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Abstract In view of singularly perturbed problems with complex inner layer phenomenon,

including contrast structures (step-step solution and spike-type solution), corner layer behavior

and right-hand side discontinuity, we carry out the process with sewing connection. The pre-

sented method of sewing connection for singularly perturbed equations is based on the two points

singularly perturbed simple boundary problems. By means of sewing orbit smoothness, we get

the uniformly valid solution in the whole interval. It is easy to prove the existence of solutions

and deal with the high dimensional singularly perturbed problems.
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1. Introduction

The research for nonlinear singularly perturbed problems arises in many efficient methods

such as boundary layer function theory [1, 5], differential inequality [2], asymptotic matching

principle [3], etc. These methods have severe mathematics theory basis, in which not only the

asymptotic solutions are constructed but also the estimates of residual terms are given. After

entering the 21st century, the internal layer phenomenon of singular perturbation problems has

become the focus of attention, including contrast structures (step-step solution and spike-type

solution), corner layer behavior and right-hand side of discontinuity, etc. To solve these problems,

even in the scalar case with differential inequality, it is very complex to prove the existence

of solutions. What is more, if we deal with high-dimensional non-linear singularly perturbed

problems, these methods become powerless.

The method of sewing connection for singularly perturbed equations presented in this paper

is based on the two points singularly perturbed simple boundary problems, which are in allusion
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to complicated interior layers. By means of sewing orbit smoothness, we get the uniformly valid

solution in the whole interval. Our treatments have at least two advantages: first, it is easy to

prove the existence of solutions and carry out the estimate of residual terms; second, the sewing

connection can deal with the high dimensional singularly perturbed problems.

The theoretical basis of sewing connection is the following Vasili’eva theorem.

Lemma 1 (Vasili’eva Theorem) Consider Tikhnov system with z ∈ RM , y ∈ Rm

µ
dz

dt
= F (z, y, t),

dy

dt
= f(z, y, t), 0 ≤ t ≤ 1, (1)

az(0, µ) = az0, bz(1, µ) = bz0, y(0, µ) = y0, (2)

where a =

(

Ek 0

0 0

)

, b =

(

0 0

0 EM−k

)

, 1 < k < M , Ek and EM−k are unit matrices.

Assume that all the following conditions are satisfied:

[H1] Vector functions F and f are smooth sufficiently on the domain;

[H2] The eigenvalue λ̄t(t) (0 ≤ t ≤ 1) of matrix F̄z(t) ≡ Fz(z̄(t), ȳ(t), t) satisfies

Re λ̄i(t) < 0, i = 1, . . . , k < M,

Re λ̄i(t) > 0, i = k + 1, . . . , M.

Then the solution x(t, µ) = (z(t, µ), y(t, µ))T of (1) and (2) exists, and has the residual terms

estimation

‖x(t, µ) − Xn(t, µ)‖ ≤ Cµn+1,

where Xn(t, µ) =
∑n

k=0 µk(x̄k(t)+Πkx(τ0)+Rkx(τ1)) is the n-order part sum with Πkx(τ0) and

Rkx(τ1), which are exponential decay as τ0 → ∞(τ1 → −∞).

In allusion to step-step solution, in this paper, we will introduce how to construct uniformly

valid asymptotic solutions by using sewing connection.

We discuss the semi-linear boundary value problem as follows:

µ2y′′ = F (y, t), 0 ≤ t ≤ 1, 0 < µ ≤ 1, (3)

y(0, µ) = y0, y(1, µ) = y1. (4)

First we give several hypotheses:

[A1] (smooth condition) F (y, t) is smooth sufficiently in D = {(y, t) : |y| ≤ l, 0 ≤ t ≤ 1},

where l is a given real number;

[A2] (isolated-solution condition) The degenerate equation F (ȳ(t), t) = 0 has three disjoint

real roots ȳ(t) = ϕi(t) (i = 1, 2, 3) satisfying ϕ1(t) < ϕ2(t) < ϕ3(t);

[A3] (stable condition) Fy(ϕi(t), t) > 0(i = 1, 3), Fy(ϕ2(t), t) < 0.

2. The form of the construction of asymptotic solutions

The solution y(t, µ) has the contrast structure. Consider the left problem and the right

problem which joint smoothly at t∗ (t∗ is called transfer point).
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The left problem 0 ≤ t ≤ t∗:

µ2y
′′(−) = F (y(−), t), y(−)(0, µ) = y0, y(−)(t∗, µ) = ϕ2(t∗). (5)

The right problem t∗ ≤ t ≤ 1:

µ2y
′′(+) = F (y(+), t), y(+)(t∗, µ) = ϕ2(t∗), y(+)(1, µ) = y1, (6)

where 0 < t∗ < 1 is a parameter. From (5)–(6), we know that y(∓)(t, µ) is continuous at t = t∗.

In order to make y(∓)(t, µ) joint smoothly at t = t∗, the following equation must be satisfied:

d

dt
y(−)(t∗, µ) =

d

dt
y(+)(t∗, µ). (7)

Suppose that the formal asymptotic solutions of (3) and (4) having the contrast structures

can be represented:

y(t, µ) =























∞
∑

k=0

µk(ȳ
(−)
k (t) + Πky(τ0) + Q

(−)
k y(τ)), 0 ≤ t ≤ t∗,

∞
∑

k=0

µk(ȳ
(+)
k (t) + Q

(+)
k y(τ) + Rky(τ1)), t∗ ≤ t ≤ 1,

(8)

where τ0 = µ−1t > 0, τ = µ−1(t− t∗), τ1 = µ−1(t− 1) < 0, ȳ
(∓)
k (t) (k ≥ 0) are the coefficients of

regular series, Πky(τ0) (k ≥ 0) are the coefficients of boundary layer series at t = 0, Q
(∓)
k y(τ) (k ≥

0) are the coefficients of interior layer series at t = t∗, and Rky(τ1) (k ≥ 0) are the coefficients

of boundary layer series at t = 1.

Partially, t∗ can be expanded in the power series of µ, that is,

t∗ = t0 + µt1 + · · · + µktk + · · · . (9)

According to boundary layer function theory, we put formal asymptotic solution (8) into (5) and

(6), and separate equations by measures t, τ0, τ , τ1, then compare the same order of µ, thus each

term’s coefficients of equation and boundary value are obtained. At the same time in accordance

with requirements of sewing connection, we substitute (8) into (7), and get a series of relation:

d

dτ
Q

(−)
0 y(0) =

d

dτ
Q

(+)
0 y(0), (10)

d

dτ
Q

(−)
1 y(0) + ϕ′

1(t0) =
d

dτ
Q

(+)
1 y(0) + ϕ′

3(t0). (11)

Step 1. Write the equation for determining ȳ0(t) :

F (ȳ0(t), t) = 0. (12)

Eq.(10) is the degenerate equation. In view of the properties of step-step solution and condition

[A2], we have ȳ0 = ϕ1(t) (0 ≤ t ≤ t0), ȳ0 = ϕ3(t) (t0 ≤ t ≤ 1). Here we only discuss the step-step

solution from ϕ1(t) to ϕ3(t). Similarly, we can consider the step-step solution from ϕ3(t) to

ϕ1(t).

Step 2. Write the equation for determining ȳk(t) (k ≥ 1) :

Fy(ȳ0(t), t)ȳk = gk−1, k ≥ 1, (13)
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where gk−1(k ≥ 1) are the known functions which depend only on ȳj (0 ≤ j ≤ k − 1). By virtue

of [A3], F̄−1
y are known to exist, and we get ȳk = F̄−1

y gk−1.

Step 3. Write the equation and boundary value to determine Q
(∓)
0 y(τ) :

d2Q
(∓)
0 y

dτ2
= F (ϕ1,3(t0) + Q

(∓)
0 y, t0), (14)

Q
(∓)
0 y(0) = ϕ2(t0) − ϕ1,3(t0), Q

∓)
0 y(∓∞) = 0. (15)

The equations (14) and (15) are equivalent to the following problem:

dz(∓)

dτ
= F (ỹ(∓), t0),

dỹ(∓)

dτ
= z(∓), (16)

ỹ(∓)(0) = ϕ2(t0), ỹ
(−)(−∞) = ϕ1(t0), ỹ

(+)(+∞) = ϕ3(t0), (17)

where ỹ(∓) = ϕ1,3(t0) + Q
(∓)
0 y. Integrating (16), we get a first integral passing through M1,3 as

[z(∓)(τ)]2 = 2

∫ ỹ(∓)(τ)

ϕ1,3(t0)

F (y, t0)dy. (18)

Hence, Q
(−)
0 y(τ) and Q

(+)
0 y(τ) are the solutions of the following Cauchy problems











d

dτ
Q

(−)
0 y =

[

2

∫ ϕ1,3(t0)+Q
(−)
0 y(τ)

ϕ1,3(t0)

F (y, t0)dy
]

1
2

= G(Q
(−)
0 y, t0),

Q
(−)
0 y(0) = ϕ2(t0) − ϕ1(t0), Q

(−)
0 y(−∞) = 0,

(19)

and






d

dτ
Q

(+)
0 y = −G(Q

(+)
0 y, t0),

Q
(+)
0 y(0) = ϕ2(t0) − ϕ3(t0), Q

(+)
0 y(∞) = 0,

(20)

respectively. Substituting (18) into sewing joint condition (10) gives
∫ ϕ2(t0)

ϕ1(t0)

F (y, t0)dy =

∫ ϕ2(t0)

ϕ3(t0)

F (y, t0)dy,

that is,

H(t0) ≡

∫ ϕ3(t0)

ϕ1(t0)

F (y, t0)dy = 0, (21)

which is the equation for finding t0.

[A4] Suppose that Eq.(21) is solvable for t0 (0 < t0 < 1), and d
dt

H(t0) 6= 0.

After obtaining t0, we consider the initial values of (19) and (20), which intersect the hete-

roclinic orbits, therefore, Q
(∓)
0 y(τ) exist. By using [A3] and L’Hospital rule, we can prove that

Q
(∓)
0 y(τ) are exponential decay, that is,

|Q
(∓)
0 y(τ)| ≤ Ce−κ0|τ |, τ ∈ R.

Step 4. Write the equation and boundary value for determining Q
(∓)
k y(τ)(k ≥ 1) :

d2

dτ2
Q

(∓)
k y = F̃yQ

(∓)
k y + h̃k(τ), (22)

Q
(∓)
k y(0) = ȳ

(∓)
0t (t0)tk + q

(∓)
k (t0, . . . , tk−1), Q

(∓)
k y(∓∞) = 0, (23)
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where F̃y = Fy(ϕ1,3(t0) + Q
(∓)
0 y, t0), h̃k is a known function depending only on Q

(∓)
j y, tj (0 ≤

j ≤ k − 1).

The solutions of linear boundary value problems (22) and (23) can be expressed by square

formula:

Q
(∓)
k y(τ) = (ȳ

(∓)
0t (t0)tk + q(∓))

ϕ(τ)

ϕ(0)
+ ϕ(τ)

∫ τ

0

ϕ−2(η)

∫ η

∓∞

ϕ(σ)h̃k(σ)dσdη,

where ϕ(τ) = d
dτ

Q
(∓)
0 y(τ). It can be proved that Q

(∓)
0 y(τ) are exponential decay, as τ → ∓∞,

that is,

|Q
(∓)
k y(τ)| ≤ Ce−κk|τ |, τ ∈ R.

By employing the relationship (11) of sewing connection, the equation to determine tk is obtained

as

H ′(t0)tk = Pk, (24)

where Pk are known constants.

Step 5. Write the equation and boundary value to determine Π0y(τ0) :






d2

dτ2
0

Π0y = F (ϕ1(0) + Π0y, 0),

Π0y(0) = y0 − ϕ1(0), Π0y(∞) = 0.

(25)

The equation (25) is equivalent to the following system:

dẑ

dτ0
= F (ŷ, 0),

dŷ

dτ0
= ẑ, (26)

ŷ(0) = y0, ŷ(∞) = ϕ1(0), (27)

where ŷ = Π0y(τ0) + ϕ1(0).

On the phase plane, M0(ϕ1(0), 0) is a saddle. Separating the orbit passing through M0, one

can write the saddle of M0 as

[ẑ(τ0)]
2 = 2

∫ ŷ(τ0)

ϕ1(0)

F (y, 0)dy.

As τ0 → ∞, the separating orbit passing through M0 is

Wu(M0) : ẑ = −
[

2

∫ ŷ

ϕ1(0)

F (y, 0)dy
]

1
2

.

In order to ensure that (26) and (27) have solutions, we require that

[A5] {ŷ(0) = y0} ∩ Wu(M0) 6= ∅.

Thus, the solution Π0y(τ0) of (25) is gained, and we have

|Π0y(τ0)| ≤ Ce−κ0τ0 , τ0 ≥ 0.

Step 6. Write the equation and boundary value to determine Πky(τ0) (k ≥ 1) :

d2

dτ2
0

Πky = F̂yΠky + ĥk(τ0), (28)

Πky(0) = −ȳk(0), Πky(∞) = 0, (29)
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where F̂y = Fy(ϕ1(0) + Π0y, 0), ĥk is a known function depending only on Πjy(0 ≤ j ≤ k − 1).

By utilizing the square formula, the solutions of (28) and (29) can be obtained from

Πky(τ0) = −ȳk(0)
ϕ̂(τ0)

ϕ̂(0)
+

∫ τ0

0

ϕ̂−2(η)

∫ η

∞

ϕ̂(σ)ĥk(σ)dσdη, (30)

where Πky(τ0) is exponential decay, as τ0 → +∞, that is,

|Πky(τ0)| ≤ Ce−κkτ0 , τ0 ≥ 0.

Step 7. Similarly, we can also discuss Rky(τ1) (k ≥ 0).

[A6] Suppose that {y̌(0) = y1} ∩ W s(M1) 6= ∅, where y̌(0) = R0y(0) + ϕ3(1), W s(M1) is a

saddle separating orbit which passes through M1(ϕ3(1), 0).

Under the condition [A6], R0y(τ1) exists, Rky(τ1)(k ≥ 1) have the same expressions as (30),

and the estimates of exponent satisfy

|Rky(τ1)| ≤ Ceκkτ1 , τ1 ≤ 0.

Now, the formal asymptotic solutions of (8) have been constructed completely.

3. The existence of step-step solution

In [4], the authors have ever used differential inequality to prove the existence of step-step

solution at great length. In this section, we will apply the sewing connection to determine the

transfer point t∗, and complete the proof of the existence of step-step solutions. Namely, using

the left problem (5), the right problem (6) and the existence of solution for any parameter

0 < t∗ < 1, we get the asymptotic solution. The step-step solutions of problems (3)-(4) are

sewed smoothly, and asymptotic expansion is obtained.

We write the zeroth asymptotic expansions of the left problem (5) and the right problem (6)

respectively as

y(t, µ) =

{

ϕ1(t) + Π0y(τ0) + Q
(−)
0 y(τ) + O(µ), 0 ≤ t ≤ t∗,

ϕ3(t) + Q
(+)
0 y(τ) + R0y(τ1) + O(µ), t∗ ≤ t ≤ 1,

(31)

and

z(t, µ) =

{

Π0z(τ0) + Q
(−)
0 z(τ) + O(µ), 0 ≤ t ≤ t∗,

Q
(+)
0 z(τ) + R0z(τ1) + O(µ), t∗ ≤ t ≤ 1.

(32)

Here, we do not expand the parameter t∗.

According to the boundary values of (3) and (4), we see

y(−)(t∗, µ) = y(+)(t∗, µ), t∗ ∈ (0, 1), (33)

which implies y(t, µ) is continuous at t = t∗. Therefore, t∗ can be determined in this way provided

that derivatives of y(t, µ) are equal at t = t∗, that is,

z(−)(t∗, µ) = z(+)(t∗, µ). (34)

For this purpose, we introduce difference function ∆(t∗) :

∆(t∗) = z(−)(t∗, µ) − z(+)(t∗, µ) = [Q
(−)
0 z(0)]2 − [Q

(+)
0 z(0)]2 + O(µ), (35)
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where we have considered that Π0z(τ0), R0z(τ1) are exponentially small in the neighborhood of

the point t = t∗. We may consider that O(µ) = Cµ, where C is a real number. The approach

of solving Q
(∓)
0 z(0) in (35) is similar to those used in Section 2. Consequently, changing t0 of

(14)–(21) into t∗ yields

∆(t∗) = H(t∗) + O(µ) = H(t0) +
d

dt
H(t0)(t∗ − t0) + O((t∗ − t0)

2) + O(µ), (36)

where t0 is known by (21). Let t∗ = t0 ± kµ, and put it into (36). We obtain

∆(t0 ± kµ) = ±kµ
d

dt
H(t0) + O(µ). (37)

Let k in (36) be sufficiently large, and select µ sufficiently small, such that the right-hand

side of (36) cannot be of the same symbol. By virtue of intermediate value theorem, there exists

t̄∗ ∈ (t0 − kµ, t0 + kµ) such that ∆(t̄∗) = 0. We can show that (34) holds, and t̄∗ = t0 + O(µ).

We formulate the results in the following theorem.

Theorem 1 (transfer Limit Theorem) Suppose that the conditions [A1]–[A6] are satisfied, then

there exist transfer point t̄∗ and step-step solution y(t, µ) for Eqs. (3)–(4), and the following

limiting process

lim
µ→0

y(t, µ) =

{

ϕ1(t), 0 ≤ t ≤ t̄∗,

ϕ3(t), t̄∗ ≤ t ≤ 1

holds.

If we put t∗ = t0 + O(µ) into Q
(∓)
0 y(τ), then the order of (31)–(32) is not O(µ). To get

the uniformly valid zeroth asymptotic solution, we need to expand t∗ to the first approximation,

namely, t∗ = t0 + µt1 + O(µ2), where t1 is determined by (24).

Theorem 2 Suppose that the conditions [A1]–[A6] are satisfied, then Eqs. (3)–(4) have the

zeroth asymptotic expression:

y(t, µ) =

{

ϕ1(t) + Π0y(τ0) + Q
(−)
0 y(τ) + O(µ), 0 ≤ t ≤ t̄∗,

ϕ3(t) + Q
(+)
0 y(τ) + R0y(τ1) + O(µ), t̄∗ ≤ t ≤ 1.
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