On the Flatness and Injectivity of Dual Modules (II) *

HUANG Zhao-yong¹, TANG Jin-yu²

- (1. Dept. of Math., Nanjing University, Jiangsu 210093, China;
- 2. Dept. of Math. & Info. Sci., Guangxi University, Nanning 530004, China)

Abstract: For a commutative ring R and an injective cogenerator E in the category of R-modules, we characterize QF rings, IF rings and semihereditary rings by using the properties of the dual modules with respect to E.

Key words: QF rings; flatness; injectivity; dual modules.

Classification: AMS(1991) 13D05,16E10/CLC O153.3

Document code: A Article ID: 1000-341X(2001)03-0377-07

1. Introduction

Throughout this paper, R will denote an associate, commutative ring with identity and all modules are unital. E always denotes a certain injective cogenerator in the category of R-modules.

Let M be an R-module. In [4] we introduce the notion of the dual module $\operatorname{Hom}_R(M, E)$ with respect to E, and denote it by M^e . It is shown that the flatness of M^e is equivalent to the FP-injectivity or the injectivity of M if and only if R is a coherent ring or a noether ring respectively. The FP-injectivity, the injectivity of M and the projectivity of M^e are pairwisely equivalent if and only if R is an artin ring (see [4]).

Recall that R is called a QF ring if R is an artin ring and for each ideal I of R, $I = 0 :_R (0 :_R I)$ (see [5]). Such rings have been extensively studied, many properties equivalent to this definition have been obtained. For example, the following statements are equivalent:

- (1) R is a QF ring;
- (2) R is a noether ring and for each ideal I of R, $I = 0 :_R (0 :_R I)$;
- (3) R is an artin ring (or a noether ring) and R is a cogenerator in the category of R-modules;

Foundation item: Supported by National Natural Science Foundation of China (10001017) and Scientific Research Foundation for Returned Overseas Chinese Scholars (State Education Commission)

Biography: HUANG Zhao-yong (1968-), male, born in Daye county, Hubei province, Ph.D, associate professor.

E-mail: huangzy@netra.nju.edu.cn

^{*}Received date: 1998-10-26

- (4) R is an artin ring (or a noether ring) and R is selfinjective;
- (5) Any projective R-module is injective;
- (6) Any injective R-module is projective.

Also recall that R is called an IF ring if every injective R-module is flat (see [7]). It is shown that R is an IF ring if and only if R is a coherent ring and R is self FP-injective. It is clear that the notion of IF rings is a generalization of that of QF rings and Von Neumann regular rings.

In this paper we will introduce the notions of E-artin rings, E-coherent rings and f-cogenerators, and characterize QF rings, IF rings and semihereditary rings by using the properties of dual modules.

2. Main results

Proposition 1 The following statements are equivalent.

- (1) R is a QF ring;
- (2) R is a noether ring and R^e is flat;
- (3) R is an artin ring and R^e is flat;
- (4) M^e is a projective module for any flat module M;
- (4)' M^e is a projective module for any projective module M;
- (4)" M^e is a projective module for any free module M;
- (5) M^e is a submodule of a projective module for any flat module M;
- (5)' M^e is a submodule of a projective module for any projective module M;
- (5)" M^e is a submodule of a projective module for any free module M.
- **Proof** (2) \Leftrightarrow (1) Suppose that R is a noether ring and R^e is flat. Then R is an FP-injective R-module by [4, Corollary 2]. So R is selfinjective and hence R is a QF ring. The converse implication is trivial.
- $(1) \Rightarrow (3)$ Suppose R is a QF ring. Then R is an artin ring and any injective R-module is projective. Because $R^e \cong E$ is injective, R^e is projective.
- $(3) \Rightarrow (4)$ Suppose M is a flat module. Then there is a free module $R^{(I)}$ where I is a set such that $R^{(I)} \to M \to 0$ is exact. Since M is flat, this exact sequence is pure. So $0 \to M^e \to [R^{(I)}]^e \cong (R^e)^I$ is exact and splits by [4, Lemma 1]. It follows that M^e is a direct summand of $(R^e)^I$. Since R is an artin ring and R^e is flat, R^e is projective. So $(R^e)^I$ is also projective, it follows that M^e is projective.
 - $(4) \Rightarrow (4)' \Rightarrow (4)'' \Rightarrow (5)''$ and $(4) \Rightarrow (5) \Rightarrow (5)' \Rightarrow (5)''$ are trivial.
- $(5)'' \Rightarrow (1)$ Suppose M is an injective R-module. There is a free module F such that $F \to M^e \to 0$ is exact, so $0 \to M^{ee} \to F^e$ is exact. By $(5)'' F^e$ is a submodule of a projective module P. It is known [4, Corollary 1] that M is a submodule of M^{ee} , we get that M is isomorphic to a submodule of P. So M is projective and R is a QF ring. \square

We know from Proposition 1 that R is a QF ring if and only if P^e is (a submodule of) a projective module for any projective module P. It is natural to ask what properties R possesses if Q^e is (a submodule of) a projective module for any injective module Q. [4, Theorem 3] says that R is an artin ring if and only if Q^e is projective for any injective module Q.

Definition 1 R is called an E-artin ring if Q^e is a submodule of a projective module for any injective module Q.

Remark 1 An artin ring is an E-artin ring by [4, Theorem 3]. If R is a hereditary ring, then R is artinian if and only if R is E-artinian.

Recall that an R-module A is called FP-injective if $\operatorname{Ext}_R^1(B,A)=0$ for any finitely presented R-module B. A ring R is called self FP-injective if R is FP-injective as an R-module (see [7]).

Lemma 1 Let R be an E-artin ring. Then the direct product of a family of projective modules can be embedded in a projective module.

Proof Suppose $\{P_i\}_{i\in I}$ is a family of projective modules where I is a set. Then each P_i^e is injective. By [3, Corollary 2.1.12] $\bigoplus_{i\in I} P_i^e$ is FP-injective, which implies that the exact sequence $0 \to \bigoplus_{i\in I} P_i^e \to \prod_{i\in I} P_i^e$ is pure, and so $(\prod_{i\in I} P_i^e)^e \to (\bigoplus_{i\in I} P_i^e)^e \cong \prod_{i\in I} P_i^{ee} \to 0$ splits. It follows that $\prod_{i\in I} P_i^{ee}$ is a direct summand of $(\prod_{i\in I} P_i^e)^e$. Because $\prod_{i\in I} P_i^e$ is injective and R is an E-artin ring, $(\prod_{i\in I} P_i^e)^e$ is a submodule of a projective module P. Since $\prod_{i\in I} P_i$ is a submodule of $\prod_{i\in I} P_i^{ee}$, $\prod_{i\in I} P_i^e$ can be embedded in P. \square

Lemma 2 The following statements are equivalent.

- (1) R is an E-artin ring;
- (2) Me is a submodule of a projective module for any FP-injective module M;
- (3) $\operatorname{Hom}_R(B,C)$ is a submodule of a projective module for any injective module (or FP-injective module) B and any injective module C;
 - (4) Pee is a submodule of a projective module for any flat module P;
 - (4)' P^{ee} is a submodule of a projective module for any projective module P;
 - (4)" Pee is a submodule of a projective module for any free module P.
- **Proof** (1) \Rightarrow (2) Suppose M is an FP-injective module. Then the exact sequence $0 \to M \to E(M)$ is pure where E(M) is the injective envelope of M. It follows from [4, Lemma 1] that M^e is a direct summand of $[E(M)]^e$. We know from (1) and Definition 1 that M^e is a submodule of a projective module.
- $(2) \Rightarrow (3)$ Suppose B is an FP-injective module and C is an injective module. Since E is an injective cogenerator in the category of R-modules, C is a direct summand of E^I for some set I. So $\operatorname{Hom}_R(B,C)$ is a direct summand of $\operatorname{Hom}_R(B,E^I) \cong (B^e)^I$. Since B^e is a submodule of a projective module P_1 by (2), $(B^e)^I$ is a submodule of P_1^I . It is known from Lemma 1 that P_1^I can be embedded in some projective module, and we are done.
- (3) \Rightarrow (4) If P is a flat module, then P^e is injective. By (3) P^{ee} is a submodule of a projective module.
 - $(4) \Rightarrow (4)' \Rightarrow (4)''$ are trivial.
- $(4)'' \Rightarrow (1)$ For any injective module Q, Q is a direct summand of E^I for some set I, so Q^e is a direct summand of $(E^I)^e \cong [R^{(I)}]^{ee}$. By $(4)'' Q^e$ is a submodule of a projective module, it follows that R is an E-artin ring. \square
- Remark 2 Suppose both E and E' are injective cogenerators in the category of R-modules. By Lemma 2, R is an E-artin ring if and only if R is an E'- artin ring.

Definition 2 An R-module C is called an f-cogenerator in the category of R-modules if C cogenerates every finitely presented R-module.

Lemma 3 Let C be an f-cogenerator in the category of R-modules. Then

$$0:_R (0:_C I) = I$$

for any finitely generated ideal I of R.

Proof It is clear that $I \subseteq 0 :_R (0 :_C I)$. We only need to prove that

$$0:_{R}(0:_{C}I)\subseteq I.$$

Let $s \in R-I$. Since C is an f-cogenerator and R/I is finitely presented, C cogenerates R/I. Then we have a nonzero homomorphism $h: R/I \to C$ such that $h(s+I) \neq 0$. Suppose that $g: R \to R/I$ is the natural epimorphism. Then

$$0 = hg(I) = hg(1)I.$$

So $hg(1) \in 0 :_C I$. But

$$hg(1)s = hg(s) = h(s+I) \neq 0.$$

It follows that $s \notin 0 :_R (0 :_C I)$. So

$$0:_R(0:_CI)\subseteq I.$$

For any R-modules M and N, recall from [1, p. 109] that

$$\operatorname{Rej}_{M}(N) = \bigcap \{ \operatorname{Ker} f \mid f \in \operatorname{Hom}_{R}(M, N) \}.$$

Lemma 4 Let R be a coherent ring. Then R is an f-cogenerator in the category of R-modules if and only if R is self FP-injective.

Proof (\Rightarrow) Suppose that both I_1 and I_2 are finitely generated ideals of R. Since R is a coherent ring, it follows from [3, Theorem 2.3.2] that $I_1 \cap I_2$, $0:_R I_1$ and $0:_R I_2$ are finitely generated ideals of R. Then from Lemma 3 we get that

$$0:_{R} (0:_{R} (I_{1} \cap I_{2})) = I_{1} \cap I_{2} = [0:_{R} (0:_{R} I_{1})] \cap [0:_{R} (0:_{R} I_{2})]$$
$$= 0:_{R} (0:_{R} I_{1} + 0:_{R} I_{2}).$$

So

$$0:_{R}(I_{1}\cap I_{2})=0:_{R}[0:_{R}(0:_{R}(I_{1}\cap I_{2}))]=0:_{R}[0:_{R}(0:_{R}I_{1}+0:_{R}I_{2})]$$
$$=0:_{R}I_{1}+0:_{R}I_{2}.$$

By [5, Theorem 1] R is self FP-injective.

(\Leftarrow) Let M be a finitely presented R-module and let $0 \neq x \in M$. We claim that there is a nonzero homomorphism $h: Rx \to R$ with $h(x) \neq 0$. Otherwise, suppose $(Rx)^* = \operatorname{Hom}_R(Rx, R) = 0$. Since Rx is finitely presented, there is an exact sequence

 $F_1 \to F_0 \to Rx \to 0$ with F_0 and F_1 finitely generated free modules. Then $0 \to F_0^* \to F_1^* \to A \to 0$ is exact where $A = \operatorname{Coker}(F_0^* \to F_1^*)$. Consider the following commutative diagram with exact rows.

where σ_{F_0} , σ_{F_1} are the canonical evaluation homomorphisms, φ is an induced homomorphism. It is known that σ_{F_0} , σ_{F_1} are isomorphisms, so φ is also an isomorphism and hence $\operatorname{Ext}^1_R(A,R) \cong Rx \neq 0$, which contradicts that R is self FP-injective since A is finitely presented.

Since Rx and M are finitely presented, a nonzero homomorphism $h: Rx \to R$ can be extended to a homomorphism $\bar{h}: M \to R$ with $\bar{h}(x) = h(x) \neq 0$. Thus $\text{Rej}_M(R) = 0$, and R cogenerates M by [1, Corollary 8.13]. The proof is finished. \square

We now in a position to give the main result.

Theorem 1 The following statements are equivalent.

- (1) R is a QF ring;
- (2) R is an artin ring and Re is flat;
- (2)' R is a noether ring and R^e is flat;
- (3) M^e is a projective module for any free (projective, flat) module M;
- (3)' M^e is a submodule of a projective module for any free (projective, flat) module M;
 - (4) R is an E-artin ring and R is self FP-injective;
 - (5) R is an artin ring and R is an f-cogenerator in the category of R-modules;
 - (5)' R is a noether ring and R is an f-cogenerator in the category of R-modules;
 - (6) R is an artin ring and some injective cogenerator is flat;
 - (6) R is a noether ring and some injective cogenerator is flat;
- (7) R is an artin ring and E(R/m) is flat for each $m \in Max(R)$, where Max(R) is the maximal spectrum of R;
 - (7) R is a noether ring and E(R/m) is flat for each $m \in Max(R)$.

Proof (1) \Leftrightarrow (2) \Leftrightarrow (2)' \Leftrightarrow (3) \Leftrightarrow (3)' See Proposition 1.

- $(1) \Leftrightarrow (5) \Leftrightarrow (5)'$ follow easily from Lemma 4.
- $(1) \Rightarrow (4), (1) \Rightarrow (6) \Rightarrow (6)' \Rightarrow (7)' \text{ and } (1) \Rightarrow (7) \Rightarrow (7)' \text{ are trivial.}$
- $(4) \Rightarrow (1)$ Suppose that Q is an injective module. We know that Q is a submodule of E^I for some set I. Since R is self FP-injective, $R^{(I)}$ is FP-injective. By Lemma 2 E^I is a submodule of a projective module P because $E^I \cong [R^{(I)}]^e$. It follows that Q is a submodule of P. Hence Q is projective and then R is a QF ring.
- $(7)' \Rightarrow (1)$ Suppose that R is a noether ring and E(R/m) is flat for each $m \in \operatorname{Max}(R)$. Let $E_1 = \bigoplus_{m \in \operatorname{Max}(R)} E(R/m)$. Then E_1 is flat. It follows from [8, Theorem 9.51] that $\operatorname{Hom}_R(\operatorname{Ext}^1_R(R/I,R),E_1) \cong \operatorname{Tor}^1_1(\operatorname{Hom}_R(R,E_1),R/I)$ for any ideal I of R. Since

$$\operatorname{Tor}_{1}^{R}(\operatorname{Hom}_{R}(R, E_{1}), R/I) \cong \operatorname{Tor}_{1}^{R}(E_{1}, R/I) = 0,$$

$\operatorname{Hom}_R(\operatorname{Ext}^1_R(R/I,R),E_1)=0.$

It is known [1, Corollary 18.16] that E_1 is an injective cogenerator in the category of R-modules, so $\operatorname{Ext}^1_R(R/I,R)=0$ and hence R is selfinjective and R is a QF ring. \square

Definition 3 R is called an E-coherent ring if Q^e is a submodule of a flat module for any injective module Q.

Remark 3 By [4, Theorem 1], a coherent ring is an E-coherent ring. If R is a semihereditary ring, then R is coherent if and only if R is E-coherent.

Remark 4 We can get similar conclusions about E-coherent rings to that about E-artin rings in Lemmas 1 and 2, which we omit.

Theorem 2 The following statements are equivalent.

- (1) R is an IF ring;
- (2) R is a coherent ring and R^e is flat;
- (3) Me is a flat module for any free (projective, flat) module M;
- (3) Me is a submodule of a flat module for any free (projective, flat) module M;
- (4) R is an E-coherent ring and R is self FP-injective;
- (5) R is a coherent ring and R is an f-cogenerator in the category of R-modules;
- (6) R is a coherent ring and some injective cogenerator is flat;
- (7) R is a coherent ring and E(R/m) is flat for each $m \in Max(R)$.

Proof The proof is similar to that of Theorem 1, and is omitted here. \Box

Theorem 3 Consider the following conditions.

- (1) R is a semihereditary ring;
- (2) Me is an FP-injective module for any finitely presented module M;
- (3) Mee is a flat module for any finitely presented module M;
- (4) Meee is an FP-injective module for any finitely presented module M.

In general (1) \Leftarrow (2) \Leftrightarrow (3) \Leftrightarrow (4). If R is self FP-injective, then the above conditions are equivalent.

- **Proof** (2) \Rightarrow (1) Suppose K is a finitely generated submodule of a projective module. Then K is a submodule of some finitely generated free module R^n . So we have an exact sequence $0 \to K \to R^n \to M \to 0$ with M finitely presented, and hence $0 \to M^e \to (R^n)^e \to K^e \to 0$ is exact. Since M^e is FP-injective by (2), the latter exact sequence is pure. So it splits by [4, Lemma 1]. Because $(R^n)^e \cong E^n$ is injective, M^e is also injective. Then M is flat by [6, Theorem 1.4]. It follows from [8, Theorem 3.57] that $0 \to K \to R^n \to M \to 0$ splits. Thus K is projective and R is a semihereditary ring.
- $(2) \Rightarrow (3)$ If (2) holds, then R is a semihereditary ring. So R is a coherent ring. If M is a finitely presented module, then M^e is FP-injective by (2). It follows from [4, Theorem 1] that M^{ee} is flat.
 - $(3) \Rightarrow (4)$ It follows from [6, Theorem 1.4].
- (4) \Rightarrow (2) Suppose M is a finitely presented module. Then M^{eee} is FP-injective by (4). Since M^e is a direct summand of M^{eee} by [9, Exercise 23, p. 46], M^e is FP-injective.

Now let R be self FP-injective. We will show that (1) implies (2).

Let R be a semihereditary ring. Since R is self FP-injective, R is an IF ring. Suppose that M is a finitely presented module. Then there is an exact sequence $0 \to K \to F \to M \to 0$ with K a finitely generated module and F a finitely generated projective module. K^e is flat by Theorem 2, so the exact sequence $0 \to M^e \to F^e \to K^e \to 0$ is pure. It follows that M^e is a pure submodule of the injective module F^e . So M^e is FP-injective. This completes the proof of this theorem. \square

References:

- [1] ANDERSON F W, FULLER K R. Rings and Categories of Modules [M]. 2nd ed, Graduate Texts in Mathematics, Vol. 13, Springer-Verlag, 1992.
- [2] CARTAN H, EILENBERG S. Homological Algebra [M]. Princeton University Press, 1956.
- [3] GLAZ S. Commutative Coherent Rings [M]. Lecture Notes in Mathematics, Vol. 1371, Springer-Verlag, 1989.
- [4] HUANG Z Y. On the flatness and injectivity of dual modules [J]. Southeast Asian Bull. of Math., 1997, 21: 257-262.
- [5] IDEDA M, NAKAYAMA T. On some characteristic properties [J]. Proc. Amer. Math. Soc., 1954, 5: 15-19.
- [6] ISHIKAWA T. On injective and flat modules [J]. Jour. Math. Soc. Japan, 1965, 17: 291-296.
- [7] JAIN S. Flat and FP-injectivity [J], Proc. Amer. Math. Soc., 1973, 41: 437-442.
- [8] ROTMAN J J. An Introduction to Homological Algebra [M]. Academic Press, New York, 1979.
- [9] STENTRÖM B. Rings of Quotients [M], Spinger-Verlag, Springer, 1975.

关于对偶模的平坦性和内射性 (II)

黄兆泳1、唐金玉2

(1. 南京大学数学系, 江苏 南京 210093; 2. 广西大学数学与信息科学系, 广西 南宁 530004)

摘 要: 对交换环 R 和 R- 模范畴上的一个内射余生成元 E ,我们用相对于 E 的对偶模的性质刻画了 QF 环, IF 环和半遗传环.