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Abstract We discuss some fundamental properties of inverse semigroups of matrices, and prove

that the idempotents of such a semigroup constitute a subsemilattice of a finite Boolean lattice,

and that the inverse semigroups of some matrices with the same rank are groups. At last, we

determine completely the construction of the inverse semigroups of some 2 × 2 matrices: such

a semigroup is isomorphic to a linear group of dimension 2 or a null-adjoined group, or is a

finite semilattice of Abelian linear groups of finite dimension, or satisfies some other properties.

The necessary and sufficient conditions are given that the sets consisting of some 2× 2 matrices

become inverse semigroups.
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1. Introduction

Throughout the paper, F is an arbitrary field. Let Mn(F ) and GL(n, F ) be the sets of all

matrices and all invertible matrices of n×n over F , respectively. A matrix semigroup is defined

as a semigroup whose set is a subset of Mn(F ) and whose composition is the usual multiplication

of matrices. If a matrix semigroup is a group, we call it a matrix group. For example, Mn(F )

and GL(n, F ) are both matrix semigroups, and the latter is even a matrix group. Evidently, any

matrix semigroup must be a subsemigroup of Mn(F ). By a linear group, we mean a subgroup of

GL(n, F ). Note that in general a matrix group is different from a linear group. We will prove later

that a matrix group must be isomorphic to some linear group. For example, {
( u 0

0 0

)

: u ∈ F}

is a group of matrices, which is not a linear group of dimension 2, but is isomorphic to GL(1, F ),

the linear group of dimension 1.

The domestic scholars have obtained many good results in regular semigroups1−3, but in

China, few people study the matrix semigroups. Although the international research on the

matrix semigroups is very active[4−6], but it is not so on the inverse semigroups of matrices. In

fact, many researches were about some other special classes of matrix semigroups. For example,

[6] studied the nonnegative matrix semigroups. We have determined the structure of completely
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simple matrix semigroups in [7], and made more thorough research on the compact abelian

semigroups of matrices in [8]. It is well known that the inverse semigroups are an important class

of semigroups and have been studied by many researchers[9−11]. A very natural and important

problem is as follows: when does a matrix semigroup become an inverse semigroup? We will

reply this question in this paper. If a matrix semigroup is an inverse semigroup, then we call

it an inverse semigroup of matrices. So the subject of this paper is the inverse semigroups of

matrices.

As we know, dealing with the problems of matrices is a complex thing, so sometimes we first

need to treat the case of smaller dimensions. For example, in [12], the homomorphisms were

studied of linear groups of dimension 2. In this paper, after discussing some basic properties of

matrix semigroups and of inverse semigroups of matrices, respectively, we further determine the

structures of the inverse semigroups of matrices.

For the general knowledge of semigroup theory, one can see [9–11], [13]; for the theory of

matrix semigroups, we refer to [4] and [5]; and the knowledge of linear algebra and of matrix

theory used in this paper is basic and so we do not refer to any references.

2. Some fundamental properties of matrix semigroups

We say that a subset M of a matrix semigroup S is monoranked if all matrices of M have the

same rank. Let T = L, R, D, H stand for Green’s relations as in [9] and [13]. By Ta, we denote

the T -class of an element a of S. The notions of bisimple semigroups and 0-bisimple semigroups

can be found in [9, I.6.5]. The rank of a matrix a is denoted by r(a). Now we shall present some

fundamental properties of matrix semigroups without proofs.

Lemma 2.1 Let a and b be two elements of a matrix semigroup S such that aba = a. If there

exist invertible matrix P and Q such that a = P
( Ir 0

0 0

)

Q, with Ir the identity matrix of

r × r, then there exist three matrices C, D, F such that b = Q−1
( Ir C

D F

)

P−1.

Corollary 2.2 Let a and b be two elements of a matrix semigroup S such that aba = a and

bab = b. If there exist two invertible matrices P and Q such that a = P
( Ir 0

0 0

)

Q, with Ir the

identity matrix of r× r, then there exist matrices C and D such that b = Q−1
( Ir C

D DC

)

P−1.

In particular, r(a) = n if and only if b is the usual inverse of matrix a.

Lemma 2.3 Suppose that S ⊆ Mn(F ) and e is an idempotent of S and r(e) = r. Then there

exists P ∈ GL(n, F ) such that P−1eP = a =
( Ir 0

0 0

)

with Ir the identity matrix of r × r.

Lemma 2.4 A matrix group is monoranked and isomorphic to a linear group with dimension

equal to the rank of an arbitrary matrix of this matrix group.
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Lemma 2.5 An H-class of an idempotent of a matrix semigroup is isomorphic to a linear group

with dimension equal to the rank of this idempotent.

Lemma 2.6 Suppose S is a matrix semigroup and a, b ∈ S1. Then the following statements

are valid: (1) aLb implies that the row vectors of a are equivalent to those of b; (2) aRb implies

that the column vectors of a are equivalent to those of b; (3) aHb implies that the row vectors

of a are equivalent to those of b, and the column vectors of a are also equivalent to those of b.

Corollary 2.7 Let T = L, R, J , D, H. Each T -class of a matrix semigroup is all monoranked.

Corollary 2.8 Any simple [bisimple] matrix semigroup is monoranked; any 0-simple [0-bisimple]

matrix semigroup except 0 is also monoranked.

3. Some fundamental properties of inverse semigroups of matrices

In this section, we discuss some fundamental properties of inverse semigroups of n×n matri-

ces with n an arbitrary natural number, which is the basis of analyzing the structure of inverse

semigroups of 2 × 2 matrices in the next section. Theorem 3.1 is a key to studying the inverse

semigroups of matrices. It states that all idempotents of an inverse semigroups of matrices con-

stitute a subsemilattice of a finite Boolean lattice. A Boolean lattice means a contributive lattice

with complements. For a given finite set A = {a1, . . . , an}, let ρ(A) denote the set of all subsets

of A ordered by ⊆, the usual inclusion relation. Then (ρ(A),⊆) is a finite Boolean lattice. As

we know, any finite Boolean lattice with n atoms is isomorphic to (ρ(A),⊆). If X ∈ ρ(A), we

may assume X = {ai1 , . . . , air
} with 1 ≤ i1 ≤ · · · ≤ ir ≤ n. Thus we obtain an n−digit binary

number δ = δ1 . . . δn, where δj =

{

1 if j = ik(∃k)

0 otherwise
. We may identify δ with X .

Theorem 3.1 All idempotents of an inverse semigroup of some n × n matrices constitute a

subsemilattice of the finite Boolean lattice ρ(A) with n atoms.

Proof Suppose S is an inverse semigroup of n×n matrices, and E is the set of all idempotents

of S. According to [9, II.1.2], E is a semilattice. For all e ∈ E, by Lemma 2.3, e is diagonal-

izable. Furthermore, in light of the knowledge of the linear algebra, all elements of E can be

simultaneously diagonalizable, i.e., there exists P ∈ GL(n, F ) such that ∀e ∈ E, P−1eP is a

diagonal matrix and each number on the diagonal is 0 or 1. Assume P−1eP = diag(δ1 · · · δn)

and δ = δ1 · · · δn. Then e can be identified with the binary number δ, that is, e can be viewed

as an element of ρ(A), the finite Boolean lattice with n atoms. Since E is closed under the

multiplication of the matrices, one may view it as a subsemilattice of ρ(A), and the proof is

completed. 2

Corollary 3.2 A monoranked inverse semigroup of matrices is a group.

Proof Let S be a monoranked inverse semigroup of n × n matrices with the idempotents E.

If |E| ≥ 2, then there exist e, f ∈ E such that e 6= f . In light of the proof of Theorem 3.1, e

and f are in correspondence with two distinguished elements δ and γ of ρ(A), respectively. If
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δ < γ, then the number of 1 contained in γ is more than that in δ, thus r(e) < r(f), which is

a contradiction to the assumption that S is monoranked. Analogously, the contradiction may

be derived from the assumption that γ < δ. So δ, γ are not comparable in ρ(A). Let γδ = η

and ef = g. Then η < δ, g ∈ E, and g is in the correspondence with η. Since η < δ, we get

r(g) < r(e), a contradiction again. So we conclude that |E| = 1. Now using [9, II.2.10], we

obtain that S is a group as desired. 2

Lemma 3.3 If S is an inverse semigroup of matrices and a, b ∈ S, then the following statements

are true: (1)r(a) = r(a−1) = r(aa−1) = r(a−1a); (2) aLb ⇔ a−1Rb−1; (3) aRb ⇔ a−1Lb−1.

Lemma 3.4 An inverse semigroup of matrices is a finite chain of linear groups if its idempotent

set is a chain.

Proof Let S be an inverse semigroup of n × n matrices with idempotents being a chain. Then

by Theorem 3.1, E is a finite chain. In view of [9, XI.5.1], S is a finite chain of matrix groups.

But by Lemma 2.4, these matrix groups are all linear groups and the proof is completed. 2

Of course, the matrix semigroup in Lemma 3.4 is actually a Clifford semigroup, that is, it is

a semilattice of groups[9]. We shall discuss further the Clifford semigroup of matrices below.

Lemma 3.5 If S is a Clifford semigroup of some n × n matrices with a matrix of rank r, then

there exists an invertible matrix P so that for all a ∈ S, there exist an r × r matrix U and an

(n − r) × (n − r) matrix Z such that P−1aP = a =
( U 0

0 Z

)

.

Proof Suppose that S is a Clifford semigroup and S ⊆ Mn(F ). Then S is an inverse semigroup.

We denote its idempotents by E. If S contains a matrix b of rank r, then bb−1 = e ∈ E. By

Lemma 3.3, r(e) = r(bb−1) = r(b) = r. According to Lemma 2.3, there exists P ∈ GL(n, F )

so that P−1eP =
( Ir 0

0 0

)

. For any a ∈ S, set P−1aP = c. Since P−1SP is isomorphic to

S and S is a Clifford semigroup, P−1SP is also a Clifford semigroup. In light of [9, II.2.6], in

a Clifford semigroup, any element and any idempotent are commutative, so ce = ec. Assume

c =
( U X

Y Z

)

with U ∈ Mr(F ). Then
( U X

Y Z

)( Ir 0

0 0

)

=
( Ir 0

0 0

)( U X

Y Z

)

, that is,

( U 0

Y 0

)

=
( U X

0 0

)

. It follows that X = 0 and Y = 0. So P−1aP = c =
( U 0

0 Z

)

as

desired. 2

4. Structures of inverse semigroups of 2 × 2 matrices

Having a series of preparations as above, now we are ready to analyze the structure of inverse

semigroups of 2× 2 matrices. From Lemma 3.5, we can show the following Lemma 4.1, which is

the basis of determination of the structure of an inverse semigroups of 2 × 2 matrices.

Lemma 4.1 A Clifford semigroup of 2× 2 matrices over a field F is commutative if it contains
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a matrix of rank 1.

Proof Let S be a Clifford semigroup of 2×2 matrices containing a matrix of rank 1. According

to Lemma 3.5, there exists an invertible matrix P such that for any a ∈ S, there exist two square

matrices U and Z such that P−1aP =
( U 0

0 Z

)

. Let U = (u) and Z = (z) with u, z ∈ F . Then

P−1aP =
( u 0

0 z

)

. Since all matrices of S are simultaneously diagonalizable, S is commutative

semigroup and the proof is completed. 2

The following Theorems 4.2, 4.4 and 4.5 are our main results, according to which we can

actually determine completely the structure of inverse semigroups of 2 × 2 matrices

Theorem 4.2 An inverse semigroup S of 2 × 2 matrices either is isomorphic to a linear group

of dimension 2 or a zero-adjoined group , or is a finite semilattice of commutative linear groups,

or satisfies the following conditions: (1) There are precisely 2 or 3 H-classes containing idempo-

tents, each of which is isomorphic to a linear group; (2) There are precisely 2 H-classes without

idempotents, which are mutual invertible and denoted by Ha and Ha−1 , respectively; (3) There

exists an invertible matrix P such that each matrix of P−1HaP is of the form
( 0 v

0 0

)

, while

each matrix of P−1Ha−1P is of the form
( 0 0

v−1 0

)

, where v 6= 0; (4) When S contains an

invertible matrix, S must contain the identity matrix 1 =
( 1 0

0 1

)

, and each matrix of P−1H1P

is of the form
( u 0

0 v

)

or
( 0 u

v 0

)

with uv 6= 0.

Proof Denote the idempotents of S by E. In view of Theorem 3.1, there exists P ∈ GL(n, F )

such that P−1EP is a subsemilattice of the Boolean lattice B2 = {0, e, f, 1} with 2 atoms, where

0, e, f, 1 represent
( 0 0

0 0

)

,
( 1 0

0 0

)

,
( 0 0

0 1

)

and
( 1 0

0 1

)

, respectively. Let T = P−1SP

and E1 = P−1EP . Then T ∼= S, E ∼= E1, E1 is the idempotents of T , and T is also an inverse

semigroup of matrices.

If E1 is a chain of B2, then by Lemma 3.4, S is a finite chain of linear groups. If E1 = {0},

then T = 0; if E1 = {0, 1}, then T = H1 ∪ {0} with H1 the unit group of T , which is isomorphic

to a linear group of dimension 2; if E1 contains e or f , then T contains a matrix of rank 1 and

by Lemma 4.1, T is a commutative semigroup. Furthermore, T is a finite chain of commutative

linear groups.

If E1 is not a chain of B2, then E1 = {0, e, f} or E1 = {0, e, f, 1}. From the definition of

Green’s relations, it follows that L0 = R0 = D0 = H0 = {0}. We will discuss two cases below.

The first case is E1 = {0, e, f}. Since T is an inverse semigroup, by [9, II.1.2], each L-class

and each R-class of T contains precisely one idempotent, respectively. Thus T has a partition

{L0, Le, Lf} and a partition {R0, Re, Rf}. Hence there are at most 5 distinguished H-classes in
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T . Clearly, H0, He, Hf are all groups, which are isomorphic to some linear groups respectively.

If these three classes are the whole H-classes of T , then T is a finite semilattice of groups. Since

T contains a matrix of rank 1, according to Lemma 4.1, it is a commutative Clifford semigroup.

So T is a finite chain of some commutative linear groups.

If T contains at least 4 H-classes, then the assumption ∃a ∈ Re∩Lf implies that a−1 ∈ Le∩Rf

by Lemma 3.3, and also the assumption ∃b ∈ Le ∩Rf implies b−1 ∈ Re ∩Lf . Thus both Re ∩Lf

and Le∩Rf are not empty sets. For every a ∈ Re∩Lf , T has a partition {H0, He, Hf , Ha, Ha−1}.

In order to determine Ha and Ha−1 , note that aRe, which implies that aS1 = eS1. Thus

∃s ∈ S1 such that a = es. From that e =
( 1 0

0 0

)

, it follows that a =
( u v

0 0

)

with some

u, v ∈ F . Similarly, aLf implies that a =
( 0 x

0 y

)

with some x, y ∈ F . So we conclude that

a =
( 0 v

0 0

)

. Dually, we have a−1 =
( 0 0

v′ 0

)

with some v′ ∈ F . Since aa−1a = a, aa−1Ra.

But aRe, so aa−1 = e. It follows that vv′ = 1, and v 6= 0, v′ = v−1, a−1 =
( 0 0

v−1 0

)

.

The second case is that E1 = {0, e, f, 1}. In light of Corollary 2.7, L1 = R1 = D1 = H1,

which consists precisely of all invertible matrices of T . Proceeding along the line of proving the

first case, we can show that either T is a finite semilattice of commutative linear groups, or both

Re∩Lf and Le∩Rf are not empty sets. If the latter is true, then for all a ∈ Re∩Lf , a−1 ∈ Le∩Rf ,

S has a partition {H0, He, Hf , Ha, Ha−1 , H1}, each element of Ha has the form
( 0 v

0 0

)

, and

that of Ha−1 is of the form
( 0 0

v−1 0

)

with v 6= 0. For all g ∈ H1, g is an invertible matrix,

so geLe. Let g =
( u x

y v

)

. Then ge =
( u 0

y 0

)

. From ge ∈ Le = He ∪ Ha−1 , it follows that

u = 0 or y = 0. Similarly, gfLf implies x = 0 or v = 0. Therefore,
( u 0

0 v

)

or g =
( 0 x

y 0

)

.

Since g is an invertible matrix, we get uvxy 6= 0.

Since T = P−1SP , T is isomorphic to S. From the above discussion about T , we can derive

that S satisfies all assertions in the theorem and the proof is completed. 2

From Lemma 4.1 and Theorem 4.2, we can easily deduce the following corollary.

Corollary 4.3 If S is an inverse semigroup of 2 × 2 matrices over a field F and there is no

invertible matrix in S, then there exists P ∈ GL(2, F ) such that each matrix of P−1SP is of the

form
( v 0

0 0

)

,
( 0 v

0 0

)

,
( 0 0

v 0

)

or
( 0 v

0 0

)

with v ∈ F .

Let us turn our attention to the following problem: if S is a set of some 2 × 2 matrices and

each element of S is of the forms appearing in Theorem 4.2(4) and Corollary 4.3, then under

what conditions does S become an inverse semigroup? The next two theorems reply completely

this question and give some necessary and sufficient conditions. One will be involved in subsets



Inverse semigroups of matrices 555

of the semigroup F ∗, all nonzero elements of a field F with the multiplication. If X, Y are such

two subsets, then we denote

X−1 = {x−1 : x ∈ X}, XY −1 = {xy−1 : x ∈ X, y ∈ Y }.

Theorem 4.4 Suppose that S is a subset of Mn(F ) with F a field, and that every element of

S is of the form
( a b

c d

)

, where a, b, c, d ∈ F , at most one of which is not 0. Let

A =
{( v 0

0 0

)

∈ S : v 6= 0
}

, B =
{( 0 v

0 0

)

∈ S : v 6= 0
}

,

C =
{( 0 0

v 0

)

∈ S : v 6= 0
}

, D =
{( 0 0

0 v

)

∈ S : v 6= 0
}

.

Assume A, B, C, D are all non-empty sets, and let

A0 =
{

v :
( v 0

0 0

)

∈ A
}

, B0 =
{

v :
( 0 v

0 0

)

∈ B
}

,

C0 =
{

v :
( 0 0

v 0

)

∈ C
}

, D0 =
{

v :
( 0 0

0 v

)

∈ D
}

.

Then S is an inverse semigroup if and only if S contains the zero matrix 0, C0 = B−1
0 , and

B0B
−1
0 = A0 = D0 is a semigroup [group].

Proof Necessity. Let 0, e, f represent the matrices
( 0 0

0 0

)

,
( 1 0

0 0

)

and
( 0 0

0 1

)

, respec-

tively. Then {0, e, f} is the set of idempotents of S. Let u ∈ B0. Then
( 0 u

0 0

)

∈ B. By

Theorem 4.2, we have a−1 =
( 0 0

u−1 0

)

∈ C, A = He, B = Ha = Re∩Lf , C = Ha−1 = Le∩Rf ,

D = Hf . Since He, Hf are groups, so are A and D. Clearly, A ∼= A0, D ∼= D0, and thus A0, D0

are groups. Since (Ha)−1 = Ha−1 , we have B−1 = C. Therefore, C0 = B−1
0 .

Sufficiency. Suppose S contains 0, C0 = B−1
0 and B0B

−1
0 = A0 = D0 are semigroups.

First note that 0, e, f ∈ S, and the idempotents of S is E = {0, e, f}. It is obvious that E is

commutative. Secondly, since S = {0}∪A∪B ∪C ∪D, we can take direct calculations to verify

that S is closed under the multiplication and hence S is a semigroup. At last, in order to show

that S is an inverse semigroup, it remains to prove that S is regular. Since B0B
−1
0 = A0 = D0,

for all b1, b2 ∈ B, we have 1 = b1/b1 ∈ A0, b1/b2, b2/b1 ∈ A and (b1/b2)(b2/b1) = 1. Combining

with that A0 is a semigroup, we derive that A0 and then D0 are both groups. Furthermore, we

know the regularity of the elements of A and D. Now for all b ∈
( 0 v

0 0

)

∈ B, we have v ∈ B0.

From C0 = B−1
0 , it follows that v−1 ∈ C0. Let c =

( 0 0

v−1 0

)

∈ C. Then it is readily to verify

that bcb = b. Thus, b is regular, and so every element of B is regular. Similarly, one can show
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that every element of C is also regular. It is obvious that the zero matrix 0 is regular. So we

conclude that S is regular, and the proof is completed. 2

In addition, if a subset of 2 × 2 matrices is allowed to contain an invertible matrix, then

we have the following theorem to give the necessary and sufficient conditions so that the subset

becomes an inverse semigroup of matrices.

Theorem 4.5 Suppose that S is a subset of Mn(F ) with F a field, and that every element of

S is of the form
( u 0

0 v

)

or
( 0 u

v 0

)

with u, v ∈ F . Denote U = {
( u 0

0 v

)

∈ S : uv 6= 0}

and V = {
( 0 u

v 0

)

∈ S : uv 6= 0}. Let A, B, C, D, A0, B0, C0 and D0 be as in Theorem 4.4.

Assume both U and V are nonempty sets, and set

A1 =
{

u :
( u 0

0 v

)

∈ U
}

, B1 =
{

u :
( 0 u

v 0

)

∈ V
}

,

C1 =
{

v :
( 0 u

v 0

)

∈ V
}

, D1 =
{

v :
( u 0

0 v

)

∈ U
}

.

Then S is an inverse semigroup if and only if the following conditions are all true: (1) S contains

the zero matrix 0; (2) U−1 ⊆ U , V −1 ⊆ V ; (3) B1B
−1
1 = A1 = D1 is a semigroup, and C1 = B−1

1 ;

(4) B0B
−1
0 = A0 = D0 is a semigroup, and C0 = B−1

0 ; (5) A1 ⊆ A0, B1 ⊆ B0, C1 ⊆ C0 and

D1 ⊆ D0.

Proof First note that S = {0}∪U ∪V ∪A∪B∪C ∪D, thus we can prove the sufficiency of this

theorem by the same method as in proving that of Theorem 4.4. Second, we prove the necessity

of this theorem as follows.

Let S be an inverse semigroup of matrices as in the theorem, and 0, e, f, 1 represent
( 0 0

0 0

)

,

( 1 0

0 0

)

,
( 0 0

0 1

)

and
( 1 0

0 1

)

, respectively. Then {0, e, f, 1} is the semilattice of idem-

potents of S. Let u ∈ B0. Then a =
( 0 u

0 0

)

∈ B. According to Theorem 4.2, a−1 =

( 0 0

u−1 0

)

∈ C, A = He, B = Ha = Re ∩ Lf , C = Ha−1 = Re ∩ Lf , D = Hf . By 4.4, A0, D0

are groups and C0 = B−1
0 .

Assume v =
( 0 x

y 0

)

∈ V . Then xy 6= 0, and by Corollary 2.2, v−1 =
( 0 y−1

x−1 0

)

∈ V ,

which implies that B−1
1 ⊆ C1, C−1

1 ⊆ B1 and thus B1 = C−1
1 . From U2 ⊆ U , A2

1 ⊆ A1 and

D2
1 ⊆ D1, it follows that both A1 and D1 are semigroups. Let u =

( x 0

0 y

)

∈ U . Then xy 6= 0,

and by Corollary 2.2, we have u−1 =
( x−1 0

0 y−1

)

∈ U . Thus U−1 ⊆ U , V −1 ⊆ V , A−1
1 ⊆ A1
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and D−1
1 ⊆ D1. But from 1 = uu−1 ∈ U , it follows that 1 ∈ A1 and 1 ∈ D1. So A1, D1 are both

groups. Obviously, UV ⊆ V implies that A1B1 ⊆ B1 and C1D1 ⊆ C1. Hence A1 ⊆ B1B
−1
1 ,

D1 ⊆ C1C
−1
1 . From V 2 ⊆ U , it follows that B1C1 ⊆ A1 and B1C1 ⊂ D1. Thus B1B

−1
1 ⊆ A1

and C1C
−1
1 ⊆ D1. Therefore, A1 = B1B

−1
1 = B1C1 = C1B1 = C1C

−1
1 = D1.

UB ⊆ B implies B0A1 ⊆ B0, and so A1 ⊆ B0B
−1
0 = A0. Similarly, UC ⊆ C implies D1 ⊆ D0

and V D ⊆ B implies D0B1 ⊆ B0. But since D0 is a group, 1 ∈ D0. Thus B1 ⊆ D0B1 ⊆ B0.

Analogously, since V A ⊆ C, we can derive that C1 ⊆ C0. This completes the proof. 2

Let us conclude this paper with an example, which shows the significance of Theorems 4.4

and 4.5.

Example 4.6 All integers are denoted by Z. Let

U =
{( 2n 0

0 2−n

)

: n ∈ Z
}

, V =
{( 0 2n

2−n 0

)

: n ∈ Z, n > 0
}

,

A =
{( 2n 0

0 0

)

: n ∈ Z
}

, B =
{( 0 2n

0 0

)

: n ∈ Z, n > 0
}

,

C =
{( 0 0

2n 0

)

: n ∈ Z, n < 0
}

, D =
{( 0 0

0 2n

)

: n ∈ Z
}

.

Then by Theorem 4.4, S1 = {0}∪A∪B∪C ∪D becomes an inverse semigroup of 2×2 matrices;

and so does S2 = {0} ∪ U ∪ V ∪ A ∪ B ∪ C ∪ D by Theorem 4.5.
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