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O. Introduction

When a group G is regarded as a category consisting of only one object and
the hom-set G, the operation al>a ', as we know, is a full and faithful coh«
travariant functor: G—~G. Secondly, [ 1] showed that in a preadditive category
(or more widely, in an n-preadditive éategory satisfying the condition (E)) the
operation ¢ :al—-a satisfies the following :

(1) @:(A, A)—>(A, A) is bijective; _
(2) @Cab)=ap(b) = (p(a))b whenever the composite gb makes sense .

In this note, we shall suggest the bijective half-functors to unify both above.
This finished, we can make descriptions of some systems, the g-c-c¢” and the
9°-c-c" categories, as is very important for S,C.T. (See[3] and [27]).

It will. be mentioned that, in [ 3 ], a category is called a ¢°—c-c" category if
there exists a bijective halffunctor ¢°¢BH (4, 4°°), where T: f — 4°" is a fun
ctor and TA= A" for each object 4 of 4, such that the mapping ¢:(4”, 4") x (A,
A)— (A", A"°?) «(a, b) -a"%p°(b) is C’, where the manifold (4°?, 4"°") has the
same differential structure as the differentiable manifold (A4”, 4) has. In accor-
dance to my teacher Professor Zhou Boxun’s opinion, a ¢°-c-c" category is called
a Lie-category, Clearly, a Lie group is a Lie-category, which brings to light
the contravariantness in the notion of the Lie groups . It would seem that, there-
fore, this supplies the study of the‘Lie groups with another clue—namely, to
study with the aid of the category theory. Moreover, the Lie-categories exten-
ding the notion of the Lie groups, it seems to be possible to use the Lie group
and Lie algebra method for reference in the research of S.C.T.

As was stated above, it is very useful to discuss the bijective half-functors.
In this note, we shall show soms basic properties about them, they will be
used many times in our works. §1 will introduce the concept of the bijective
half-functors and show a necessary and sufficient condition of BH, (¢, #)x J.

In §2, we shall prove that the important elementary quantities in category the-
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ory, such as limits, unions and images, are their invariants, and soms their -
invariances will be shown as well, §3 aims to discuss the inverses of a bijec
tive half-functor, the main result is the proposition 3,10, which gets an answer

to the problem about the structure of the inverses of a bijective half-functor.

§ 4 is devoted to the discussion about the surjectiveness of the mapping wl—rwé,
—— we get a sufficient condition and a necessary condition to make a given
bijective half -functor pe BH; (3, ) an inverse of a function yeBH, (4, @) .

In this note, we shall continue to use the symbols in [1]. Let (u)= {s]

{v|dom(s) =dom(u) Apv=u and <u) = {p]|codom(s) = codom(u) Av==u} when u and
v are monic. The composition of b by a is denoted as ba, (b)a, or b.(a).

| . Bijective half-functors

1.1. Definition. Let 4 and @ be two categories, and let T:(f—>4 be a fun
ctor (resp. contravariant functor). A function p: 43 is called a bijective half-
functor (resp. bijective half -contravariant functor) for T. if it satisfies the follo
wing :

(1) yAeobg:p(A)=TA4;

(2) yA , Ayeobd:p:(A, , A))—~(TA, ,TA,) (resp.(TA,, TA))) is bijective;

(3) ¢(fe)=(THHyg)=y(f)Tg,(resp. ¢ (fg)=(Yg)(Tf)=(Tg)($f)), whene-
ver the composite fg makes sense ,

We write BH, (4, #) (resp. CBH, (g4, #)) for the class of all bijective half-
functors (resp. all bijective half-contravariant functors) for T, Clearly,
BHy (d, #)=SBH(see[1]).

As §: #°°> 4 is a function such that $4°’=yA4 and §f°’=yf for each morph
hism f in 4 and y’: J—8°° such that y'A=(y(A4))°" and y'f=(pf)°", we write §
=4 and y'==y respectively . Then holds CBH,(d, g)ﬁBHTo(y{"", #)=BH_.(d, 27,
where T°: 4> is a functor such that T°A°’=TA4 and T°f°*=Tf,and T*: 4—
#°% such that TA=(TA)°’ and T*”f=(Tf)? . Referring to the proposition 1.4,
we know that when T: J—>@ is a full and faithful contravariant functor, 7% is
a full and faithful functor, and hence T”¢BH,..(d, '), which shows that in
a group G, the operation T*:gl> (g ')° belongs to BHr,,,(G, G°?) . So that the in
inverse operation T in the group G can be regarded as a bijective half - func-
tor. On the other hand, in a preadditive category the operation at>(—a) is a
bijective half-functor also. Thus, we have unified the two things adove.

|.2. Lemma If yeBH (4, #), then y(1,) is an isomorphism for each Acoby.

Proof Since y:(A, A)—>(TA, TA) is surjective, there is a morphism u:A—A
such that p(u) = 1, .S0 (Twp(1) =pul ) = pw) = 1,.,=p(1p) =1 )Tu, g.e.d.

1.3 Corollary Let yeBH (¢, @). If y preserves monomorphisms (resp. epi-

morphisms), then so does T, and vice versa. In addition, y always preserves
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isomorphisms .

i.4 Proposition BH, (4, #)x ¢ if and only if the functor T is full and fai-
thful .,

Proof (=:) Let peBH (4, B). Since p(f) =¢(1)T(f) and (1) is an iso-
morphism, the proof is clear. ' ‘

(&:) As T is full ann faithful, we have T¢BH, (4, 8).

.5 Corollary If BH, (¢, #)X and if for each beob g ther is an object a
acobg such that Ta=b, then there is an adjoint equivalence ¢S, Ty n,¢e): B — s
and vice versa. (See(4,IV.4, Therem 1]).

{.6 Corollary Y (T, S5 n,e):4—4 is an adjunction, then (T, S;n,¢) is an
- adjoint equivalence if and only if BH, (¢, #)x () and BH( 8, 4)x . See(4,IV.
3. Theorem | and Theorem | in IV 4,]). h

2 . Invariants of Bijective Half -Functors

2.1 Proposition Let yeBH, (4, 2). If y(¢) is a monic (resp. an epi or an

isomorphism), then so is ¢ . Therefore, y ' preserves monomorphisms, epimorp
hisms, and isomorphisms, In addition, if y(r) is split monic -(resp. split epi),
then so is ¢ . |

Proof Suppose y(t) is monic and tq = th, then (Tt)y¢(a) =y (ta) =y (tb) = (Tt)
Y(b)-p(t) is monic, so is Tz, for Tt = y(¢ ‘)1/:(1)—l . Tﬁerefore, y(a) =yp(b), Since
¢ is injective, a=b, so that ¢ is monic.

Ween y(r) is epi, the proof can similarly be completed .

If y(¢) is split monic, then there is a split epi e such that ey(¢) =1.T being
full, we can write Tu=y(1)e for an epi u in 4. Hence y(ut) =¢(1), so that ur=
1.We have proved that ¢ is split monic, q.e.d.

2.2 Definition A functor T: g— g is called epi T— surjective on objects; or
epi T—for short (resp. monic T—), if for any object Beobg we have an obj-
ect Acob g and an epi h:TA—>B(resp. a monic m:TA4—-B). In addition, if A is
split epi as well, then T is called split epi T—.

Clearly, if T is quasifull on objects (see( 2, Definition 9]), then T is split
epi T—as well as split monic T—. The meaning of “—=T7” is clear,

2.3 Proposition Let yeBH (4, #). If T is epi T—(resp. monic —T), then
¥ preserves monomorphisms (resp. epimorphisms).

Proof Let t:A—>A’ be monic. Suppose (Tt)a= (Tt)b, where a,b:B—~>TA,
Since p is surjective, there are u and » such that y(u) =ah and ¥(») = bh, where
h:TA”—>B is an epi. So yp(tu) = (Tt)y(u) = (Tt)(ah) = (Tt)(bh) = (Tt)p(v) =y (tv).
Since ¢ is injective, tu=ty, hence u=yp for ¢t is monic. Therefore, y(u)=ah=
¢(v) =bh, so that a=b. This means Tt is monic. Further Corollary 1.3 shows
$(2) is monic also. Q.E, D,



2.4 Proposition Given two functors g2 @, supposeye¢BH, (4, #) and
(B, r:A-»GB) is a universal arrow from Aeobg to G. If G is split monic »G
and r is epi, or G is full and split monic —~G, then (GB, y(r):TA—>TGB) is a
universal arrow from TA to T,

Proop Suppose G is full and split monic - G. Giv>n A’ ¢ob g and s:TA>TA
because y is bijective, there is a morphism u:A—4 such that p(u) =s. In addi
tion, since G is split monic —G there is a monic h:4’—=GB’ and th=1,, for an
epi t. Since (B, r) is a universal arrow, there is a unique m:B-—>B’ such that

(Gm)r=hu. Hence u= (th)u=t(Gm)r, then p(t (Gm)r) =T (t(Gm))y(r) =yp(u) = s,
where tGm:GB—A’, On the other hand, assume that there is a morphism n:GB—
A’ such that (Ta)p(r) =s. Then gp(nr) = (Tr)p(r)=s=T @(Gm))yp(r) =p ({Gm)r).
Hence nr=#Gm)r for y§ is injective, (If r is epi, from the fact that +(Gm)r=nr
we know #(Gm)=n, so that the universal property of {(GB, y(r)) is showh). Since
G is full, there are morphisms b, b’: BB’ such that Gb=hn and Gb'= htGm .
Hence (Gb)r= (hn)r=(ltGm)r= (Gb')r, Because r is a universal arrow, holds b=/,
so hn=htGm, and hence n=1tGm, so that the universal property of {(GB, y(r)) is
proved, the proof is completc.

2.5 Proposition Given two functors _qJZTi @B, suppose peBH (4, #) and (B,
r:GB—=A4) is a universal arrow from G to Af; If G is split epi G— and r is mon
nic, or if G is full and split epi G—, then {GB, y(r):TGB-+TA) is a universal
arrow from T to TA,

2.6 Let J be a category, and let A4: J—g4’ be diagonal functor.

Proposition Suppose ye¢BH, (4, #) and Geobg’. If T is split epi T—, then
that <4, a=(a)) ;. ps:A >G> is a limit for the functor G implies that (T4, y(a) =

#(a,)) sy :A;A—'»TG) is a limit for the functor TG,

Proof Clearly, if (A, sj:A»G,)jwb, is a cone from the vertex A to the .
base G, then (T A, ¥(s)) :TA—+TGj); is a cone from the vertx TA to the base TG,
Now suppos there is a cone (B, r,:B—TGj), from the vertex Beobg to the base
TG. Since T is split epi T—, there is an epi e:TA'—=B, and em=1, for a mon
nic m:B—~TA’, So for each jeobJ there is a morphism b,:A’—»Gj with (b)) =re.
Given j,, j,cobJ and f:j,—j,, because (B, r;) is a cone, we have (TGf)rj =r;.
Hence y((G/)b,) = (TG)(b,) = (TGf)r,e=r,e=p(b;) so (Gf)b, =b, . So that

(A4, b,) is a cone from the vertex A’ to the base G. Since (4, a’A“A—:»G):(A’
a,:A—-Gj), is a universal cone, there is a unique d:A4’—>A such that ajd:bj .
Therefore, y(a,)Td=y(b;,) =r,e, so that y(a;)((Td)m)=r, . On the other hand,
suppose there is a morphism 7 :B—>TA such that y(a)r=r,. We are going to prove
that t= (Td)m, In fact, there is a morphism d’:4’—+A such that T (d’) =te for
T is surjective (see Propositionl.4). So y/)(al.d’) = (¢(a;))(te) =r,e=y(b,), hence
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ajd’:bj . As was stated above, there is a unique d such that ad =b, hence d’=
d. So that t=(Td’ym= (Td)m, The proof is compete ,

2.7 Proposition Suppose ye¢BH (4, #) and Geobyg’ . If T is split monic T
than that (A, a= (aj)jmb,:G—;Av,A> is a colimit for the functor G implies that (T A4
yla) = (1/)(aj)),.:TGi>AMTA> is a colimit for the functor TG .

2.8 Corollary Suppose yeBH (4, #) and T is split epi T-»(that is, split m
monic—T), then the following hold:

(1) If (A4, a;) is a4 product diagram (resp. coproduct diagram) in ¢ . then
so are both (T4, y(a,)) and (T4, Ta;) in g.

(2) If {d>=Equ(a, b) in ¢, then (Td)> ={y(d)>=Equ(Ta, Tb) =Equ(y(a),
p(b)) in g. If (d) =Coequia,b), then [ Td)={y(d)]=Coequ(Ta, Th) =Coequ (y(a),
(b)), .

(3) If <w =muj, then <Tu) ={¢pu)) :OTujzow(uj) .

(4) If o is éomplete (resp. cocomplete), then so is @.

2.9 Propbsition Let yeBH (4, #) and T be quasifull on objects., If (u) =

L,ju, in the category o, then (Tu) ={(yu)) = L’_.JTu,= L}Jzﬁ(u,) in the category 4.

Proof Suppose u,:4,)—>A and {u> = Ju, . By Proposition 2.3, y(x,) and yp(u)
are monic . If each y(u,) is carried into a monic m; B)—>B’ by a morphism f:
TA—B’, that is, for each y(u,) there is a morphism [/, such that fyu,)=ml, .
Because T is quasifull on objects, we can write Tk =sf, where k:A—A4’, s:B’
»—>TA’, and ts=1,,5 Tw=nl,, where w;:4,—~A", n:B)—>TA", hn=1, and nh =1,
and §(x)=smh, where x:4”—~A’. By Propositton 2.1, x is monic. Since y(xw,) =
W(xX)Tw,=smh-nl, = sml, =sfp(u,) = (Tk)p(u,) = ¢$(ku,), we have xw,=ku,. So there
is a morphism B such that x8 =ku. Therefore, yp(x)TB=(smh)TB=(Tk)p(u) =
sfy(u), so that m(hTB) = fy(u), that is, y(u) is also carried into m by f. This
means {p{u)) = Ulﬁ(u,). Since pu) =y (1)T (u) and p(1) isan isomorphism (see
Lemma 1.2), {¢u)) =(Tu), the proof is complete, '

2.10 Proposition Let yeBH (4, #) and T be quasifull on objects. If (h)=
Im(f) in the category ¢, then (Th) =(yh))=ImH(f)) =Im(Tf) in the cate-
gory @ . |

Imitating the last proof, this proof can easily be completed .

2.11 Proposition If y¢BH (4, #) and T is split epi T—, then the following
are equivalent : ¥

C d > B

(1) u h is a pullback (resp . a pushout).

|

|

!
'#’D

o e
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y oL J
(2) wml lTh is a pullback (resp.a pushout),

rce- ™ .rp
(3) Tu ¥(h) is a pullbk (resp. a pushout),

TAw(f) T

Tc-I4 1R .
(4) w(u)l t«m is a pullback (resp. a pushout),

Tc-49 1B
(5) Tul ¢|Th is a pullback (resp.a pushout),

TA——'/;(—f) —TD

Proof (1)=(2):The use of Proposition 2§ "(resp.Proposition 2,7). (2)=(1):
Suppose fa=hb, then (Tf)y(a) = (Thyb), so (Tf)-Wa@)¢(1))=(Th)-(Yb)y(1)).
Hence there is a unique t”=y(¢t) such that Y(u)y () =¢(a)p(1) and p(d)yt) =
~$(b)$(1). Then g gt) = yu)(TH$(1), hence )Tt =y(a) and $d)Tt = §(b),
therefore ut =a and dt=5b, On the other hand, assumu that ut'=q and dt'=b
then ypwt’) =y )Tt =¢(a) and P(d)Tt'=y(b), so0 Pu) (TtHyY(1)) =¢ady(1) and
pd)- (TetHy(1)) =pb)¢(1). Hence (Tt')y(1) =¢(t), so that t'=¢, The required
universal property is proved . '

That (2)© ()= (4)=(5) is a corollary of Lemma 1,2, for y(h) = (Th)p(l) =
$(Th,

3.The Inverses of a Bijective Half Functor

We shall use the following theorem corresponding to (4,IV, 3.Theorem 1]J:

Theorem |’ For an adjunction {F, G; n,&): & —~4:(i) F is faithfull if and
only if every component n of the unit » is monic, (ii) F is fuli if and only
if every 5, is split epi. Hence F is full and faithful if and only if each », is
an isomorphism x=GFx.

By imitating what Prof. S . Mac Lane did in (4,IV,3], the proof can be
completed . That is, we must prove the following lemma :

Lemma A Let f, =('ﬁ.c);(°.;¢ :(—, a)>>(—,b) be the natural transfomation
induced by a morphism f:a-—>b of 4. Then for each ceob J %, is monic if and
only if f is monic, while f, is epi.if and only if f is_split epi (i .e., if and
only if f has a right inverse),

3.| Definition Given two functors: 94_6,_, 4@, suppose yeBH (4, #). A func
tion o €BH (4, o) is called a G-inverse of ¥, if 9(g) =y ' (TGg):GB, —+GB;, for
every morphism g:B,—~B, of g.
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Clearly, if there is a G-inverse of §, then it must be unique. We write g}
for it. If 4=g and T=G=1I,, then i/;',: =¢ ', the inverse of the self-bijective
half -functor . Which aroused the definition',

It should be remarked that in general y Y(TGg) is not unique, but in the
present case, 1/;'1(TGg)=GBl—>GB2 is indeed unique. In this paper, we always
write $'(TGg) for ¢ '(TGg):GB,—~GB, ; there is no danger of confusion.

3.2 Remark Suppose y¢BH, (4, #). If y. and ¥} exist, then JL=y}if and
only if G=§. .

Observing T is faithfull the proof can be easily comleted .

3.3 Proposition Suppose G:p—>4 is a functor, then peBH (4, #) has the G-
inverse if and only if the functor TG is both full and faithful ,

Proof (=:) Proposition 1.4,

(<:) We define a function ¢:8—>¢4 as follows:

(1) yBeob g:p(B)=GB,
(2) ve:B,—~B,:p(g)=y" (TGg).
The ordinary composite of ¢ and y is denoted by y¢ . Suppose Beob g, then
($9)(B)=y(GB) =TGB . On the other hand, assume that g:B,—B, is a morphism
of @ we have (yp)(g)=y(p (TGg)) =TGg . Therefore, yp =TG: g~ a. Since TG
is full and faithful, ye¢«{ B,, B,)>(TGB,, TGB,) is bijective y:(GB,,GB,)—~
(TGB,, TGB,] is bijective, so is ¢:(B,, B,J—+(GB,, GB,].

Finally, given two morphisms p:B,—B, and h:B,—>B, in $, we have ¢(hp)=
v~ (TG (hp)) =y (TGMTGp).Since y is surjective, there is a morphism s:GB,—~
GB, such that y(s)=TGh. So ¢hp)=¢p  (Y()TGp) =4~ (y(sGp))=sGp =4 ' (TGh)Gp
=@(h)Gp. In the same way, we have @(hp) = (Gh)p(p). Therefore peBH (3, ),
so that ¢ =3, q.e.d.

3.4 Corollary If there is an adjunction (T, Gsn, ¢): 44—, and if peBH (d,
@), then yp has the G-inverse iff (T, G; n, e):g — 4 is an adjoint equivalence.
Proof (=:) T is full and faithful by Proposition 1,4, So from (4,IV.3,

Theorem 1’) we know that p:I “>GT is a natural isomorphism. In addition,
because y has the G-inverse §,;, we know BH (@B, 4)3{. Hence G is also full
and faithful. By (4,IV.3. Theorem 1), ¢:TG—>I, is also a natural isomorphism,
so (T, Gs n,¢e>:4—A is an adjoint equivalence .

(&:) By (4,IV.4. Theorem 1) G is full and faithful, so is TG. Then Pro-
position 3.3 shows that the G-inverse §; exists.

3.5 Lemma If there are two functors _‘,4%, # and E:(fu)amdg’TG"’Iwis a
natural transformation with every component ¢, epi, then G is faithful.

Proof Given two morphisms g g,¢(B,, B,), we have the following two dia-

grams :
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(‘;B|
TGB,—% .

TGg,v & (i=1,2),
TGB,———>8,

which commute . Assume Gg, =Gg,, then g, =g,6, . Since ¢ is epi, g,=¢g,. !
So that G is faithful . | I |

3.6 Corollary Given two functors yﬂﬁa B, assume PpeBH (4, B). If ¢=

(s,,):TG—'»lmis a natural transformation with every component ¢; eqi and if G

is full, then y has the G-inverse,

3.7 Definition Given two functors T, S: 4 — 4, suppose that ypeBH (, @) a
and ¢g¢BH (¢, @). a natural transformation n:y->p is a function which assigns
to each object 4 of ¢ a morphism n :y(A4)—>p(A4) of @ in such a way that

every morphism f:4—>A4" in 4 yields a diagram

. ”,4 '
P(A)——T——>p(A)
vy - Vo)
p(A e (4)
A
which commutes .

Let 4 be a category, the class of all objects of ¢ is denoted by O .

3.8 Definition Given two categories ¢ and 4, ¢ is said to be equal on
morphisms to @, if there exists a bijective map h:Od«»Ogsuch that (A4, 4,) =

(nd,, n4,) and if the two compositions of morphisms are the same, When this
holds, we write _qdég.

3.9 Proposition Given two functors G, S: @~ ¢, suppose that yeBH (4, @)
and both §, and Py exist, then n= (ngpy, ., .:9; ¥ is a natural transformation if
dem:G'»S is a natural transformation .

Proof (&:) Assume that n = (ny):G">S is a natural tranformation., Given B,
B'cobg and f:B »B'ewe have (Sf)ny= (n )Gf. So (TSf)Tny=(Tn )TGf. Since
TSf=4@s(f) and TGf=y(J(f)), holds that p(Ps(f))Tny= (Tn Y@ [/)), that
is, p@FySfony = zp(nBrdT'G(f)). So E;(f)nB:nB,IZé(f) . This means that n= (ng):hy »hy
is a natura] transformation,

and only if n= (np

(=:) Reversing the above discussion and remarking that the functor T is fa
faithful , we complete the proof .
To be explicit, there is a category consisting of (1) objects, all the invers
ses of ¢, (2 ) morphisms, all natural transformations between two objects, and
( 3) the vertical composition of two natural transformations . The category is s
denoted by §'. By Proposition 3.3 and Remark 3.2, there is a bijection from -
the class of all inverses of y to the class {s|s: @ > ¢ is both full and faithful },
Ps+=S. In addition, by Proposition 3.9 we have ¢ (P, ¥)=tnln:S>G is a natu
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ral tranformation | = _qd""’(S,G), SO JZ' is equal on morphisr.ns to a category which
is a full subcategory of 4” and possesses the objects, all full and faithful func
tors: @4 . We denote the full subcategory of 4?by FFy4?. Sincc ¢ is an arbi
trary bijective half functor in BH, (¢, #) and the above sfatement holds for any
functor T: ¢4 —» @, we obtain the foilowing proposition ,

3.10 Proposition For every functor functor T: ¢ -4 which is full and faith
ful, if yeBH (4, @), then j'ZFF 4%,

4 . Surjectiveness of the Mapping y|>p;

This paragraph deals with the following question:

"For each bijective half functor peBH (B, 4), is there a bijective half -func
tor $eBH (4, 8) such that ¢ = ?

4.| Proposition Let y¢BH (4, #). If ¢ =¢p then ¢ satisfies the following *
condition; If GB=GB’ then ¢(1,) =@ (lz).

Proof Let GB=GB'=A, we have o(1p)=¢ (TG1y) =¢ (Tlzp) =¢ (17, :A—>4
@ (1z)=9 (TG1,) =¢ '(1;,0:A>A, so that ¢(1,) =¢(1,), q.€.d.

4.2 Proposition Given a functor G: @~ 4 which is quasifull on objects, sup
pose peBH (@3, 4), then for each full and faithful functor T:4-> @ there is a
unique function yeBH, (4, ®) such that ¢=4§;.

Proof First, let us define an appropriate function yp¢BH, (4, ). Since G
is quasifull on objects, for each object Ae¢ob 4 there is a nonempty class C =
{B|Beob g and exists an isomorphism ¢:GB—>A4}. Hence by the axion of choice

there is a mapping C:0b ¢ — U C, such that C(4)eC,. We define a function
Acob g R

p:d—a3 as follows :

(1) yAcob g :y(A4) =TA,

(2) Given A4, , A,cob g and f:4, —+A,, we denote. C(4,) by B,,i =1,2,
then there is an isomorphism a, with ¢,8,=1 and B,a,=1. Since ¢:3(B,, B,)>d
#(GB, , GB,) is bijective, there is a unique ge¢ #(B,, B,) shch that (&)=
B.fa, . We define y(f)=T («,Gg)p,):TA »TA,. Then p(B,fa) =(TB,)(yf)(Ta))=
TGg.

Next, we are going to prove that ypeBH (g4, 83).

1 . First, we are going to show that for any 4, , 4,coby¢, 1/;;94(A, y A))—~
@B(TA,, TA,) is bijective. From now on, we always write B, fof C(4,). Sup
pose f,, f,e 4(A, . A,) and y(f)) = y(f,), then (Ta, (TGg))(TB)) = (Ta,)TGg,)(TB),
where g,¢ 3(B,, B,) and ¢(g,) = §,f,a,, i =1,2. Since T is faithful, we have
a,(Gg ), =a,(Gg,) B, B, being epi and a, being monic, we have Gg,=Gg,. Hence
g,=¢g, for G is faithful . Therefore, f = f,, so that y is injective. On the other
hand, assume he¢ 3(TA4,, TA,), then there is a unique g:B,—~B, such that TGg =
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(TB,)h(Ta,), for TG is ful 1 and faithful ., Then (Ta,)(TGg)(TB,) =k, and hence
¥(f) = (Ta,) (TGg)(TP,) =h, where f=ap(g)p :A,—~A,, so that y is surjective.

2 . Given heg(A,,A,) and sc 4 (A4,,4,), we denote C(4,) by B,,i=1,2.3.
Then we haye both ge#(B,,B,) and re 3(B,,B,) such that ¢(g)=p,ha, and Gr=
Bssa,, hence y(sh) =y(a,(Gr)B,aw(8)B,) =¢(awp(rg)B,) =T (a,(Grg)p,) =T (a;(Gr)g,
a,(Gg)B,) =T (a;(Gr)B,)T (a,(Gg)B,) = (Ts)(Y(h)).

Similarly, we can prove y(sh)=y(s)Th, so that ye¢BH (g4, @#).

Further, we are going to prove ¢ =y, . Given B',B’cobg and ge¢g(B', BY),
let B,=C(GB'), i=1,2, then there are four isomorphisms a,:GB,——»GB' and ,B,:GB'
—~GB, such that a,8,=1 and B,¢,=1. As G is full and faithful, there are four
morphisms a,:B,—~B' and b,:B'—~B, such that Ga,=a, and Gb,= g, , From Proposi
tion 21 we know that a, and b, are split. G being faithful, hold ab,=1 and
ba,=1.Let g’=b,ga, :B,—~B,, then ¢(g’) = (Gb,)(p(g))(Ga,)=pLp(g))a,, hence
V(p)) =¢(a,p(&)B,) =T (a,(Gg")B,) =T (G (a,g’b,)) =TGg, so that p(g)=p ' (TGe):
GB' >GB*,

Finally, we arr going to prove that such a function peBH (4, 8) is unjque.
Given A,, A,coby, let B,=C(4,), i=1,2, there are two split epic morphisms a,:
GB,—>A, and a,:GB,—~A, such that q¢,8,=1, Given a morphism f:4,—>4,, let ¢=
$(B,fa,), there is a morphism g:B,—~B, such that TGg=¢, for TG is full , If there
is a function ¢<BH, (4, #) such that §; =, then that $.(g) =p,(g) implies that
¢ " (TGg) =y~ (TGg)=¢1f' (1) =B,fa, . Therefore, holds ¢(B,fa,) =TGg =t =y(B,fa,).
That is, (TB,)) (@ (S NTa,= (TB,) W(f))Ta,, since TS, is monic and Ta, is epi,
6(f)=v(f), so that =y, q.e.d.

4.3 Corollary If there is a full and faithful functor G: 3— 4 being quasiful
on objects and if BH (¢, #)x (), then each function ¢eBH; (8, 4) satisfies the
following condition

If GB=GB’ then ¢(1p) =¢(1p).

Pemark To be explicit, if yeBH, (4, #) and if peBH_ (8, %), then gjc
BH;, (4, ¥). We have the following proposition.

Proposition Suppose yeBH (4, #) and ¢, exists, then

(1) @L(J&)Tgld is a natural isomorphism between two bijective half -func-
tors if and only if (T, G; 5, ¢):4— 4 is an adjoint equivalence;

(2) 3 (BL)ya1 ,if and only if yps=1,. .

(1): (= :): By the definition of the inverses we have 1/72(:]‘6);=G7'. So GT=
=I ;:4—~4, hence for each object Acobd holds A==GB, where B=TA. In addi
tion, G is full and faithful, from (4,IV.4, Th, 1 and IV, 1. Th, 2i)J LT, Gs n,
e>: 4 —>a is an adjoint equivalence.

(&:) Observing J;(ig)‘T:GT and the definilion of the adjoint equivalence,

—331—



the proof is clear .

(2): (=:) Since ¢‘6<J§)‘,=Grgzd , <T, Gs n,ey: 4— @ is an adjoint equiva-

lence. So TG =yf,=I, . . :
' (&) Since 1/:{5'0 TG~I and T is full and faithful, (4, IV 4 Th,1] shows
‘ that <G, T; n',¢>:8—>4 is an adjoint equivalence.So 6T = :/) (¢ =Id .

Proposition If y<BH (4, #) and S:3—>4 is full and faithful, then for every
morphism’ f:a—>a’ of 4 hold the following
WU =LY B = GDr(f)>.
It holding that (1) is an isomorphism, the proof is clear,
Finally, we know that, in general, there are many bijective half -functors
but the operations al-a~ and al»a . In fact, if ug:B—~B is an isomorphism, then
peBH (4, 8), where y: (4, A')>(TA,TA'): I—»u“,Tf.

* Let us recall what we discuss in the full text, isomorphic as T and y are,
p has some more interesting properties than T ,
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Corollary 2.5
RF,.c(n;q)” |:n+c+1—1]/ [C+l— :|
And dually .
_‘ n+r+z—1 r+j-1
RF,. (15 q) —[I[ :} [ .
Corollary 2.6 (Stanley, 1971).
-~ ‘

RF,(c0; q)= [1 <&, »"
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