Fixed Points of Order Convex Maps in Ordered Banach Spaces*

Huang Chunchao (黄春朝)

(Shandong University)

In this paper we discuss problems of the existence of fixed points of order convex maps.

Lemma 1 Let (E,P) be an OBS, $S_1 = \{x \in P \mid ||x|| = 1\}$. Suppose $f: S_1 \rightarrow S_1$ is a completely continuous map. Then f has fixed points in S_1 .

Lemma 2 Let (E,P) be an OBS whose positive cone is normal and has nonempty interior. Suppose $f_* P \rightarrow P$ is a continuous, order increasing convex map, f(0) = 0; $\exists 0 \ll \overline{x} < \overline{y}$ such that $0 \leqslant f(\overline{x}) \ll \overline{x}$, $f(y) \gg \overline{y}$. Then there exist a convex subset $H \subseteq P$ and a positive number r such that $H \supset B_r(B_r = \{x \in P \mid ||x|| \leqslant r\})$ and $f(H) \subseteq H$, $f(\partial H) \subseteq \partial H$.

Lemma 3 For the set H in Lemma 2, $T: x \mapsto x/||x||$ is a homeomorphism from $\partial H \supset P$ onto $S_1 \cap P$.

Lemma 4 Let $f: \partial H \to \partial H$ be completely continuous, $u \in \mathring{P}$, ||u|| = 1, then for any $0 < \varepsilon < \frac{1}{4}$, there exists $x_{\varepsilon} \in \partial H \cap \mathring{P}$ such that

$$\frac{f(x_{\epsilon}) + 2\varepsilon || f(x_{\epsilon}) || u}{|| f(x_{\epsilon}) + 2\varepsilon || f(x_{\epsilon}) || u ||} = \frac{x_{\epsilon}}{|| x_{\epsilon} ||}.$$
 (1)

Proof Put $P_{\epsilon}(u) = \{x \in P \mid x \geqslant \epsilon \|x\|u\}$, then $P_{\epsilon}(u)$ is a cone and $\partial H \cap P_{\epsilon}(u)$ is bounded. Obviously $B_{\epsilon} x \mapsto \frac{f(T^{-1}x) + 2\epsilon \|f(T^{-1}x)\|u\|}{\|f(T^{-1}x) + 2\epsilon \|f(T^{-1}x)\|u\|} (x \in S_1 \cap P_{\epsilon}(u))$ is completely continuous

Therefore, by Lemma 1, there exists $x'_{\epsilon} \in S_1 \cap P_{\epsilon}(u)$ such that

$$\frac{f(T^{-1}x'_{\epsilon}) + 2\varepsilon ||f(T^{-1}x'_{\epsilon})||u}{||f(T^{-1}x'_{\epsilon}) + 2\varepsilon ||f(T^{-1}x'_{\epsilon})||u||} = x'_{\epsilon}.$$
(1')

Let $x_{\epsilon} = T^{-1}x'_{\epsilon}$, then $x'_{\epsilon} = Tx_{\epsilon} = x_{\epsilon}/||x_{\epsilon}||$. Consequently, x_{ϵ} satisfies (1).

Theorem 1 Let $f: P \rightarrow P$ be a completely continuous, order increasing convex map, f(0) = 0. Suppose the following three conditions are satisfied:

- (i) $\exists 0 \ll \overline{x} < \overline{y}$ such that $f(\overline{x}) \ll \overline{x}$, $f(\overline{y}) \gg \overline{y}$,
- (ii) $\exists u \in P, ||u|| = 1$ and $\alpha > 0$ such that $f^2(x) \ge \alpha ||f^2(x)|| u$, $\forall x \in P$,
- (iii) There exists a continuous function $\varphi_{:} R_{+} \rightarrow R_{+}$ such that $f(tx) \leqslant \varphi(t) f(x)$, $\forall x \in P$, $t \in R_{+}$.

from $S_1 \cap P_{\epsilon}(u)$ into $S_1 \cap P_{\epsilon}(u)$

^{*}Received July 16,1981.

Then f has at least one fixed point in P.

Theorem 2 Let $f: P \rightarrow P$ be a completely continuous, order increasing convex map, f(0) = 0. Suppose that the following two conditions are satisfied:

- $(i)' \exists 0 \ll \bar{x} < \bar{y} \text{ such that } f(\bar{x}) \ll \bar{x}, f(\bar{y}) \gg \bar{y};$
- (ii)' $\exists u \in \mathring{P}, ||u|| = 1$ and $\alpha > 0$ such that $f(x) \geqslant \alpha ||f(x)|| u$.

Then f has at least one point in $\stackrel{\circ}{P}$.

Proof of theorem 1 and 2 Under the conditions of theorem 1 or theorem 2, it is easy to show, by lemmas 1-4, that for any $0 < \varepsilon < \frac{1}{4}$, there exists $x_{\varepsilon} \in \partial H$ satisfying (1), and that the set $\{x_{\varepsilon}\}$ is bounded. Hence, since f is completely continuous, the set $\{f(x_{\varepsilon})\}$ is compact. Therefore, we can choose a sequence of number $\varepsilon_n \to 0$ as $n \to +\infty$ such that $f(x_{\varepsilon n})$ and $||x_{\varepsilon n}||$ are both convergent. By (1), $x_{\varepsilon n}$ is also convergent. We assume that $x_{\varepsilon n} \to x \in P$ as $n \to +\infty$. Now, putting $x_{\varepsilon} = x_{\varepsilon n}$ in formula (1), we obtain (letting $n \to +\infty$) the equality $\frac{f(x)}{||f(x)||} = \frac{x}{||x||}$. Since ∂H is closed and $f(\partial H)$ $\subset \partial H$, it follows that $x \in \partial H$ and $f(x) \in \partial H$. By lemma 3, we obtain $f(x) = x_{\varepsilon}$. By the condition (ii) of theorem 1 or (ii)' of theorem 2, we have $x \in P$.

Applying Theorems 1--2 to nonlinear integral equations of Hammerstein type, we obtain correspondently the following

Theorem 3 Let Ω be a bounded closed domain in Euclidean space R^n and p>1. Suppose that K(x,y) is non-negative and continuous on $\Omega \times \Omega$, and $\int_{\Omega} K(x,z)K(z,y) dz$ >0, $\forall (x,y) \in \Omega \times \Omega$. Then equation

$$\int_{\mathcal{Q}} K(x,y) \varphi^{p}(y) \, \mathrm{d}y - \varphi(x) = 0$$

has at least one positive continuous solution.

Theorem 4 Let Ω be a bounded closed domain in Euclidean space R^n . Suppose K(x,y) is continuous on $\Omega \times \Omega$ and $K(x,y) \ge m > 0$, and $f: R_+ \to R_+$ is a continuous, convex function satisfying

$$\lim_{r\to+0}\frac{f(r)}{r}=0, \qquad \lim_{r\to+\infty}\frac{f(r)}{r}=+\infty.$$

Then equation

$$\int_{\mathcal{Q}} K(x,y) f(\varphi(y)) \, \mathrm{d}y - \varphi(x) = 0$$

has at least one positive continuous solution.

I am grateful to Professor Guo Dajun for his guidance.