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Abstract In goodness-of-fit tests, Pearson’s chi-squared test is one of most widely used tools

of formal statistical analysis. However, Pearson’s chi-squared test depends on the partition

of the sample space. Different constructions of the partition of the sample space may lead to

different conclusions. Based on an equiprobable partition of sample space, a modified chi-squared

test is proposed. A method for constructing the modified chi-squared test is proposed. As an

application, the proposed test is used to test whether vectorial data come from an uniformity

distribution defined on the hypersphere. Some simulation studies show that the modified chi-

squared test against different alternative is robust.
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1. Introduction

Specification or stochastic modeling of data is an important step in statistical analysis of

data. It was Karl Pearson who first recognized the problem and proposed a criterion to examine

whether the observed data support a given specification. It is called chi-squared goodness-of-fit

test, which motivates research in testing of hypotheses and estimating of unknown parameters.

Pearson’s[1] chi-squared test statistics

X2
p =

∑

(observed-expected)2/expected

is essentially an omnibus test because it is sensitive to a wide variety of different ways in which

the data can be different to the hypothesized distribution.

A random sample X1, . . . , Xn of size n comes from a population with completely specified

cumulative distribution function F (x), against a general alternative not F (x). Let the sample

space be broken into m classes (or cells). And let Oj be the number of observation from the

sample that falls into the jth class, where n =
∑m

j=1 Oj . Let Ej be frequency of falling into the
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jth class when F (x) holds. Then the Pearson’s chi-squared test statistics is written as

X2
p =

m
∑

j=1

(Oj − Ej)
2/Ej . (1)

It has asymptotic chi-squared distribution with m − 1 degrees of freedom.

If a chi-squared test is to be used, then classes must be constructed. For construction of

classes, there are several methods[2−9]. For example, Mann and Wald[2] recommended that the

cells be chosen to have equal probabilities under the hypothesized distribution F . However, the

sequence of chi-squared test will be determined by the number of classes m that is most critical

data. Kempthorne[10] pointed out, different conclusions may be reached if different constructions

are used. Therefore, whether the data are categorized or not, the statistician who wants to use

Pearson’s chi-squared has to choose the number and width of classes.

While Pearson’s chi-squared test involves choosing the number and the width of classes, and

we are led to ask whether there is a modified chi-squared test, which leads to the same conclusion

under different constructions of classes. That is, a modified chi-squared test may eliminate the

effects of choosing the number and width of classes. In this article, we propose a modified chi-

squared test based on an equiprobable partition of sample space. The basic idea is to maximize

the Pearson’s chi-squared statistics when the sample space is partitioned equiprobably. Once we

cannot reject the null hypothesis against the general alternative in the extreme case, we may

conclude that the null hypothesis that the sample comes from F (x) is not rejected at the 100a%

level of significance.

In this article, we just focus on the modified chi-squared test in the interval [0, 1]. There

is an important reason. It is well-known that the tests of empirical distribution function are

not dependent on the population cumulative distribution function. Let X1, . . . , Xn be a random

sample from cumulative distribution function F0(·) which is continuous. Consider the simple

hypothesis

H0 : F = F0 ↔ H1 : F 6= F0.

Set

Ui = F0(Xi) i = 1, . . . , n.

Then Ui, i = 1, . . . , n is a uniformity in the interval [0, 1]. The problem that to test whether the

random samples X1, . . . , Xn come from F0(·) is substituted by the one to test whether U1, . . . , Un

come from uniformity in the interval [0, 1]. Here we consider a construction of the modified chi-

squared test in the case, in which null hypothesis that we are sampling is from the uniform

distribution in the interval [0, 1].

Furthermore, the modified chi-squared test is used to test whether the vectorial data come

from the uniformity defined on the hypersphere Sp−1, where Sp−1 = {X ∈ Rp : X′X = 1}.
In this article, for some dimensions of the hypersphere in some cases, we compare the power

of the uniformity tests against the hypothesis of a Von Mises-Fisher distribution or a Watson

distribution defined on the hypersphere. These tests include the proposed modified chi-squared

test, Rayleigh, Ajne, Giné, and Bingham tests. The involved tests and distributions are presented
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in the appendix. It is true that certain tests tend to perform better than others in certain types

of situation. Such as, the Rayleigh and Ajne tests against the hypothesis of a Von Mises-Fisher

distribution have the highest empirical power, but they are invalid when alternative is a Watson

distribution defined on the hypersphere. However, the simulation results demonstrate that the

modified chi-squared test against different alternatives is valid. In contrast to other uniformity

tests, the modified chi-squared test is robust.

The article is organized as follows. The construction of the modified chi-squared test statistic

is considered in Section 2. In Section 3, the empirical power of these uniformity tests for some

dimensions in some cases are compared. Some problems are proposed in Section 4.

2. Construction of statistic

In this section we consider the construction of the modified chi-squared test in interval [0, 1].

Note that the test we propose can accommodate the sample space with any equiprobable parti-

tion.

Let the interval [0, 1] be partitioned equiprobably into m classes or cells. Our basic idea is

to maximize the Pearson’s chi-squared statistics. We propose a construction procedure for the

modified chi-squared test statistic. Let k be a positive proper factor of the number m.

Step 1. For a fixed k, m classes are combined arbitrarily into new disjoint k groups, where

each group includes b old classes, b ≥ 2. It is obvious that a combination is a new partition of the

sample space. For a given combination, calcualte corresponding chi-squared test statistic using

(1), where Ej = nb/m.

Step 2. For given k, maximize corresponding values of the chi-square test statistic, which are

relative to all combinations.

Step 3. For different k which may be all proper factors of the number m, repeat Steps 1 and

2. A fixed k has a corresponding maximum value of chi-square test statistic based on Step 2.

Finally, maximize those maximum values.

In fact, the Pearson’s chi-squared test statistic is maximized twice. Next, we show the

construction of the modified chi-squared test statistic in detail.

Let X1, . . . , Xn be a random sample from uniformity in the interval [0, 1], which is partitioned

equiprobably into m classes or cells. The interval [0, 1] is the union of mutually disjoint sets

A1, . . . , Am. We call A1, . . . , Am a first-partition of the sample space. Further, sets A1, . . . , Am

are combined into a new disjoint sets T1, . . . , Tk, where T1 is the union of b (b ≥ 2) sets which are

chosen from sets A1, . . . , Am, and Tj (j = 2, . . . , k) is the union of b sets chosen from the rest sets

∪m
i=1Ai \ ∪j−1

l=1 Tl, j = 2, . . . , k, where m = kb. Then T1, . . . , Tk is also a partition of the sample

space. We refer to the partition T1, . . . , Tk as a second-partition of the sample space. There are

m!/(b!kk!) second-partition. And let Y1, . . . , Yk denote the frequencies with which the sample is,

respectively, an element of T1, . . . , Tk. Then the joint probability density function Y1, . . . , Yk is

the multinomial probability density function with parameter n, 1/k, . . . , 1/k.

We consider the simple hypothesis (concerning above multinomial probability density func-
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tion)

H0 : P = P0 = (
b

m
, . . . ,

b

m
)′.

It is desired to test H0 against all alternatives.

Now, the modified chi-squared test statistic is defined by

X2
max = max

k
max

T

k
∑

j=1

(Yj − npj)
2

npj
, (2)

where k is a positive proper factor of the number m, pj = b/m, Yj is the frequency of the sample

falls into Tj, j = 1, . . . , k, and T is a set of all of second- partitions when k is given.

In (2), for given k, we have to calculate m!/(b!kk!) Pearson’s chi-squared test statistics. To

improve the efficiency for counting X2
max, we obtain a simple algorithm. In fact, note that

pj = b/m = 1/k, and extend
k

∑

j=1

(Yj − npj)
2

npj
.

It is immediately seen that, for given k,

max
T

k
∑

j=1

(Yj − npj)
2

npj
= C max

T

k
∑

j=1

Y 2
j − n,

where C = k/n. Thus, we just need to maximize
∑k

j=1 Y 2
j . That is, how to choose a second-

partition, such that
∑k

j=1 Y 2
j reached its maximum.

It is easy to obtain the maximum of
∑k

j=1 Y 2
j . According to the frequencies of A1, . . . , Am, the

A1, . . . , Am are arranged in decreasing order, and are denoted by A1:m, . . . , Am:m. We choose

successively b Ai:m, i = 1, . . . , m to combine a Tj. Namely, T ∗

1 is a union of the first b cells

Ai:m, i = 1, . . . , b. T ∗

2 is a union of the second b cells Ai:m, i = (b + 1), . . . , 2b, and so on.

T ∗

1 , . . . , T ∗

k is a second-partition of the sample space. Let Y ∗

j be the frequency of the sample falls

into T ∗

j , j = 1, . . . , k. Then

max
T

k
∑

j=1

(Yj − npj)
2

npj
= C

k
∑

j=1

Y ∗2
j − n.

Hence, (2) is written as

X2
max = max

k

[k

n

k
∑

j=1

Y ∗2
j − n

]

, (3)

where Y ∗

j is the frequency of the sample falls into T ∗

j , j = 1, . . . , k.

In our simulation studies the modified chi-squared test is constructed based on (3).

3. Application to vectorial data

In Section 2, the construction of the modified chi-squared test just requires that the sample

space is partitioned equiprobably. It is easy to think that the modified chi-squared test statistic

may be used to test whether vectorial data come from a uniformity defined on the hypersphere.
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In this section we first compare the power of tests including the modified chi-squared test, Ajne,

Bingham, Giné, Rayleigh tests. In some cases, the 95th percentiles of the modified chi-squared

test statistic under uniformity are presented. All simulation studies were conducted using R.

First, we compare the power of the modified chi-squared test and Pearson’s chi-squared test

in some cases. See Figure 1. Here we consider the partial alternative

H ′

1n : p = p0 +
γ · δ√

n
,

where p0 = ( b
m , . . . , b

m )′, and δ = (δ1, . . . , δk)′, with
∑k

j=1 δj = 0, 0 ≤ γ ≤ 1. The inversion

method is used to generate random sample from the partial alternative. In Figure 1, the real

line represents the empirical power of the modified chi-squared test. And the dashed line is

the empirical power of Pearson chi-squared test. From Figure 1, in some cases the modified

chi-squared test is more powerful than Pearson’s chi-squared test.

Next, we use the modified chi-squared test to test whether vectorial data come from a uni-

formity defined on the hypersphere.

In fact, if vectorial data come from a uniformity defined on the sphere Sp−1, then vectorial

data is also uniformity in each quadrant. We may consider that p quadrants divide the hyper-

sphere into 2p equiprobable fields. Therefore, the modified chi-squared test may be used to test

whether the data come from the uniformity defined on the sphere. We have to deal with how

to divide the sphere Sp−1 into an equiprobable partition. The simplest way is that a quadrant

is a cell. For example, if there is a 10-dimension unit sphere, we have to consider the modified

chi-squared test in 210 = 1024 quadrants. To reduce the calculation quantity involved during the

modified chi-squared test statistic calculations, we propose a method to construct the modified

chi-squared test on the hypersphere.

The method is as follows. Let X1, . . . , Xn be a p-dimension random sample of size n, denote

X = (X1, . . . , Xn). Translate the matrix X into a (0, 1) matrix Y .

Define

yij =

{

1, xij ≥ 0,

0, xij < 0.

Then Y = (Y1, . . . , Yn), where Yi = (y1i, . . . , ypi)
′, i = 1, . . . , n. Considering the sum of nonzero

numbers of each axis, denote si which is defined by

si =

n
∑

i=1

yij , i = 1, . . . , p.

Indeed, arrange si (i = 1, . . . , p) in non-increasing sort. Then we may choose the first m axes

which have corresponding first m maximum si, i = 1, . . . , m, respectively. Then 2m quadrants

is a first-partition. And (3) is can be used.

Based on (3), we determine the 95th percentiles of the modified chi-squared test statistic

in some cases. While we do not know the exact distribution of the modified chi-squared test

statistics under uniformity on the sphere Sp−1, in some cases we determinate by generating 10000

replicates of the statistics under uniformity. See Table 1. Here we use the method proposed by
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Sibuya[11] to simulate the uniformity defined on the sphere Sp−1.

We know that once several tests have been proposed, they are usually compared on the

basis of power in simulation studies. Some authors studied empirical power of uniformity tests

on the sphere. Diggle et al.[12] compared the power of uniformity tests proposed by Beran

and Giné in some particular cases. For some dimensions of sphere in some cases, the power

of Bingham and Giné tests of uniformity defined on Sp−1 against a Bingham population or a

mixture of Bingham population were compared by Figueiredo[13]. And Figueiredo[14] also studied

the power of uniformity tests against the hypothesis of a Von Mises-Fisher distribution defined

on the hypersphere in some special cases.

p\n 10 20 50 80 120 150 200

3 11.60000 12.40000 12.40000 12.70000 12.46667 12.50667 12.64000

4 20.40000 22.40000 23.60000 23.80000 23.73333 23.86667 23.68000

5 44.40000 44.00000 43.44000 43.60000 44.00000 44.34667 44.16000

6 79.60000 79.20000 80.56000 80.80000 81.60000 81.68000 81.28000

7 130.8000 152.8000 152.2400 153.6000 153.0667 152.9333 153.2800

8 271.6000 287.2000 293.0400 294.4000 291.7333 292.0267 292.8000

9 553.2000 517.6000 554.1600 560.0000 562.6667 563.3867 562.8800

10 1014.000 1055.200 1076.400 1097.600 1100.267 1099.280 1095.360

Table 1 95th percentiles of the modified chi-squared test under uniformity

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

r

x2

sample=30,class=6,a=0.05

maxchisq
Pearson

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

r

x2

sample=20,class=4,a=0.05

maxchisq
Pearson

Figure 1 Empirical power of modified chi-squared(real line) and Pearson chi-squared test(dashed line)

Next, we investigate the power of tests under alternative Von Mises-Fisher distribution.

Suppose the direction mean µ = (0, 0, . . . , 1) and concentration parameter ξ = 0, 1, 2, . . . , 10, 15.

For simulation of the Von Mises-Fisher distribution defined on Sp−1, the method proposed by

Wood[15] is used. We calculate the empirical power of tests including Rayleigh, Ajne, Bingham,

Giné and modified chi-squared test. See Table 2, Table 3 and Figure 2. Table 2, Table 3 and

Figure 2 depict the simulation results for the following cases: p = 4(n = 20), p = 6(n = 80),

p = 10(n = 40, 120). In Figure 2, the real line is the empirical power of the modified chi-squared

test statistic. The upper lines are empirical power of the Rayleigh and Ajne tests which have
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identical power for the cases analyzed here. The lower lines represent the empirical power of

Giné and Bingham tests, respectively. Compared with the results in Table 2, Table 3 and Figure

2, we can see that the empirical power of the modified chi-squared test is higher than those of

Giné and Bingham tests, and is close to those of Rayleigh and Ajne tests.

ξ 0 1 2 3 4 5 6 7 8

Modified chi-squared 0.050 0.442 0.984 1.000 1.000 1.000 1.000 1.000 1.000

Rayleigh 0.036 0.758 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Ajne 0.036 0.764 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Giné 0.056 0.062 0.364 0.940 1.000 1.000 1.000 1.000 1.000

Bingham 0.058 0.064 0.374 0.948 1.000 1.000 1.000 1.000 1.000

Table 2 Empirical power of the tests against Von Mises-Fisher distribution for p = 6(n = 80)

ξ 0 0.2 0.5 1 1.5 2.5 3 4 5

Modified chi-squared 0.052 0.064 0.106 0.336 0.766 0.966 1.000 1.000 1.000

Rayleigh 0.036 0.060 0.152 0.660 0.960 1.000 1.000 1.000 1.000

Ajne 0.036 0.058 0.146 0.650 0.960 1.000 1.000 1.000 1.000

Giné 0.040 0.036 0.068 0.066 0.080 0.364 0.73 0.996 1.000

Bingham 0.058 0.038 0.068 0.068 0.082 0.374 0.73 0.994 1.000

Table 3 Empirical power of the tests against Von Mises-Fisher distribution for p = 10(n = 120)

Now, we consider Watson distribution as an alternative. We examine the empirical power of

tests statistics presented in this article. See Table 4 and Figure 3. For the simulation of Watson

distribution, we have used the acceptance-rejection method. To save space, we present only the

simulation results with directional parameter µ = (0, . . . , 0, (1− cos2 θ)1/2, cos θ), where θ = π/4.

Results for other directional parameters are similar.
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Figure 2 Alternative: Von Mises-Fisher distribution, the real line is the empirical power of the modified

chi-squared test, the upper broken line are the empirical power of Rayleigh and Ajne tests, the lower

broken line are the empirical power of Giné and Bingham tests.

In Figure 3, the notation is the same as that given in Figure 2. From Figure 3, we can see that
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the upper lines represent the empirical power of Giné and Bingham tests. On the other hand,

Rayleigh and Ajne tests have the lowest empirical power, and even are invalid, contrasting they

have the highest empirical power when alternative is Von Mises-Fisher distribution. Therefore,

the empirical power of the modified chi-squared test is valid. Although the empirical power of

modified chi-squared test is lower than those of Giné and Bingham tests, the difference between

them is small in most cases. For example, in Table 4, for ξ = 1, the power of modified chi-squared

test is 0.058, and the power of Bingham test is 0.100.

ξ 0 1 2 3 4 5 6 8 9

Modified chi-squared 0.044 0.058 0.096 0.256 0.610 0.906 0.994 1.000 1.000

Rayleigh 0.034 0.064 0.052 0.052 0.070 0.090 0.080 0.086 0.118

Ajne 0.040 0.066 0.054 0.054 0.074 0.098 0.088 0.092 0.130

Giné 0.052 0.106 0.406 0.904 1.000 1.000 1.000 1.000 1.000

Bingham 0.052 0.100 0.408 0.908 1.000 1.000 1.000 1.000 1.000

Table 4 Empirical power of the tests against Watson distribution for p = 6(n = 50)

In summary, there is no such thing as uniformly “best” test. Whereas, certain tests tend to

perform better than others in certain types of simulations. The simulation studies demonstrate

that the modified chi-squared test is more robust than other uniformity tests on the hypersphere.

And the modified chi-squared test is valid under different alternatives.
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Figure 3 Alternative: Watson distribution, the real line is the empirical power of the modified chi-

squared test, the upper broken line are the empirical power of Giné and Bingham tests, the lower broken

line are the empirical power of Rayleigh and Ajne tests.

4. Discussion

In this article we proposed and constructed the modified chi-squared test. We further used it

to test whether vectorial data come from a uniformity distribution defined on the hypersphere.

And we compared the empirical power of five tests presented in the article for some cases.

Although the simulation studies show that the modified chi-squared test statistic against different

alternatives is more stable, it may lead to lower empirical power in some case (see Table 4). Thus

it is interesting to improve empirical power of the modified chi-squared test.
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In order to improve the empirical power of the modified chi-squared test, we may consider a

translation of coordinate. To address this issue, let X be a p×n matrix, where X = (X1, . . . , Xn),

Xi, i = 1, . . . , n denote random variables defined on the sphere Sp−1. If there exists a p × p

orthogonal matrix, such that Y = PX , then we may construct the modified chi-squared test

based on Y . The problem how to find out an orthogonal matrix P may be considered.

In addition, in the article we have not discussed the exact distribution or asymptotic proper-

ties of the modified chi-squared test. The modified chi-squared test may also be used to test the

distribution of multi-dimension data. These research topics are beyond the scope of this article.

Further research is needed.

5. Appendix

The Von Mises-Fisher distribution (also known as Langevin distribution) defined on Sp−1

is usually denoted by Mp(µ, ξ). Its probability density function with respect to the uniform

distribution is given by

f(x; µ, ξ) = (
ξ

2
)p/2−1 1

Γ(p/2)Ip/2−1(ξ)
exp(ξµ′x)

x ∈ Sp−1, µ ∈ Sp−1, ξ ≥ 0

where Iu denotes the modified Bessel function of the first kind and order ν defined by

Iν(η) =
1

2π

∫ 2π

0

cos(νt)eη cos tdt.

Parameters ξ and µ are the concentration and mean direction parameter, respectively. For ξ = 0,

the Von Mises-Fisher distribution reduces to the uniformity on the hypersphere.

Watson distribution is denoted by Wp(µ, ξ) and has a probability density function given by

f(x; µ, ξ) = {1F1(
1

2
,
p

2
, ξ)}−1 exp(ξ(µ′x)2)

x ∈ Sp−1, µ ∈ Sp−1, ξ ∈ R

where ξ is concentration parameter and µ is directional parameter. The reciprocal of the confluent

hypergeometric function 1F1(·) is the normalizing constant and is defined by

1F1(
1

2
,
p

2
, ξ) =

Γ(p
2 )

Γ(1
2 )Γ(p−1

2 )

∫ 1

0

exp(ξs)s−1/2(1 − s)(p−3)/2ds.

For ξ = 0, Watson distribution is uniformity.

Suppose X1, . . . , Xn is a p-dimension random sample, where Xi = (Xi1, . . . , Xip)
′ and

∑p
j=1(Xij)

2

= 1, i = 1, . . . , n.

1) Ajne test

The Ajne statistic is defined by

A =
n

4
− 1

nπ

∑

i<j

ϕij ,

where ϕij = cos−1(
∑p

k=1 XikXjk), 1 ≤ i < j ≤ n.
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2) Bingham test

The Bingham statistic is defined by

B =
p(p + 2)

2n

p
∑

i=1

(λi −
1

p
)1/2,

where λi, i = 1, . . . , p are the eigenvalues of T , T =
∑n

i=1(XiX
′

i − p−1I), I is a p × p identity

matrix.

3) Giné test

The Giné statistic is defined by

G =
n

2
− p − 1

2n
[
Γ((p − 1)/2)

Γ(p/2)
]2

∑

i<j

sin ϕij ,

where ϕij = cos−1(
∑p

k=1 XikXjk), 1 ≤ i < j ≤ n, is the smaller one of the two angles between

Xi and Xj.

4) Rayleigh test

Let R be the length of the resultant vector defined by

R = {(
n

∑

i=1

Xi1)
2 + (

n
∑

i=1

Xi2)
2 + · · · + (

n
∑

i=1

Xip)
2}1/2

and R̄ the mean resultant length defined by

R̄ =
R

n
.

Then Rayleigh statistic is represented as

npR̄2.
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