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Perturbation Analysis for the Drazin Inverses of Bounded
Linear Operators on a Banach Space *
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Abstract: Let X be a Banach space over the complex field C andlet T: X — X be a
bounded linear operator with Ind(T") = k and R(T*) closed. Denote the Drazin inverse of
T by TP. Let T = T +0T, then TP has the simple expression TP = TP (I +6TTP)! =
(I + TP6T)~1TP under certain hypotheses. The upper bound for the relative error
TP — TP||/IT>| and for the solution to the operator equation: Tz = u (u € R(T?))
is also considered.
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1. Introduction

The concept of the Drazin inverse of a bounded linear operator on a Banach space
(to be defined in Section 2) appears in Caradus!!l. Its existence, uniqueness and basic
properties were stated by QiaolZ. Then KuangP® and Cail¥ studied its characterization
and representation. Its applications in the infinite dimensional linear system were discussed
by Campell® and Caradus!l. Later Koliha and Viadimirl®7) investigated its continuity.

Recently, there are a series of papers [8,9,10] concerning the expression of the gener-
alized inverse of a perturbed linear operator on Hilbert spaces or Banach spaces. In the
case of the Dazin inverse of a sqaure matrix, it was shown in [11] that if A and B € C™*"
satisfy R(E) C R(A*), R(E*) C R(A**) and [|APE|| < 1, where k = Ind(A), then

BP = AP(I + EAP)™! = (1 + APE)™1AP. (1.1)
If , in addition, one has ||AP||||E|| < 1, then

|BP - AP _ _Kp(A)|EI/|A]
AP = T= Kp(A)EI/AT 12
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where Kp(A) = ||A]|[|AP]| is defined as the condition number with respect to the Dazin
inverse. Later Wei and Wang!!? obtain (1.1) ((1.2)) under the assumption that E =
AAPE = EAAP and |APE| < 1 ( in addition ||AP||||E|} < 1 ). We should remark that
the two sufficient conditions above are actually equivalent. Let L and M be complementary
subspaces of C™. Pp js denotes a projection of C™ onto L along M. Moreover, let T' €
C™*", then Pr T =T if and only if R(T) C L and TP p =T if and only if N(T) 2 M
(see Ben-Israel'¥l). Since AAP = APA = Pp 4p) y(ap) = Pr(ar)n(a¥) (see also Ben-
Israell’3)). Then we have E = AAPE = EAAP if and only if R(E) C R(A*) and N(E) =
R(E*)* D N(AF) = R(A*)* which is equivalent to R(E*) C R(A**).

Recently, Wei and Wul'¥l presented a sufficient and necessary condition such that BP
has the simple form (1.1) as follows:

Let B = A+ E € C™*" with Ind(A4) = k and Ind(B) = j. Let | = max{k,j} and
E(AY) = B' — AL If ||[APE|| < 1, then BP has the expression (1.1) if and only if

rank(B’) = rank(4*) and AAPE(4Y) = E(4Y) = E(A)AAP. (1.3)

Let X be a Banach space over the complex field C. L(X) denotes the vector space
of all linear operators: T : X — X. Let B(X) denote the Banach space of all bounded
linear operators T : X — X with the norm ||T|| =sup { [|Tz| : ||z]| =1,z € X }. For T
and T =T + 6T € B(X), R(T) and N(T) denote the range and the null space of T. Let
dim(A) denote the dimension of the subspace A of X. In this paper, we aim to extend
the above results in [11,12,14] to the case of Drazin inverses of bounded linear operators
on a Banach space. However, things are somewhat complicated in this case. As for T
and T = T + 6T € B(X), sufficient and necessary condition such that T2 has the simple
expression TP = TP(I +6TTP)™1 = (I+TP6T)~1TP can’t be replaced by the following
condition:

dimR(T?) = dimR(T*) and TTPE(T") = E(T") = E(THTT®. (1.4)

which reduces to the known result (1.3) for the square matrix case. Since if X is an finite
dimensional Banach space, then dimR(T") = dimR(T") and R(T*) C R(T*) following from
(1.4) imply R(T') = R(T'). While it’s not correct for the case that X is an infinite
dimensional Banach space.

In the next section, we give some necessary concept and preliminary results. We
present our main results in section 3. In section 4, we give an error bound for the solution
for operator equation:Tz = u (u € R(TP)). Conclusions will be put in section 5.

2. Preliminaries

First, let us recall that o(T") (6(T')), the ascent (descent) of T € B(X) is the smallest
non-negative n such that N(T™) = N(T™*!) (R(T™) = R(T™)). If no such n exists,
then a(T) = oo (§(T) = o0). If T has finite ascent and descent, then the index of T is
equal to the ascent of T (see [15]). ‘

Definition 2.1? Let T € L(X). If for some non-negative integer k, there exists S € L(X)
such that
TST* =T* STS = 8,TS = ST, (2.1)
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then S is called the Dazin inverse of T and is denoted by S = TP. In particular, when
k=1, tize operator S satisfying (2.1) is called the group inverse of T and is denoted by
S=T%.

We list several useful properties of TP in the following lemma. For more details, see
[2].
Lemma 2.13 Let T € B(X) with Ind(T) = k and R(T*) closed, | > k, then

(1) R(TP) = R(T), N(TP) = N(T"),

(2) X = R(TP) ® N(TP) (topological direct sum decomposition),

(3) TTD = TDT = PR(TD),N(TD) = PR(T‘),N(T‘)’
where Prrp) y(rp) denotes the projection of X onto R(TP) along N(TP).
Definition 2.2[!% Let X1, X, be two Banach spaces over the complex field C and let
B(X1,X3) be the Banach space of all bounded linear operators:T : X; — Xa. Let T €
B(X;,X2) with R(T) closed. If there exist two projections (idempotents) of P : X1 —
N(T),Q : X, — R(T), then T has uniquely the generalized inverse T+ (with respect to
P,Q) such that

TTYT =T,T"TT =Tt Tt T =1 -P,TTT =Q (2.2)

If X1, X, are Hilbert space, we require (TTT)* =TT, (TT*)* =TT+.
Lemma 2.2 Let T € B(X) with Ind(T) = k, then there exists T*+ € L(X) such that

Tka+Tk = Tk
Tk+Tka+ — Tk+
T T = T*T* = Prepry vy = I — Pyrey, perw)-

Remark 2.1 Noting the fact that R(T*) = R(T"), N(T*) = N(T))(l > k), thus if we
replace &k by [ in lemma 2.2, the result still holds.

Lemma 2.3!16P185 Let T € B(X) with |T)| < 1, then I 4T is invertible and (I+T)™! :
X — X is bounded. Moreover
1

IZ+T)7H < T

T (2.3)

The proof of the following lemmas is easy, thus omitted here.

Lemma 2.4 Let L and M be complementary subspaces of X, and let Py, p be a projection
of X onto L along M, T € B(X), then

(1) P yT =T if and only if R(T)C L,

(2) TPLym =T if and only if N(T) 2 M.

Lemma 2.5 Let T,U and V € B(X), if U and V are invertible, then
(1) U'R(UT) = R(T) = R(TV),
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(2) N(UT) = N(T) = VN(TV).
3. Main results

Now we establish the sufficient and necessary condition such that TP = TP(I +
STTP)-! = (I 4+ TP6T)~1TP.

Theorem 3.1 Let T € B(X) with Ind(T) = k and R(T*) closed. Let T = T+4T € B(X)
with Ind(T) = j and | TP||||6T|| < 1. Denote | = max{k, j} and E(T') = T* — T', then

TP =TP(I + 6TTP) ! = (1 + TPsT) TP (3.1)
if and only if
TTPE(T!) = E(T") = ET)TTP? and TTPE(TY) = E(T") = E(TYTTP. (3.2)
Proof From the assumption that ||TP||{|6T|| < 1, we get both I +TP6T and I + 6TTP
are invertible. Since (I + §TTP)™1 = T2 o(—=1)(6TTP)™, we have

TP(I 4 6TTP)™ = (1 + TPéT) ' TP. (3.3)

Necessarity: It follows from (3.1) and lemma 2.5 that
R(T?) = R(TP), N(TP) = N(TP). (3.4)
Hence, by Lemma 2.1 (1), we have
R(TY) = R(TY, N(T") = N(T"). (3.5)

Thus we have
R(E(T") € R(T"), N(E(T")) 2 N(T%)

and
R(E(T")) € R(TY), N(E(TY) 2 N(T").

According to Lemma 2.1 (3) and Lemma 2.4, we get

TTPE(TY) = E(T") = E(T"Y)TT? and TTPE(T") = E(T*) = E(TYTTP.

Sufficiency: From the assumption TTPE(T!) = E(T") = E(T")TTP and Lemma 2.4, we
have

R(E(T")) € R(T"), N(E(T")) 2 N(T"),

which implies
R(T") C R(T"), N(T*) 2 N(T"). (3.6)
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On the other hand, it follows from the assumption TTPE(T') = E(T") = E(TY)TT? and
Lemma 2.4 that
R(E(T")) € R(T"), N(E(T")) 2 N(T").

Thus
R(TY) € R(TY), N(T*) 2 N(T%). (3.7)
Hence (3.6) and (3.7) give
R(TP) = R(T"Y) = R(TY = R(TP) (3.8)
and
N(TP) = N(T") = N(TY) = N(TP). (3.9)
Thus by (3.8) (3.9) and Lemma 2.1 (3), we obtain
TTP =TTP. (3.10)

It follows that

TP - TP = -TP6TT? + TP — TP + TP(T - T)TP
= -TPsTT? + TP — PPTTP — TP 4 PTPTD
= —-TPsTTP.

ie., TP(I + §TTP) = TP. Because of the invertibility of I + dTT? and (3.3), we have
TP = TP(I 4 6TTP) ™ = (I + TP6T)~1TP. O

Note that the condition in Theorem 3.1 is difficult to verify in practice. Next we give
a sufficient condition which is easy to check.

For convenience, we denote the following condition by (W) condition:

Let T € B(X) with Ind(T) = k and R(T*) colsed. Let T = T + 6T € B(X)
with Ind(T) = j. Denote | = mazx{k,j} and E(T') = T' — T'. Denote ¢(T') =

L CHITINSTIE > ||E(TY)|, where Cf is the binomial coefficient. Suppose R(6T) C

R(TY and N(6T) 2 N(T*) and ||T*{le(T*) < 1.

Then we can prove the following lemma.

Lemma 3.1 Suppose (W) condition holds, then

R(T") = R(T"), N(T") = N(T"). (3.12)
Proof Since
E(T) =T"-T
=TT +T2T T+ +6T - T ) +--- +
[T(T) + 6T - T(ST)"2 + -+ + (T)1T] + (6T, (3.12)
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by assumption that R(6T) C R(T"), we can show that
R(E(T") € R(T"). (3.13)
On the other hand, Vo € N(T"), for any 0 <m <1, i.e.,
T™z € N(T™) C N(T') C N(6T). (3.14)
Then it follows from (3.12) that E(T?) -z =0, i.e.,
N(E(TY) 2 N(TY). (3.15)
According to Lemma 2.2, Remark 2.1 and Lemma 2.4, we obtain

T =T + E(TY)
=T" + Propy nery B(TY) = T* + E(T") Prepiy nery
=T '+ T'T* E(T") = T' + E(THYTHT
=TI + T E(T")] = [I + E(THT*|T

in which, by virtue of |T* E(TY)|| < |IT**||e(TY) < 1, I+ T E(T") is invertible. Similarly
I+ BE(TYHT™ is also invertible.
Hence it follows from Lemma 2.5 that

R(T") = R(T"), N(T") = N(T". 0

Remark 2.2 The (W) condition in Lemma 3.1 is easy to verify.
100 0 £ 0
For example, let T' = (0 1 0>,6T= (5 0 0>,where0<e<1,andT=
0 00 000
T+ 4T.

Since rank(T") = rank(T?) = 2 and rank(T) = rank(7T?) = 2, thus Ind(T) =IndT = 1
and so T has a group inverse T#. Moreover, | = max{Ind(T),Ind(T)} = 1, E(T!) =
T'—T' =T ~T = 6T and T* in (W) condition becomes T+. Let | - ||z denote the
spectral norm. Then e(T%) = [|6T||; = ¢.

On the other hand, it is easily verified that R(6T) C R(T) and N(6T) 2 N(T). Noting
that T*+ given by Lemma 2.2 where k = Ind(T') reduces to (T*)# for the square matrix
case. Then by direct computation, we have || T ||l2e(T%) = ||TH|2116T |2 = |T#))2)16T))2 =
€ < 1. Therefore (W) condition holds in this case.

Next we present a theorem bounding E,I,%“DT”—DU.

Theorem 3.2 Let T, T be as in Lemma 3.1. Denote Kp(T) = ||T||||T?||, then
TP = TP(I +6TTP)™ = (I + TP6T)'TP,

s T2
TP < 1= [ToeT|’
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T2 - TP| _ _KpMISTI/IT|
ITP) = 1= Kp(T)|eT|i/ T

Proof It follows from Lemma 3.1 and Lemma 2.1 (3) that
TT? =TT".
Then from the proof of Theorem 3.1, we get
TP = TP(1 4 6TTP) = (I + TP6T)~'TP.

By taking || - || of both sides and using Lemma 2.3, we get

_ TD
1T2) < I‘:‘“'Tj.@”(ﬁ,l—'-

Since TP — TP = —TP§TTP, we have

=D _ D 5D (17D T2 26T
17 ~ Tl < ITPHIT T < T s
Consequently,
[ | 72T _ _ Kp@ISTI/ATI
172l = 1= |2 1 - Kp(T)IT||/||T

4. Applications
In this section, we give an error bound for the solution for the operator equation:
Tz =u (u€ R(TP)). (4.1)
It is well known that we actually compute the perturbed system:
Ty=a (e R(TP)), (4.2)

where T = T + 6T, 4 = u + du. )
We simply estimate the distance between the exact solution TPu and TP for (4.1)
and (4.2).

Theorem 4.1 Let T and T be as in Lemma 3.1, and denote = TPu,y = T4, Kp(T) =

ITITPY, then
=l = T=Rpaeriymy 0TI (43)
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Proof From the assumption it follows that
y—z=TPa—TPu
=TP(u+ 6u) — TPu = (TP — TP)u + TP6u
= ~TPsTTPu+TPéu.
By taking || - || of both sides and noting that |jul} < ||T||||z|l, we get

lly — <l < ITP STl + YT ]lj6ul

|12} ll6ull

< Ty 0Tl + I
_ ITPWIT ) BT foul
=27 [Tl
Kp(Mlzl 7] |oul

= T=Rp@ STl ] Tl

Then (4.3) holds. O
5. Conclusions

In this paper, we generalized some results in the perturbation analysis for the Drazin
inverse of a square matrix to a more general situation. Our research makes progress in
the perturbation analysis for the Drazin inverse of a bounded linear operator on a Banach
space. However, the case discussed here is only the special case that T2 has the simple
form (3.1). The more general situation will be investigated in the future.
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Banach &2[8] - H R &M HEFH Drazin M89EEh45 47
A BL KRR R?
(1. BIMITTE2EERTE20E, WL WA 313000; 2. R AEHER, £ 200062)

W B % X A —EH C LY Banach =, & T: X — X F—AFRLEERT, HiETEH
k B R(T*) M. it T # Drazin #% TP. ® T =T + 6T, WE—ELET, TP AR#AS
g TP = TP(I + 6TTP)™! = (I + TPeT)™1TP, \Fi% i TAExiRE ||TP — TP)|/|ITP|
f ERMBETHR: Tz =u(uc R(TP)) WRHHHRE.

X #i8: Drazin #; 545, RER.
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