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Structure of Quasi-Invariant Vector Spaces *
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Abstract: Let V be a vector space over a field F and G a group of linear transformations
in V. It is proved in this note that for any subspace U C V, if dimU/(U Ng(U)) <
1,for any g € G, then there is a ¢ € G such that U Ng(U) is a G-invariant subspace,
or there is an z € V\U such that U + (z) is a G-invariant subspace. So a vector-space
analog of Brailovsky’s results on quasi-invariant sets is given.
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The notion of set of quasistabilizers of a subset of a finite group was introduced by
Fiiredi and Kleitman in [4]. As a generalization of this notion, L. Brailovsky introduced in
[1] the notion of quasi-invariant sets as follows. A subset A C X is called quasi-invariant
if |A9\A| < 1 for any ¢ € G, where G is a group acting on X. Brailovsky characterized
the structure of quasi-invariant sets in [1]. It was shown that a quasi-invariant subset is
either an invariant subset or an invariant subset with one point added or removed (See
also [2]). In this note, we present a vector-space analog of this result. Making the analog
of this nature is motivated from the g-analogs in combinatorial properties of finite sets,
which have been extensively studied by combinatorists (See, for example, [5] and [3}).

Let V' be a vector space over a field F and G a group of linear transformations in V.
For a subspace U C V and g € G denote g(U) = {g(u) : v € U}. A subspace U C V is
said to be G-invariant (or invariant for short) if g(U) = U for any g € G. Clearly, to prove
that a subspace U is invariant it suffices to show that g(U) C U for any g € G.

Definition A subspace U of V is said to be quasi-invariant if

diniU/(Uﬁ g(U)) <1 forany g€ G, Y

*Received date: 1997-07-04
Foundation item: Supported by the National Natural Science Foundations of China (19771014) and
Liaoning Province (972208)
Biography: FENG Hong (1960- ), female, born in Dalian city, Liaoning province. Ph.D, currently an
associate professor Dalian University of Technology.

— 197 —



or equivalently
dimg(U)/(UnNg(U)) <1 forany g €G. (2)

Theorem If a subspace U C V is quasi-invariant, one of the following cases holds:
(i) there is a g € G such that U N g(U) is invariant;
(ii) there is an ¢ € V\U such that U + (z) is invariant.

Proof Put H = {g € G : g(U) C U}. Suppose that U is not invariant, which means
H # G. Then for any g; in G\ H, there is an a; € U such that g;(a;) = z; ¢ U. Write
U; = UnN g7} (U). By (1) and (2) we have that

U=U; + (ai) (3)

and
gi(U) = gi(U:) + (z:), (4)

where (T') denotes the subspace generated by T'. In the following proof we shall use the
above notations for 1 = 1,2,....

There are two main cases to be considered in Sections 1 and 2.

1. Assume that there is a g3 € G\ H such that a; € g1(U), i.e., a1 = g1(a}) for some
ay€U.

The proof for this case will be divided into three steps.

1.1. We prove

91(U + (z1)) = U + (z1). (5)

Since both z; = g?(a}) and g1(z1) = g?(a1) are vectors in g?(U) and z; ¢ U as well,
it follows from (2) that z; + U N g3(U) is a basis of the quotient space g?(U)/U n g3(U),
and g;(z;) + U N g#(U) can be linearly represented by =, + U N g?(U). This means that
91(z1) € U + (21), and ¢1(U + (1)) C U + (z1). ,

On the other hand, since g;(z1) € U + (2;), there are u; € U and k; € F such that
91(z1) = w3 + k123 which is not in g;(U). From this and 2; = g1(a;) € ¢1(U) it follows
that U = UNg1(U) + (w1) € 01(U) + (91(21)) = 91(U + (21). So U + (1) C g1 (U + (21)).
Combining the above gives (5).

1.2. For any g, € G\ H with g5 # g; we show that

U+ (z1) = U + (22). (6)

There are two subcases to be considered.

1.2.1. Suppose that ay € g,(U), i.e., a; = g2(a}) for some a} € U.

Clearly, (af) # (a2) since gs(a]) = a1 € U and ga(az) = 3 € U. Set g1g2 = g3. Since
93(aj) = g1(a1) = 21 ¢ U, (2) implies that z; + U N g3(U) is a basis of g3(U)/U N gs(U).
Hence g1(22) = g3(az2) € U + (21) = g1(U + (1)) (from (5)), yielding z2 € U + (z;).

1.2.2. Suppose that a; ¢ g2(U). Then a; 4+ U N g2(U) is a basis of U/U N g3(U).
So u; + U N g2(U) can be linearly represented by a; + U N g3(U), which means that
u1 + Aay = g2(ay) for some A € F and a} € U (recall that g1(z1) = uy + kiz1). Write
9792 = g4. Then we have ga(ah) = 21 + kyay + Aaj ¢ U (recall g7 (a;) = @} € U). Thus
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9a(U) = U N ga(U) + (ga(ay)) C U + (ga(ay)) = U + (21). On the other hand, we have
91 '(22) = ga(az) € 94(U) C U + (1), hence 25 € g1(U + (z1)) = U + (21) (by (5)).

It has been shown that z; € U + (1) both in subcases. Since z, ¢ U, it follows that
z7 € U + (z2), which means that (6) holds.

1.3. We prove that U + () is invariant.

We have proved up to now that U + (z1) = U + («;) for any ¢; € G\ H, thus

gi(U) = (U g7 (U) + (a:)) C U + (2:) = U + (21),

and
9i(21) = gig1(a1) € g:g1(U) C U + (z1).
S0 ¢:(U + (21)) C U + (z1) for any g; € G\ H. On the other hand, for any ¢ € H, we have

9(z1) = 9g1(a1) € gq1(U) C U + (z1).

and it is clear that g(U + (1)) C U + (z1). Thus we have proved that U + (z;) is invariant.
2. Assume now that a; ¢ g;(U) for any g; € G\H. This implies that

U = gi(U;) + (ai) (7)

holds for any g; € G\ H.

Let us consider two possible subcases. _

2.1. Suppose that there exists g1 € G\ H such that Uy # ¢g1(U1). From (3) and (7) we
have that there exist u; € U and u} € Uy such that g1(uq) = u] +ksay, where ky € F\{0}.
So g%(ul) = gl(u'1)+k2:c1 g U. Let by = gl(ul). Then by, € U, b, € g1(U) and gl(bl) ¢ U.
Note that we have proved in Section 1 that U + (g1(41)) is invariant.

2.2. Suppose that g;(U;) = U; holds for any g; € G\ H. Then two subcases will still be
distinguished.

2.2.1. Assume that U; = U; for any g; € G\H. Then ¢;(U1) = ¢:(U;) C U = Uy + (a1).

For any u € U; and g € G, set g(u) = u’' + ksza;, where v’ € U;. Then g1g(u) =
g1(u') + kszy € U, which yields k3 = 0 (recall that g;(u') € U and z; ¢ U). This means
g(U1) C Uy. Hence U; = U N g7} (U) is invariant. o

2.2.2. Assume that there is a g € G\ H such that U; # U,. Then

U=U+U; = g:1(U1) + g2(Us).

Let a; = ¢y + ¢y where ¢; € g;(U;) = U; C U, (i = 1,2). Then g1(a1) = g1(c1) + g1(c2) € U,
which implies that g1(c1) € U or g1(¢c2) ¢ U.

If g1(c1) ¢ U, then we have ¢; € U, ¢1 € ¢1(U) but g1(c1) ¢ U. From Section 1 we
have that U + (g1(c1)) is invariant.

Now we suppose g1(c1) € U but gi(c3) ¢ U. If c5 € ¢g1(U), then the situation is the
same as that in the above. So we can suppose that ¢z ¢ g1(U). Thus we have

U="Ui+(a1) = Us + (c2).
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Let c; € U such that c; = g3(c}). Then gy(c;) + U N 9192(U) = g192(ch) + U N g192(U) is
a basis of g192(U)/U N g192(U) since g1(c2) ¢ U. By our argument,

91(z2) = g192(az) € U + (91(c2)) S U+ 91(U) = ¢2(U) + (c2). v

Since g1(z2) ¢ 91(U), we have ¢, € 91(U) + (g1(22)). To sum up, we have got c2 € 1(U)+
(91(22)) from ¢c; € U N g3(U), g1(ca) € U and ¢, ¢ g1(U). However, the above condition
is equivalent to that ¢z € U N gy(U), g7 (c2) ¢ U and ¢, ¢ 91 (U), so we have that
¢2 € 97 (U) + (97 (2)). Hence g1(cz) € U + (22) and 21 = g1(a1) € g1(U1) + (g1(c2)) C
U + (22). So U+ <231> =U + (1!2).

Now we have indeed proved that U + (z;) = U + (zj) holds whenever U; # U;. Since
U, # Us, we have that U; # U; or U; # Us for any U;. So U + (z;) = U + (z1). From
Section 1.3 it follows that U + (z;) is invariant. '

The proof is complete.
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