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Abstract: It is known (for ~exa,mple, see [4]) that the maximum genus of a graph is
mainly determined by the Betti deficiency of the graph. In this paper, we establish a
best upper bound on the Betti deficiency of a graph bounded by its independence number
and girth, and thus immediately obtain a new result on the maximnum genus.
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1. Introduction

We consider only finite, simple, connected graphs. For terminology and notation not
defined here, we refer to [1].

Let G = (E,V) be a graph. The maximum genus, denoted by 7as(G), of a graph G is
the maximum integer number k with the property that there exists a cellular embedding
of G on the orientable surface (a compact and connected 2-manifold without boundary)
of genus k. .

Since any cellular embedding of G must have at least one face, the Euler polyhedral
equation implies an upper bound on the maximum genus

[E(G) - 1IV(G) + L
; .

ru(G) <

The mumber |[E(G)|~|V(G)|+1 is known as the Betti number (or cycle rank) of the graph

. . . G
G, and is denoted by B(G). A graph G is said to be upper embeddable if rm(G) = [ﬁ——(2 )]
exactly.

For details concerning the maximum genus of graphs, the read may refer to (3] or
Chapter 12 of [2].
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The maximum genus (also, upper embeddability) of graphs has received considerable
attention after Nordhaus, Stewar and Whitel®! defined it. One of the most interesting
question is the relationship between maximum genus and other graph invariants, or to
study the lower bound on the maximum genus of variety of classes of graphs. It sees
that to show that a graph is upper embeddable is equivalent to deriving a lower bound
rm(G) = [ﬂgﬂ] for the maximum genus. Many papers, such as [4-8], have shown various
classes of graphs that are upper embeddable. M.Skovierall® has given the lower bound
of the maximum genus of a graph with diameter two. R.Nedeal and M.Skovieral!l] have
proved that a graph without loops is upper embeddable if it can be cellularly embedded on
some surface with the size of each face not exceeding five. In particular, combining with
some known results, recently Chen, et al., in [12] have respectively given the best lower
bound on the maximum genus of a k-vertex connected (also, k-edge-connected) simple
graph with minimum degree at least three, for k = 1,2,3, and k > 4.

The number of vertices in a maximum independent set of a graph G is called the
independece number of G, denoted by a(G). The girth, usually denoted by g(G), of G is
the length of shortest cycle in G. If G has no cycles, define g(G) =

Just stated as before, the maximum genus 7p7(G) of a graph is mainly determined by
its Betti deficiency £(G) (we will give its definition in the next section). In this paper, our
main results are the following two theorems.

Theorem 1 Let G be a graph. Then {(G) < g__i_)_z(‘é)a_l.

Theorem 2 Let G be a graph. Then rp(G) > —EL"L"- where m = %)Q)T

In the last section, we show the bounds in the two theorems above are best possible.
2. Two previous results on rp(G)

In the study of the maximum genus, we shall mention two basic and useful results. In
order to restate them, we first explain some notations.

Let G be a graph and let T be a spanning tree of G. We let {(G,T) denote the
mumber of components of G\ E(T') with odd size, i.e. 0odd number of edges (for any subset
X C E(G),G\X denotes the graph obtained from G by removing all edges in X), and call
£(G) = ming £(G,T) the Betti deficiency of G, where T is taken over all spanning trees
of G. Again, for any subset A C E(G), denote by ¢(G\A) the number of components of
G\ A, and by b(G\ A) the number of components of G\ A with odd Betti number.

Xuong['ﬂ has first formulated the maximum genus, and also presented a necessary and
sufficient condition on the upper embeddability of a graph as follows:

Theorem A Let G be a graph. Then

(1) ru(G) = J_M_l

(2) G is upper embeddable if and only if {(G) < 1.

Clearly, Theorem A(1) makes clear that the maximum genus rps(G) is mainly deter-
mined by the invariant £(G), on which, afterwards, [9] gave another complete combinatorial
characterization, i.e., the following theorem.

Theorem B Let G be a graph. Then £(G) = max,cg(g){c(G\A4) + b(G\A) ~ |A| - 1}.
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3. Lemmas and the proofs of the theorems
Lemma 1 Let G be a graph with a cut-edge e, and let G; and G be two components of
G\e. Then £(G) = £(Gh) + £(Ga).

Proof By the definition of {(G), there exists a spanning tree T of G so that £(G) =
&(G,T). Assume that T and T, are two components of T\e, where Ty and T, may be
viewed as two spanning trees of Gy and G, respectively. We then observe that a compo-
nent in G\E(T) is with odd size if and only if it is so in either G\ E(T}) or G2\ E(T3).
This thus implies the following:

E(G1) + £(G2) < E(G1,Th) + €(G2, T2) = €(G,T) = £(G).

Conversely, let 77 and T, be respectively two spanning trees of G; and G,. Then
T =Ty U T, U e is a spanning tree of G. By the same reason as above, we have

€(G) <&(G,T) = &(G1,T1) + £(G2, T2) = £(G1) + €(G2).
Thereby, the proof is complete. O

Lemma 2 Let G be a graph with {(G) > 2. Then there exists an edge e € E(G) such
that

(1) either {(G) < €(G\e) — 1, where G\e is connected; or
(2) &(G) = &(G') + &(F) with the property that £(F) < 1, where G’ and F are the
two components of G\e.

Proof By Theorem B, there exists a subset A C E(G) such that
£(G) = c(G\A) + b(G\A) — | 4| - L. ()

Then we first note that ¢(G\A) > 2. Otherwise, if it is not the case, since obviously
b(G\A) < ¢(G\A), it easily follows from () that £(G) < 1, contradicting the assumptation
£(G) > 2. And, we also get that A # 0, since G is connected and ¢(G\4) > 2.

We now deal with the following two cases:

Case 1. There exists an edge e € A such that G\e is connected. In this case, set
A" = A\{e} C E(G\e). We then see that all the components of (G\e)\A’ are identical
with those of G\ A. Hence, combining Theorem B and (x), we have

£(G\e) 2 c((G\e)\A) +b((G\e)\A') — [4] - 1
= ¢(G\A)+b(G\A) - |A| -1+1
= {G)+1,

which shows the conclusion (1) holds.

Case 2. For any edge e € A, G\e is disconnected. In this case, we first prove the following
two claims.

Claim 1. For any edge e € A, the two end vertices of e are in two distinct components
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of G\A.

Proof By contradiction. Assume that there exists e € A whose two end vertices, say z;
and z,, are in the same component F of G\ A. Since F is connected, there exists a path
in F from z; to z,, and thus e lies on a cycle of F (also, of G), contradicting the case that
G\e is disconnected.

Claim 2. There exists a component F of G\ A such that there is a unique edge e € A4,
connecting F with another component of G\ A.

Proof Assume to contrary that Claim 2 is invaild. Since G is connected, this implies
that for any component F of G\ A, there are at least two edges e1,es € A, connecting F
with other components of G\A. Then, we can get a cycle of G, composed of some edges
of A, and possibly some edges of components of G\ A. It thus follows that there exists a
edge e € A whose removal preserves the connectivity. A similar contradiction to Claim 1!

Now, choose e and F such ones as in Claim 2. In fact, Claim 2 says that e is a cut-edge
of G and that F is one component of G\e. Let G’ be the other component of G\e. Since
e is a cut-edge of G, by Lemma 1,

£(G) = £(G") + &(F).

Put A’ = E(G')n A. By Claim 1, E(F)N A = @, and so |A| = |[A\{e}| = |4] — 1. We
also note that all the components of G\ A, except for F, are those of G’\ A/, and thus
¢(G'\A") = ¢(G\A) — 1. On the other hand, no matter whether 8(F) is odd or not, we
have b(G'\ A’) > b(G\A) — 1. Therefore, by Theorem B,

(G ¢(G'"\A") +5(G'\A") — |A'| -1
(G\A) + b(G\A) — |[4] -1 -1

£(G) - 1.

Considering that £(G) = &(G') + £(F'), we immediately get that {(F’) < 1, which implies
the conclusion 2 holds. O

v 1V

Lemma 3 Let G be a graph and let G\e be connected for some edge e. Then
(1) 9(G) < 9(G\e); (2) a(G\e) < a(G) + L.

Proof By the definition of girth, (1) is direct. The truth of (2) is also clear from the
fact that adding an edge joining two vertices in a graph leads to the independence number
decreasing at most one.

Lemina 4 Let G be a graph but not a tree, and let ¢ be any vertex of G. Then there

exists an independence set J C V(G) such that ¢ ¢ J and 5%‘)”_—1 > 1.

Proof Since G is not a tree, there exists a cycle C with the length ¢(G) in G. Let
C = y1y2 - - - yry1, where k = g(G). By the definition of girth, any two vertices y; and y;,
but not successive on C, are nonadjacent. If z € V(C'), we may choose an independent
set J = {y1,¥3," ", ¥2i+1, " *»Yx—1} When k is even, or {y1,¥3, -, Y2i+1, -, Y} When k
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is odd. Clearly, J is what we need. If z € V(G), we may relabel the vertices on C, and it
easily sees that the conclusion holds as well. O
Now, we return to the proofs of our Theorems.

Proof of Theorem 1 The method is by induction on the number of edges of G. We first
see that if G is a tree (also, implying g(G) = o0), by the definition of £(G), then £(G) = 0,
and the conclusion is trivival. If {(G) = 1, clearly G is not a tree, and thus it is easily
verified from Lemma 4 that the conclusion is also correct.

In the following, we may assume that {(G) > 2 (necessarily G is not a tree), and
furthermore assume that the conclusion of the theorem holds for a graph with less number
of edges than that of G. We shall consider two cases according to Lemma 2.

Case 1. There exists an edge e € E(G) such that {(G) < £(G\e) — 1, where G\e is
connected. Then we have the following inequalities:

2a(G\e) . . .
£(G\e) -1 < oG\ -1 1 (by the 1nduct1ve‘ hypothesis)
< 2;.;((—%\)6%2 —1 (by Lemma 3)

20(G\2) + ¢(G) - 3
- 9(G) - 1
< 22(G) (because G is simple and g(G) > 3).

9(G) -1

2a(G)
Therefore, £(G) < 3C)=T"

Case 2. There exists an edge e € E(G) such that £(G) = £(G’) + £(F) with the property
£(F) < 1, where G’ and F are the two components of G\e. In this case, we note that
there are the following facts:

9(G) < 9(G"),9(G) < ¢(F), and a(G’) < a(G).
On the other hand, by the inductive hypothesis, we have

) < 20(G)
@) <

If §(F) = 0, it immediately follows that
2a(G") 2a(G)

' < :
9(G") ~ 9(G)-1

If {(F) = 1, obviously F is not a tree. Let z be one and vertex of e in F. According
to Lemma 4 there exits an independent set J of F such that z ¢ J and 1 < 5(—?,[%]_—1.
Furthermore, since e is a cut-edge joining G’ and F, and ¢ ¢ J, then a(G') + |J| < a(G).
Thus, we also have the following:

£(G) =¢(G") <

2a(G") 2|J| < 2a(G)
(G)-1 g(F)-17 g(G)-1

€G) = €@ +1< -
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Thereby, by the inductive hypothesis the proof is finished. O

Proof of Theorem 2 Combined Theorem A(1) and Theorem 1, it is straightforward.
Since the girth g(G) > 2 for any simply graph G, the following result is immediate.

Corollary Let G be a graph. Then {(G) < a(G) and rp(G) > w
4. The bounds in the Theorems

In the following, we shall give two facts to show that the bound in Theorem 1 is best
possible, and hence so is in Theorem 2 because of Theorem A(1).

Fact 1. The bound in Theorem 1 is achieved by any a k-cycle C' with the odd length k.
This is because £(C) = 1 and o(C) = 3(k — 1) = 1(g9(C) - 1).

We now give another fact. Let G be a star, i.e., a complete bipartitie graph K ,,,
where the vertex adjacent to all the other m vertices is called the central vertex, denoted
by v. Let v;,v2,--,v,, be the m vertices adjacent to v. We produce a new graph by
replacing each v;, for 1 < ¢ < m, with a k-cycle C; with the odd length k(> 3). Denote the
resulting graph by N;*. The following Figure depicts a graph N{* for m = 4 and k = 3.

Fact 2. For any small positive number ¢, there exists infinitly many graphs N;* such

that
a(N)

g(N&) -1

We illustrate it by the following. First, we observe that for any a spanning tree T of
N E(ND,T) = m, and thus {(N;*) = m. On the other hand, clearly g(N{*) = k, and
furthermore it easily shows that a(N[*) = £2m + 1. Therefore, we have

EN) +e>

2a(N*)  m(k-1)+2 2
dNm -1 k=1 "tE-T

Since limy_, % = 0, the truth is clear.
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