or more species [1–4], while similar results are

obtained for multi-species food models with specialist and generalist top-predators [5–7].

Many evolution processes are characterized by the fact at certain moments of time when they

experience a change of state abruptly. These processes are subject to short-term perturbations

whose duration is negligible in comparison with the duration of the process. Consequently,

it is natural to assume that these perturbations act instantaneously, that is, in the form of

impulse. It is well known that many biological phenomena involving thresholds, bursting rhythm

models in medicine and biology, optimal control models in economics, pharmacokinetics and

frequency modulate systems do exhibit impulsive effects. Thus impulsive differential equations,
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differential equations involving impulsive effects, appear as a natural description of observed

evolution phenomena of several real world problems [8–10]. Furthermore, a new approach was

presented in [11] via variational methods and critical point theory to obtain the existence of

solutions to impulsive problems. It was pointed out in [12] that there exist Li-York chaos in

the system with impacts. The paper [13, 14] studied the qualitative behavior of a class of ratio-

dependent predator-prey system at the origin of the first quadrant, and it was shown that

the origin is indeed a critical point of higher order. The heteroclinic bifurcation of predator-

prey system was investigated in [15–17], where parametric conditions of the existence of the

heteroclinic loop were given analytically and the heteroclinic bifurcation surface in the parameter

space was described. The field of research of chaotic impulsive differential equations about

biological and chemical control seems to be a new growing interesting area in the recent years,

which some scholars have paid attention to [18–35].

In this paper, we consider a three-species ecological model with an impulsive control strategy.

The model can be described by the following differential equations:










































dx(t)
dt

= r1x(t)(1 − x(t)
k1

) − a1x(t)y(t)
b1+x(t) − a2x(t)z(t)

b2+x(t)
dy(t)
dt

= e1a1x(t)y(t)
b1+x(t) − d1y(t)z(t) −m1y(t)

dz(t)
dt

= a2e2x(t)z(t)
b2+x(t) − d2y(t)z(t) −m2z(t)















t 6= nT

∆x(t) = 0

∆y(t) = 0

∆z(t) = p











t = nT

(1.1)

where x(t), y(t), z(t) are the densities of one prey and two predators at time t, respectively,

∆x(t) = x(t+) − x(t), ∆y(t) = y(t+) − y(t), ∆z(t) = z(t+) − z(t), r1 is the intrinsic growth

rate, ai(i = 1, 2) and bi(i = 1, 2) measure the efficience of the prey in evading a predator attack,

ei (i = 1, 2) denote the efficiency with which resources are converted to new consumers, k1 is

carrying capacity in the absence of predator, di (i = 1, 2) are competing parameters, mi (i = 1, 2)

are the mortality rates for the predator, T is the period of the impulsive effect, n ∈ N , N is

the set of all non-negative integers, and p > 0 is the release amount of predator at t = nT . In

order to get some conditions to guarantee species permanence, we will relaese a certain amount

of predator z at t = nT .

2. Mathematical analysis

Let R+ = [0,∞), R3
+ = {X ∈ R3 | X ≥ 0}. Denote by f = (f1, f2, f3) the map defined by

the right hand sides of the first three equations of system (1.1). Let V : R+ × R3
+ → R+. Then

V is said to belong to class V0 if:

(1) V is continuous in (nT, (n+1)T ]×R3
+, and for eachX ∈ R3

+, n ∈ N , lim(t,y)→(nT+,X) V (t, y) =

V (nT+, X) exists.

(2) V is locally Lipschitzian in X .

Definition 2.1 Let V ∈ V0. Then for (t, x) ∈ (nT, (n+ 1)T ] × R3
+, the upper right derivative
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of V (t,X) with respect to the impulsive differential system (1.1) is defined as

D+V (t,X) = lim
h→0+

sup
1

h
[V (t+ h,X + hf(t, x)) − V (t,X)].

The solution of system (1.1) is a piecewise continuous function X : R+ → R3
+, X(t) is

continuous on (nT, (n + 1)T ], n ∈ N and X(nT+) = limt→nT+ X(t) exists. The smoothness

properties of f guarantee the global existence and uniqueness of solution of system (1.1) (refering

to [8–10] for details).

Definition 2.2 System (1.1) is said to be permanent if there exists a compact Ω ⊂ intR3
+ such

that every solution (x(t), y(t), z(t)) of system (1.1) will eventually enter and remain in the region

Ω.

The following lemma is obvious.

Lemma 2.1 Let X(t) be a solution of system (1.1) with X(0+) ≥ 0. Then X(t) ≥ 0 for all

t ≥ 0. And further X(t) > 0, t > 0 if X(0+) > 0.

We will use an important comparison theorem on impulsive differential equation.

Lemma 2.2 ([8]) Suppose V ∈ V0. Assume that
{

D+V (t,X) ≤ g(t, V (t,X)), t 6= nT

V (t,X(t+)) ≤ ψn(V (t,X)), t = nT
(2.1)

where g : R+ × R+ → R is continuous in (nT, (n + 1)T ] × R+ and for u ∈ R+, n ∈ N ,

lim(t,v)→(nT+,u) g(t, v) = g(nT+, u) exists, ψn : R+ → R+ is non-decreasing. Let r(t) be maximal

solution of the scalar impulsive differential equation










du(t)
dt

= g(t, u(t)), t 6= nT

u(t+) = ψn(u(t)), t = nT

u(0+) = u0

(2.2)

existing on [0,∞). Then V (0+, X0) ≤ u0, implies that V (t,X(t)) ≤ r(t), t ≥ 0, where X(t) is

any solution of system (1.1).

If the prey x and the predator y become extinct, the system (1.1) changes into the subsystem

(2.3)










dz(t)
dt

= −m2z(t), t 6= nT,

z(t+) = z(t) + p, t = nT,

z(0+) = z0.

(2.3)

Clearly, if the initial value is z∗(0+) = p
1−exp(−m2T ) > 0, for any t ∈ (nT, (n+ 1)T ], n ∈ N ,

the subsystem (2.3) has a positive periodic solution which can be described as follows

z∗(t) =
p exp(−m2(t− nT ))

1 − exp(−m2T )
.

If the initial value is z0 = z(0+) ≥ 0, for any t ∈ (nT, (n+ 1)T ], n ∈ N , the subsystem (2.3) has



1038 X. M. WANG and S. M. ZHONG

a general solution which can be described as follows

z(t) = (z(0+) −
p

1 − exp(−m2T )
) exp(−m2t) + z∗(t).

It is obvious to get Lemma 2.3.

Lemma 2.3 For a positive periodic solution z∗(t) of system (2.3) and a general solution z(t) of

system (2.3), there holds | z(t) − z∗(t) |→ 0, t→ ∞.

Therefore, we obtain the complete expression for the prey-x-eradication and predator-y-

eradication periodic solution (0, 0, z∗(t)) of system (1.1), where the prey-x-eradication means the

prey x becomes extinct and the predator-y-eradication means the predator y becomes extinct.

Now, we study the stability of the prey-x-eradication and predator-y-eradication periodic

solution

Theorem 2.1 Let (x(t), y(t), z(t)) be any solution of system (1.1). Then (0, 0, z∗(t)) is said to

be locally asymptotically stable if

r1T −
a2p

b2m2
< 0.

Proof The local stability of periodic solution (0, 0, z∗(t)) may be determined by considering the

behavior of small amplitude perturbation of the solution. Define

x(t) = u(t), y(t) = v(t), z(t) = w(t) + z∗(t). (2.4)

Substituting (2.4) into (1.1) gives










































du(t)
dt

= (r1 −
a2z∗(t)

b2
u(t)

dv(t)
dt

= (−d1z
∗(t) −m1)v(t)

dw(t)
dt

= a2z∗(t)
b2

u(t) − d2z
∗(t)v(t) −m2w(t)











t 6= nT

∆u(t) = 0

∆v(t) = 0

∆w(t) = 0











t = nT

(2.5)

Therefore, we have






u(t)

v(t)

w(t)






= Φ(t)







u(0)

v(0)

w(0)






, 0 ≤ t < T

where Φ(t) satisfies

dΦ

dt
=







r1 −
a2z∗(t)

b2
0 0

0 −d1z
∗(t) −m1 0

a2z∗(t)
b2

−d2z
∗(t) −m2






Φ(t)

and Φ(0) = I, the identity matrix, and






u(nT+)

v(nT+)

w(nT+)






=







1 0 0

0 1 0

0 0 1













u(nT )

v(nT )

w(nT )






.
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The stability of the periodic solution (0, 0, z∗(t)) is determined by the eigenvalues of

Θ =







1 0 0

0 1 0

0 0 1






Φ(T )

with absolute value less than one. Then the periodic solution (0, 0, z∗(t)) is locally stable. All

eigenvalues of Θ are

u1 = exp
(

∫ T

0

(r1 −
a2z

∗(t)

b2
)dt

)

, u2 = exp
(

∫ T

0

(−d1z
∗(t) −m1)dt

)

< 1,

u3 = exp(−m2T ) < 1,

respectively. According to Floquet theory of impulsive differential equation, (0, 0, z∗(t)) is locally

asymptotically stable if | u1 |< 1, that is to say

r1T −
a2p

b2m2
< 0.

This completes the proof. 2

Theorem 2.2 There exists a constant M > 0, such that x(t) ≤ M , y(t) ≤ M , z(t) ≤ M for

each solution X(t) = (x(t), y(t), z(t)) of system (1.1) with all t large enough.

Proof Define V (t,X(t)) such that

V (t,X(t)) = x(t) +
1

e1
y(t) +

1

e2
z(t).

Then V ∈ V0. We calculate the upper right derivative of V (t,X) along a solution of system (1.1)

and get the following impulsive differential equation










D+V (t) + LV (t) = (r1 + L)x(t) − r1

k1
x(t)2 + L−m1

e1
y(t) + L−m2

e2
z(t)−

d1

e1
y(t)z(t) − d2

e2
y(t)z(t), t 6= n,

V (t+) = V (t) + p, t = nT.

(2.6)

Let 0 < L < min{m1,m2}. Then D+V (t) + LV (t) is bounded. Select L1 and L2 such that
{

D+V (t) ≤ −L1V (t) + L2, t 6= nT,

V (t+) = V (t) + p, t = nT,
(2.7)

where L1, L2 are two positive constants.

According to Lemma 2.2, we have

V (t) ≤ (V (0+) −
L2

L1
) exp(−L1t) +

p(1 − exp(−nL1T ))

exp(L1T ) − 1
exp(L1T ) exp(−L1(t− nT )) +

L2

L1
,

where t ∈ (nT, (n+ 1)T ]. Hence

lim
t→∞

V (t) ≤
L2

L1
+

p exp(L1T )

exp(L1T ) − 1
.

Therefore V (t,X(t)) is ultimately bounded, and we know that each positive solution of system

is uniformly ultimately bounded. This completes the proof. 2
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Theorem 2.3 Let (x(t), y(t), z(t)) be any solution of system (1.1). Then (0, 0, z∗(t)) is said to

be globally asymptotically stable if

r1T −
a2p

b2m2
< 0

and

p >
r1m2T

a2
(b2 +M).

Proof By Theorem 2.1, we know that (0, 0, z∗(t)) is locally asymptotically stable. In the

following, we shall prove its global attraction. Let

V (t) = e1x(t) + y(t).

Then we get

V ′|(1.1) =e1r1x(t) −
r1e1x

2(t)

k1
−
e1a1x(t)y(t)

b1 + x(t)
−
e1a2x(t)z(t)

b2 + x(t)
+

a1e1x(t)y(t)

b1 + x(t)
− d1y(t)z(t) −m1y(t).

By Theorem (2.2), there exists a constant M > 0, such that x(t) ≤M , y(t) ≤ M , z(t) ≤ M

for each solution X(t) = (x(t), y(t), z(t)) of system (1.1) with all t large enough.

Thus,

V ′|(1.1) ≤ e1r1x(t) −
e1a2x(t)z(t)

b2 +M
− d1y(t)z(t) −m1y(t).

By Lemmas 2.1 and 2.3, we know that there exist t1 > 0, and ǫ > 0 small enough, such that

z(t) ≥ z∗(t) − ǫ, for all t ≥ t1. We have

z(t) ≥
p exp(−m2T )

1 − exp(−m2T )
− ǫ, γ1 ,

p exp(−m2T )

1 − exp(−m2T )
− ǫ.

Then

V ′|(1.1) ≤ (e1r1 −
e1a2γ1

b2 +M
)x(t) + (−d1γ1 −m1)y(t)

if e1r1 −
e1a2γ1

b2+M
< 0, that is to say:

p ≥
r1m2T

a2
(b2 +M).

Thus, for t ≥ t1, we have

V ′|(1.1) ≤ (e1r1 −
e1a2γ1

b2 +M
)x(t) + (−d1γ1 −m1)y(t) < 0,

so V (t) → 0, and x(t) → 0, y(t) → 0 as t→ ∞. Notice that the limit system of the system (1.1)

is exactly system (2.3). Together with Lemma 2.3, we know that the prey-(x) and predator-(y)

eradication periodic solution (0, 0, z∗(t)) is global attractor. The proof is completed. 2

Then we investigate the permanence of the system (1.1).

Theorem 2.4 The system (1.1) is permanent if

r1T −
a2p

b2m2
> 0
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and

p ≤
r1m2T

a2
(b2 +M).

Proof Suppose X(t) = (x(t), y(t), z(t)) is any solution of the system (1.1) with X(0) > 0. From

Theorem 2.2, we assume that x(t) ≤M , y(t) ≤M and z(t) ≤M with t ≥ 0. From (2.3), we have

z(t) > z∗(t) − ǫ for all t large enough and some z(t) ≥ p exp(−m2T )
1−exp(−m2T ) − ǫ , ζ1 for t large enough.

Thus we only need to find ζ2 and ζ3 such that x(t) ≥ ζ2 and y(t) ≥ ζ3 for t large enough.

Figure 1 The dynamics of system (1.1) when p >= 7.805052, (0, 0, z∗(t)) is locally asymptotically

stable, that is to say, the prey-(x) and predator-(y) go extinction: (a) time series of prey (x population,

x(t) → 0, as t → ∞ when p = 8, (b) time series of predator y population, y(t) → 0, as t → ∞ when

p = 8,(c) time series of predator z population when p = 8,(d)phase portrait of system (1.1).

Let ǫ1 > 0 be small enough such that

η1 , exp
(

∫ (n+1)T

nT

(

[r1(1 −
M

k1
) −

a1M

b1
−
a2(υ

∗
3 + ǫ1)

b2
]
)

dt
)

> 1.

Now, we prove that there exists a constant ζ2, such that x(t) ≥ ζ2 for t large enough.

We will prove that there exists a t1 ∈ (0,∞) such that x(t) ≥ ζ2. Otherwise x(t) < ζ2 for all

t > 0. From system (1.1), we can obtain that










dz(t)
dt

≤ ( e2a2ζ2

b2
−m2)z(t), t 6= nT,

z(t+) = z(t) + p, t = nT,

z(0+) = z0.

(2.8)

Then we have z(t) ≤ υ3 and υ3 → υ∗3 (t→ ∞), where υ3 is the solution of










dυ3(t)
dt

= ( e2a2ζ2

b2
−m2)υ3(t), t 6= nT,

υ3(t
+) = υ3(t) + p, t = nT,

υ3(0
+) = z0

(2.9)

and υ∗3 =
p exp(−(m2−

e2a2ζ2
b2

)(t−nT ))

1−exp(−(m2−
e2a2ζ2

b2
)T )

, t ∈ (nT, (n+ 1)T ], n ∈ N . Therefore, there exists a T1 > 0
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such that

z(t) ≤ υ3(t) < υ∗3 + ǫ1

and
dx(t)

dt
≥ x(t)[r1(1 −

M

k1
) −

a1M

b1
−
a2(υ

∗
3 + ǫ1)

b2
]. (2.10)

Let N1 ∈ N and N1T ≥ T2 > T1. Integrating (2.10) on (nT, (n+ 1)T ), n ≥ N1, we get

x((n+ 1)T ) ≥ x(nT+) exp
(

∫ (n+1)T

nT

(

[r1(1 −
M

k1
) −

a1M

b1
−
a2(υ

∗
3 + ǫ1)

b2
]
)

dt
)

= x(nT ) exp
(

∫ (n+1)T

nT

(

[r1(1 −
M

k1
) −

a1M

b1
−
a2(υ

∗
3 + ǫ1)

b2
]
)

dt
)

= x(nT )η1. (2.11)

Then x((N1 + k)T ) ≥ x(N1T )ηk
1 → ∞, k → ∞, which is a contradiction to the boundedness of

x(t). Hence there exists a t1 > 0 such as x(t1) ≥ ζ2

Secondly, if x(t) ≥ ζ2 for all t ≥ t1, then our aim is obtained. Hence we only need to

consider those solutions which leave the region R = {x(t) : x(t) < ζ2} and reenter it again. Let

t∗ = inft≥t1{x(t) < ζ2}. We have x(t) ≥ ζ2, t ∈ (t, t∗) and t∗ ∈ (n1T, (n1 + 1)T ), n1 ∈ N. It is

easy to prove x(t∗) = ζ2 since x(t) is continuous.

We claim that there must exist a t2 ∈ ((n1 + 1)T, (n1 + 1)T + T̄ ) such that x(t2) ≥ ζ2,

otherwise x(t) < ζ2, t ∈ ((n1 + 1)T, (n1 + 1)T + T̄ ), T̄ = n2T + n3T. Select n2, n3 ∈ N such that

(n2 − 1)T >
ln( ǫ1

(M+p) )

−(m2 −
e2a2ζ2

b2
)
, exp(γ(n2 + 1)T )ηn3

1 > 1.

Considering (2.9) with υ3(t
∗+) = z(t∗+), we have

υ3(t) = (υ3((n1 + 1)T+) −
p

1 − exp(−(m2 −
e2a2ζ2

b2
)T ))

) exp(−(m2 −
e2a2ζ2

b2
)t) + υ∗3(t)

for t ∈ (nT, (n+ 1)T ), n1 + 1 < n < n1 + n2 + n3 + 1, then

|υ3(t) − υ∗3(t)| < (M + p) exp(−(m2 −
e2a2ζ2

b2
)(t− (n1 + 1)T )) < ǫ1

and

z(t) ≤ υ3(t) ≤ υ∗3(t) + ǫ1,

(n1 + n2 + 1)T ≤ t ≤ (n1 + 1)T + T̄ , which implies that (2.10) holds for (n1 + n2 + 1)T ≤ t ≤

(n1 + 1)T + T̄ . Integrating (2.10) on ((n1 + n2 + 1)T, (n1 + 1)T + T̄ ), we have

x((n1 + n2 + n3 + 1)T ) ≥ x((n1 + n2 + 1)T )ηn3

1 .

There are two possible cases for t ∈ (t∗, (n1 + 1)T ).

Case I If x(t) < ζ2 for all t ∈ (t∗, (n1 + 1)T ), then x(t) < ζ2 for all t ∈ (t∗, (n1 + 1 + n2)T ). We

have
dx(t)

dt
≥ x(t)[r1(1 −

ζ2

k1
) −

a1M

b1
] = γx(t). (2.12)
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Integrating (2.12) on (t∗, (n1 + 1 + n2)T ) yields x((n1 + n2 + 1)T ) ≥ x(t∗) exp(γ(n2 + 1)T ).

Then x((n1 + n2 + n3 + 1)T ) ≥ ζ2 exp(γ(n2 + 1)T )ηn3

1 > ζ2, which is a contradiction.

Let t3 = inft>t∗{x(t) ≥ ζ2}. Then x(t3) = ζ2 and (2.12) holds for t ∈ [t∗, t3). Then integrating

(2.12) on [t∗, t3) yields

x(t) ≥ x(t∗) exp(γ(t− t∗)) ≥ ζ2 exp(γ(1 + n1 + n3)T ) , ζ̄2.

For t > t3 the same arguments can be continued since x(t3) ≥ ζ2. Hence x(t) ≥ ζ̄2 for all

t > t3.

Case II There exists a t5 ∈ (t∗, (n1 + 1)T ] such that x(t5) ≥ ζ2. Let t4 = inft>t∗{x(t) ≥ ζ2}.

Then x(t) < ζ2 for t ∈ [t∗, t4) and x(t4) = ζ2. For t ∈ [t∗, t4), (2.12) holds. Integrating (2.12) on

[t∗, t4), we have x(t) ≥ x(t∗) exp(γ(t− t∗)) > ζ̄2. This process can be continued since x(t4) ≥ ζ2.

And we have x(t) ≥ ζ̄2for t > t4. Thus in both cases, we conclude x(t) ≥ ζ̄2 for all t ≥ t1.

Similarly, we can prove y(t) ≥ ζ̄3 for all t ≥ t2.

Set Ω = {(x, y, x) : x ≥ ζ2, y ≥ ζ3, z ≥ ζ1, x+ y + z ≤ 3M}. Obviously, we know that the set

Ω ∈ int R3
+ is global attractors. Every solution of system (1.1) will eventually enter and remain

in region Ω. Therefore, system (1.1) is permanent. The proof is completed. 2

Corollary 1 The prey-x and predator-z of system (1.1) can coexist and the predator-y extinct

if r1T − a2p
b2m2

> 0 and p > r1m2T
a2

(b2 +M).

3. Numerical analysis

To study the dynamics of an impulsively controlled one-prey two-predator system. The solu-

tion of system (1.1) with initial conditions (x0 = 0.5, y0 = 0.3, z0 = 0.5) is obtained numerically

for biologically feasible range of parametric value r1 = 0.8, k1 = 10, m1 = 0.1,m2 = 0.15,

d1 = 0.15, d2 = 0.2, a1 = 0.3, a2 = 0.24, e1 = 0.8, e2 = 0.7, b1 = 0.5, b2 = 1.5,T = 20.

From Theorem 2.1 we know that the prey-x-eradication and predator-y-eradication periodic

solution (0, 0, z∗(t)) is locally asymptotically stable provided that p >= 7.805052. A type of

prey-x-eradication and predator-y-eradication periodic solution of system (1.1) is shown in Fig.1,

where we may observe how the variable z(t) oscillates in a stable cycle. In contrast, the the prey

x and predator y rapidly decrease to zero when p >= 7.805052. When the value of p is smaller

than 7.805052, the prey-x-eradication and predator-y-eradication periodic solution will become

unstable. It is possible that the prey and two predators can coexist on a stable positive periodic

solution. When p = 2.5, the prey x and the predator z can coexist, but the predator y finally

becomes extinct, as shown in Figure 2. This result agrees well with Corollary 1. When p = 0.5 ,

three species can coexist. Figure 3 shows this result. From Figure 3, we can know that the prey

and two predators finally coexist in a stable limit circle. In a word, the impulsive perturbation

can control the dynamical behavior of this ecological system and the impulsive control method

is very effective.
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Figure 2 The dynamics of system (1.1) when p = 2.5: (a) time series of prey x population x(t), (b)

time series of predator y population, y(t) → 0, as t → ∞, (c) time series of predator z population, (d)

phase portrait of system (1.1).

Figure 3 The dynamics of system (1.1) when p = 0.5: (a) time series of prey x population, (b) time

series of predator y population, (c) time series of predator z population, (d) phase portrait of system

(1.1).

4. Conclusions and remarks

In this paper, the dynamic complexities of an ecological model with an impulsive control strat-

egy are studied numerically and analytically. By using Floquet theorem and small amplitude

perturbation skills, we have proved that the periodic solution (0, 0, z∗(t)) is globally asymptot-

ically stable if r1T − a2p
b2m2

< 0 and p > r1m2T
a2

(b2 + M) and the system (1.1) is permanent if

r1T − a2p
b2m2

> 0 and p ≤ r1m2T
a2

(b2 +M). By choosing impulsive perturbation p as a parameter,

we have obtained time series diagrams. Time series diagrams have shown dynamical complexity

for system (1.1). All these results show that the dynamical behaviors of system (1.1) are more
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complex under periodically impulsive perturbations.
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