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Abstract: For a commutative ring R and an injective cogenerator E in the category
of R-modules, we characterize QF rings, IF rings and semihereditary rings by using the
properties of the dual modules with respect to E.
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1. Introduction

Throughout this paper, R will denote an associate, commutative ring with identity and
all modules are unital. E always denotes a certain injective cogenerator in the category
of R-modules.

Let M be an R-module. In [4] we introduce the notion of the dual module Homg(M, E)
with respect to F, and denote it by M. It is shown that the flatness of M€ is equivalent
to the FP-injectivity or the injectivity of M if and only if R is a coherent ring or a noether
ring respectively. The FP-injectivity, the injectivity of M and the projectivity of M€ are
pairwisely equivalent if and only if R is an artin ring (see [4]).

Recall that R is called a QF ring if R is an artin ring and for each ideal I of R,
I =0:g(0:g I)(see [5]). Such rings have been extensively studied, many properties
equivalent to this definition have been obtained. For example, the following statements
are equivalent:

(1) Ris a QF ring;

(2) R is a noether ring and for each ideal T of R, I = 0:g (0 :r I);

(3) R is an artin ring (or a noether ring) and R is a cogenerator in the category of R-
modules;
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(4) R is an artin ring (or a noether ring) and R is selfinjective;

(5) Any projective R-module is injective;

(6) Any injective R-module is projective.

Also recall that R is called an IF ring if every injective R-module is flat (see [7]). It is
shown that R is an IF ring if and only if R is a coherent ring and R is self FP-injective.
It is clear that the notion of IF rings is a generalization of that of QF rings and Von
Neumann regular rings.

In this paper we will introduce the notions of E-artin rings, E-coherent rings and f-
cogenerators, and characterize QF rings, IF rings and semihereditary rings by using the
properties of dual modules.

2. Main results

Proposition 1 The following statements are equivalent.
(1) R is a QF ring;
(2) R is a noether ring and R° is flat;
(3) R is an artin ring and R€ is flat;
(4) Mc¢ is a projective module for any flat module M;
(4) Me¢ is a projective module for any projective module M ;
(4)" MF is a projective module for any free module M ;
(5) Me¢€ is a submodule of a projective module for any flat module M;
(5)) MF€ is a submodule of a projective module for any projective module M ;
(5)" M¢€ is a submodule of a projective module for any free module M.

Proof (2) & (1) Suppose that R is a noether ring and R® is flat. Then R is an FP-
injective R-module by [4, Corollary 2]. So R is selfinjective and hence R is a QF ring. The
converse implication is trivial.

(1) = (3) Suppose R is a QF ring. Then R is an artin ring and any injective R-module
is projective. Because R® & FE is injective, R is projective.

(3) = (4) Suppose M is a flat module. Then there is a free module RY) where I is
a set such that RY) — M — 0 is exact. Since M is flat, this exact sequence is pure. So
0 — Me¢ — [RU)e = (R°)! is exact and splits by [4, Lemma 1]. It follows that M® is a
direct summand of (R®)!. Since R is an artin ring and R® is flat, R® is projective. So
(RE)I is also projective, it follows that M€ is projective.

(4) = (4) = (4)" = (5)" and (4) = (5) = (5)' = (5)" are trivial.

(5)” = (1) Suppose M is an injective R-module. There is a free module F such that
F — M° — 0 is exact, so 0 — M® — F¢ is exact. By (5)” F¢ is a submodule of a
projective module P. It is known [4, Corollary 1] that M is a submodule of M*®¢, we get
that M is isomorphic to a submodule of P. So M is projective and R is a QF ring. O

We know from Proposition 1 that R is a QF ring if and only if P€ is (a submodule of)
a projective module for any projective module P. It is natural to ask what properties R
possesses if Q¢ is (a submodule of) a projective module for any injective module Q. [4,
Theorem 3] says that R is an artin ring if and only if Q¢ is projective for any injective
module Q.
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Definition 1 R is called an E-artin ring if Q¢ is a submodule of a projective module for
any injective module Q.

Remark 1 An artin ring is an E-artin ring by (4, Theorem 3]. If R is a hereditary ring,
then R is artinian if and only if R is E-artinian.

Recall that an R-module A is called FP-injective if ExtL(B, A) = 0 for any finitely
presented R-module B. A ring R is called self FP-injective if R is FP-injective as an
R-module (see [7]).

Lemma 1 Let R be an E-artin ring. Then the direct product of a family of projective
modules can be embedded in a projective module.

Proof Suppose {P;}icr is a family of projective modules where I is a set. Then each Pf
is injective. By (3, Corollary 2.1.12] @, Pf is FP-injective, which implies that the exact
sequence 0 — D;¢r Pf — [lies FF is pure, and so ([lies PF)° — (Dier F7)* = [lier £° —
0 splits. It follows that [];c; P7€ is a direct summand of ([];c; P7)¢. Because [[;c; PF is
injective and R is an E-artin ring, ([];c; PY)° is a submodule of a projective module P.
Since [];c7 P is a submodule of [];c; Pf®, [];c; Pi can be embedded in P. O

Lemma 2 The following statements are equivalent.

(1) R is an E-artin ring;

(2) MF* is a submodule of a projective module for any FP-injective module M;

(3) Hompg(B,C) is a submodule of a projective module for any injective module (or
FP-injective module) B and any injective module C;

(4) Pc¢ is a submodule of a projective module for any flat module P;

(4) Pcc is a submodule of a projective module for any projective module P;

(4)" Pe© is a submodule of a projective module for any free module P.

Proof (1) = (2) Suppose M is an FP-injective module. Then the exact sequence 0 —
M — E(M) is pure where E(M) is the injective envelope of M. It follows from [4, Lemma
1] that M€ is a direct summand of [E(M)]°. We know from (1) and Definition 1 that M*
is a submodule of a projective module. )

(2) = (3) Suppose B is an FP-injective module and C is an injective module. Since
E is an injective cogenerator in the category of R-modules, C is a direct summand of Ef
for some set I. So Hompg(B,C) is a direct summand of Homg(B, ET) = (B°)!. Since B®
is a submodule of a projective module P; by (2), (B¢)! is a submodule of P{. It is known
from Lemma 1 that P{ can be embedded in some projective module, and we are done.

(3) = (4) If P is a flat module, then P¢ is injective. By (3) P*© is a submodule of a
projective module.

(4) = (4)' = (4)" are trivial.

(4)” = (1) For any injective module @, Q is a direct summand of E? for some set I,
so Q° is a direct summand of (E?)® = [R()]*e. By (4)” Q¢ is a submodule of a projective
module, it follows that R is an E-artin ring. O

Remark 2 Suppose both E and E’ are injective cogenerators in the category of R-
modules. By Lemma 2, R is an E-artin ring if and only if R is an E’- artin ring.
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Definition 2 An R-module C is called an f-cogenerator in the category of R-modules if
C cogenerates every finitely presented R-module.

Lemma 3 Let C be an f-cogenerator in the category of R-modules. Then
0:r(0:cl)=1

for any finitely generated ideal I of R.

Proof It is clear that I C 0:g (0 :c I). We only need to prove that
0:r(0:cI)C I

Let s € R—1I. Since C is an f-cogenerator and R/I is finitely presented, C cogenerates
R/I. Then we have a nonzero homomorphism h : R/I — C such that h(s + I) # 0.
Suppose that g : R — R/I is the natural epimorphism. Then

0 = hg(I) = hg(1)I.

So hg(1) € 0:¢c I. But
hg(1)s = hg(s) = h(s +I) # 0.

It follows that s ¢ 0 :g (0 :c I). So
0:r(0:cI)C I a
For any R-modules M and N, recall from (1, p. 109] that
Rejp(N) = [ {Kerf | f € Homg(M, N)}.

Lemma 4 Let R be a coherent ring. Then R is an f-cogenerator in the category of
R-modules if and only if R is self FP-injective.

Proof (=) Suppose that both I; and I, are finitely generated ideals of R. Since R is
a coherent ring, it follows from [3, Theorem 2.3.2] that J; NIz, 0 :p I and 0 :p I; are
finitely generated ideals of R. Then from Lemma 3 we get that

0 ‘R (0 ‘R (Il n Iz)) = I1 n Iz = [0 ‘R (0 ‘R Il)] N [O ‘R (0 ‘R Iz)]
=0:r(0:r 11 +0:5 I2).

So

0:r(LiNI;)=0:r[0:r (0:r (hn))=0:r[0:g(0:r I + 0:p I})]
=02RI1+OZRI2.

By [5, Theorem 1] R is self FP-injective.

(<) Let M be a finitely presented R-module and let 0 # z € M. We claim that
there is a nonzero homomorphism h : Rz — R with h(z) # 0. Otherwise, suppose
(Rz)* =Hompg(Rz,R) = 0. Since Rz is finitely presented, there is an exact sequence
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F, - Fy - Rz — 0 with Fy and F; finitely generated free modules. Then 0 — Fg —
Fy — A — 0 is exact where A =Coker(Fg — Fy). Consider the following commutative
diagram with exact rows.

R — F —_— Rz —s 0

log log le
Fl‘“ —_— Fo** — Ezt}%(A,R) — 0

where oF,, oF, are the canonical evaluation homomorphisms, ¢ is an induced homomor-
phism. It is known that o, oF, are isomorphisms, so ¢ is also an isomorphism and hence
ExtL(A,R) & Rz # 0, which contradicts that R is self FP-injective since A is finitely
presented.

Since Rz and M are finitely presented, a nonzero homomorphism h : Rz — R can be
extended to a homomorphism k : M — R with k(z) = h(z) # 0. Thus Rejp(R) = 0, and
R cogenerates M by [1, Corollary 8.13]. The proof is finished. O

We now in a position to give the main result.

Theorem 1 The following statements are equivalent.
(1) R is a QF ring;
(2) R is an artin ring and R® is flat;
(2) R is a noether ring and R° is flat;
(3) Me is a projective module for any free (projective, flat) module M;
(3) Me¢ is a submodule of a projective module for any free (projective, flat) module
M;
(4) R is an E-artin ring and R is self FP-injective;
(5) R is an artin ring and R is an f-cogenerator in the category of R-modules;
(5) R is a noether ring and R is an f-cogenerator in the category of R-modules;
(6) R is an artin ring and some injective cogenerator is flat;
(6) R is a noether ring and some injective cogenerator is flat;
(7) R is an artin ring and E(R/m) is flat for each m € Max(R), ‘vhere Max(R) is the
maximal spectrum of R;
(7) R is a noether ring and E(R/m) is flat for each m € Max(R).

Proof (1) & (2) & (2) ¢ (3) & (3)' See Proposition 1. '

(1) & (5) & (5) follow easily from Lemma 4.

(1) = (4), (1) = (6) = (6) = (7) and (1) = (7) = (7) are trivial.

(4) = (1) Suppose that Q is an injective module. We know that Q is a submodule
of E! for some set I. Since R is self FP-injective, R()) is FP-injective. By Lemma 2 Ef
is a submodule of a projective module P because E = [RU)]e. It follows that Q is a
submodule of P. Hence Q is projective and then R is a QF ring.

(7)’ = (1) Suppose that R is a noether ring and E(R/m) is flat for each m € Max(R).
Let Ey = @neMax(r) E(R/m). Then E, is flat. It follows from (8, Theorem 9.51] that
Hompg(Exth(R/I, R), E1) 2Torf(Homg(R, E;), R/I) for any ideal I of R. Since

Tor?(Homg(R, E:), R/I) = Tor?(E;, R/I) = 0,
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Homp(ExtL(R/I, R), E;) = 0.

It is known [1, Corollary 18.16] that E; is an injective cogenerator in the category of
R-modules, so ExtL(R/I, R) = 0 and hence R is selfinjective and R is a QF ring. O

Definition 3 R is called an E-coherent ring if Q¢ is a submodule of a flat module for
any injective module Q.

Remark 3 By [4, Theorem 1], a coherent ring is an E-coherent ring. If R is a semihered-
itary ring, then R is coherent if and only if R is E-coherent.

Remark 4 We can get similar conclusions about E-coherent rings to that about E-artin
rings in Lemmas 1 and 2, which we omit.

Theorem 2 The following statements are equivalent.
(1) R is an IF ring;
(2) R is a coherent ring and R® is flat;
(3) Mc is a flat module for any free (projective, flat) module M;
(3) M¢ is a submodule of a flat module for any free (projective, flat) module M;
(4) R is an E-coherent ring and R is self FP-injective;
(5) R is a coherent ring and R is an f-cogenerator in the category of R-modules;
(6) R is a coherent ring and some injective cogenerator is flat;
(7) R is a coherent ring and E(R/m) is flat for each m € Max(R).

Proof The proof is similar to that of Theorem 1, and is omitted here. O

Theorem 3 Consider the following conditions.

(1) R is a semihereditary ring;

(2) Mc¢ is an FP-injective module for any finitely presented module M;

(3) Mc*c is a flat module for any finitely presented module M ;

(4) Mce is an FP-injective module for any finitely presented module M.

In general (1) < (2) & (3) & (4). If R is self FP-injective, then the above conditions
are equivalent.

Proof (2) = (1) Suppose K is a finitely generated submodule of a projective module.
Then K is a submodule of some finitely generated free module R™. So we have an exact
sequence 0 - K — R® — M — 0 with M finitely presented, and hence 0 — M® —
(R™)* —» K° — 0 is exact. Since M*® is FP-injective by (2), the latter exact sequence
is pure. So it splits by [4, Lemma 1]. Because (R")® = E™ is injective, M¢ is also
injective. Then M is flat by [6, Theorem 1.4]. It follows from [8, Theorem 3.57] that
0— K — R®™ - M — 0 splits. Thus K is projective and R is a semihereditary ring.

(2) = (3) If (2) holds, then R is a semihereditary ring. So R is a coherent ring. If M
is a finitely presented module, then M*® is FP-injective by (2). It follows from [4, Theorem
1] that M* is flat.

(3) = (4) It follows from [6, Theorem 1.4].

(4) = (2) Suppose M is a finitely presented module. Then M®®® is FP-injective by
(4). Since M¢ is a direct summand of M*¢ by [9, Exercise 23, p. 46], M® is FP-injective.
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Now let R be self FP-injective. We will show that (1) implies (2).

Let R be a semihereditary ring. Since R is self FP-injective, R is an IF ring. Suppose
that M is a finitely presented module. Then there is an exact sequence 0 -+ K — F —
M — 0 with K a finitely generated module and F a finitely generated projective module.
K* is flat by Theorem 2, so the exact sequence 0 —» M® — F¢ — K° — 0 is pure. It
follows that M€ is a pure submodule of the injective module F¢. So M*® is FP-injective.
This completes the proof of this theorem. O
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