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Abstract In this paper, we obtain the characterizations on u for (p,q) — ¢ Carleson measure,
and discuss the boundedness (and compactness) of the extended Cesaro operators T, between
different weighted Bergman spaces as some application.
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1. Introduction

Let B be the open unit ball of C*, and let H(B) be the set of all holomorphic functions
on B. A positive continuous function ¢ on [0,1) is called normal if there are three constants
0<d<1and —1 < a < b such that

_elr) is decreasing on [4,1) and lim _elr) =0; (1.1)
(1 —r)e r—1 (1 —r)e
A is increasing on [4,1) and  lim (e 0. .

We extend it to B by ¢(z) = ¢(|z|). For 0 < p < oo the weighted Bergman space AP (y) is the
space of all functions f € H(B) for which

£l = ([ 15 e(eI0(2))” < o

Moreover, Hu [1] shows that

11l = 1701+ /B REGI(1 = |2 p(2)dv(2)) (1.3)
for all f € H(B). Here and afterward, the expression A(f) ~ B(f) means there exists C' such
that for all f, C~YA(f) < B(f) < CA(f), where C stands for finite positive constant whose

value may change from line to line but independent of f.
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For g € H(B), the extended Cesaro operator T, on H(B) is defined by

1
7,56 = [ reamgn . zeB,

where Rg(z) = Z?Zl zjag—ij) is the radial derivative of g. The boundedness and compactness
of T, on the Bergman spaces have been characterized by many authors [1-3]. Moreover, the
same problems of T;; on many function spaces, such as mixed norm spaces, Hardy spaces, Bloch
type spaces, Dirichlet type spaces and Zygmund spaces, have been studied [2,4-9]. Our work is
to obtain the necessary and sufficient condition for g such that T} is bounded or compact from
AP(p1) to Al(ps) for all 0 < p, g < 0.

2. Some preliminary results

For z € B and r > 0, denote by E(z,r) the Bergman ball on B. It is well known that
|E(z,7)] ~ (1 —[2[*)"*! and

1—(z,w)| ~1—|z|~1—|w], ¢(2)~ew) forwe E(zr). (2.1)

Suppose 0 < p,q < co. A finite positive Borel measure p on B is called a (p, q) — ¢ Carleson

measure if
w(E(a,r
sup ( (5+1)q)) - < 0.
a€B (1 —|a])" 7 ¢p(a)?
Moreover, if
1im 'LL(E(CL, T)) — 0,

(n+1)q q

T (1= Jal) T p(a)?

then p is called a vanishing (p, q) — ¢ Carleson measure.

Lemma 2.1 ([10]) For any r > 0, there exists a sequence {a’} C B satisfying:

(1) B=U, B, r);

(2) There is a positive integer N such that each point in B belongs to at most N of the sets
E(a?,2r).

Lemma 2.2 Let 0 < p < ¢ < o0, and let ¢ be normal. Suppose p is a finite positive Borel
measure on B, then the following statements are equivalent:

(1) The identity operator i : AP () — L%(u) is bounded;

(2) wisa (p,q) — ¢ Carleson measure.

Furthermore,
1
n(E(a,r))s

[[éll = sup e R (2.2)
0eB (1= [a) 7 p(a)?
Proof (1)=-(2). For any a € B, set
— lal?)8
fulz) = — o=l B 23)

pla)? (1= (z,a) 5+
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Here (3 is large enough. Then, || fallp,, < C by [1]. (2.1) yields
w(E(a,r
B — <c [ L@ < clnly, <o 2.9
(1= lal)™ 7 ¢7(a)
(2)=(1). For f € H(B), we have

FEP < m/w) w)Pdo(w)
F )P ow)do(w).

~

()1 - IZI)"+1 [EW)

Hence,

sup |f()P ¢

S WP < oy [, WP e, (25)

This implies

/If ) *dp(w S

[y, N G)
E(ai,r)

B (s |fw)?)

1 weE(al,r)

B Ll

= e (1 i)
< Ne( [ 1Pt

This, together with (2.4), we have (2.2). O

1)

Lemma 2.3 ([1]) Let 0 < ¢ < p < oo, and let ¢ be normal. Suppose p is a finite positive Borel

measure on B, then a necessary and sufficient condition for a constant G > 0 to exist such that

([ irerane)’ < a( [ 1r@raeae)’

for all f € AE(p) is that [ fi(2)*p(z)dv(z) < oo, where +1=1 () = %.

Furthermore,
1

(/B/l(z)sgo(z)dv(z))g < CG1. (2.6)

Lemma 2.4 Let 0 < p < q < o0, and let ¢ be normal. Suppose p is a finite positive Borel
measure on B, then the following statements are equivalent:
(1) The identity operator i : AP () — L%(u) is compact;

(2) p is a vanishing (p,q) — ¢ Carleson measure.

Proof (1)=-(2). For a € B, define the test function as (2.3), then ||follp,, < C, and {f.}
converges to 0 uniformly on any compact subset of B as |a|] — 1. Tt follows that
n(E(a,r))

0<
(n+1)q a
(1 — lal) ov(a)

<c /B Fu()ldu(z) — 0, || — 1.
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(2)=(1). For any r > 0, by Lemma 2.1, we can choose a sequence {a’} C B with |a’| — 1 as
j — oo satistying (i) B = UJ L E(a?,r); (ii) There is a positive integer N such that each point
z € B belongs to at most N of the sets E(a’,2r). Then for any € > 0, by (2), there exists a

positive integer Jy, if j > Jo,
n(E(a?, 7))
INCES)) .
(1= [al]) 5 o5 (a)
Suppose {fx} is any norm bounded sequence in AZ(y) and f; — 0 uniformly on each compact

subsets of B. We claim that limg oo || f&||ze(,) = 0. In fact, by (2.5) we obtain

Al < (354 32) “(E(“j”f)))@( /| (aj2T)|fk(w)|p90(w)dv(w))%

q
j=1  j=Jo+1 p(ad)? (1 — |al|
=1 + 5.

<e. (2.7)

On the one hand, for 1 < j < Jo, E(a’,2r) is a compact subset of B, then I; < ¢ if k is
sufficiently large. On the other hand, (2.7) yields

4
P

I < CNE(/B |fk(w|pgo(w)dv(w)) < Ce.

Therefore, i : A?(p) — L%(u) is compact. O

3. Main results

Theorem 3.1 Let g € H(B), and let 1, w2 be both normal. Then T, : A?(p1) — Al(p2) is
bounded if and only if

g—{ntba
(i) For 0 <p < g <00, Sup,ep (-fa) 7 ¢a(a) fE(a " |Rg(2)|9dv(z) < oo. Moreover,

@1 (a)
1—la 1-=5 . a 3
I = sup S D (] g(appranz)) 3.1)
a€B 901;’ (CL) E(a,r)
(ii) For 0 < g < p < o0,
NI L

/ |§Rg(z)| (1 L|Z| ) P2 (Z)d’U(Z) < 00. (32)

B o1 (2)

Moreover,

mi=( [ [Ro()| 7 (1 |212) 1 o7 (2 ) 7
B pr " (2)
Proof First, for f,g € H(B), by direct calculation we see R(T,f)(z) = f(2)Rg(z). By (1.3)
and T, f(0) = 0, the operator T, : A2(p1) — Ad(p2) is bounded if and only if there exists C
such that

1T f NG00 = /13 [F(2)"Rg(2)]7(1 = |2]*)"p2(2)dv(2) < CIIfII 4, (3-3)

for all f € A2(p1). Set dugy(z) = |Rg(2)|9(1 — |2]?)p2(2)dv(2).
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(i) For 0 < p < ¢ < oo, Lemma 2.2 means that (3.3) holds if and only if p4 is a (p,q) — ¢1
Carleson measure. Furthermore, (3.1) follows by (2.2).
(ii) For 0 < ¢ < p < 0o, Lemma 2.3 yields that (3.3) holds if and only if

[ s eraant) < .
B

Since 4iy(z) = : #g(2E(z,1)) > Clﬁ%g(z)lq(1*|z|2)qap2(z)7 together with (2.6), we have

I-[z]?)"TLp1(2) = »1(z)
Rg(2)|777 (1 — |2]?)7°q = = s 3
(] '(' i Z8a@) T o [ aeraene) <l 6
of 7 (:

Conversely, (1.3) and Holder’s inequality yield

7,500 = [ LRI (L= ) ()do(2)

< {/ [mg( )| (;f_(z|2)q<ﬂ2(z)}ﬁldv(z)}w {/Hf( )|q ( )]%dv(z)}%
{7 P B o oo} ™ 1.0 (35)
‘Pl 17 (2)
for any f € AP(yp;). Furthermore, (3.4) and (3.5) show
171 2{/]3”?9@”%(1— |Z|2)%@dv(z)}%. 0

P17 (2)
Theorem 3.2 Let g € H(B), and let ¢1, w2 be both normal. Then T, : A?(p1) — Al(p2) is

compact if and only if
+1)q

q— (n
(i) For0 < p<q < o0, limg_ (-fal) P a(a) Ji(ary IR9(2)|%dv(z) = 0.
@1 (a) ’

(ii) For 0 < g < p < 00, (3.2) holds.

Proof (i) Set u4(z) as in Theorem 3.1, then

1T, f1l0.,, ~ /B £ — |25 (2)dv(z) = /B ()l (2)

Thus, Ty : AP(¢1) — Ad(p2) is compact if and only if i : AP (¢) — L9(ug) is compact, which is
equivalent to that p, is a vanishing (p,q) — ¢1 Carleson measure if 0 < p < ¢ < oo by Lemma
2.4.

(ii) The necessity is clear by Theorem 3.1. We will show the sufficiency. For any ¢ > 0, by
(3.2), there is some 1 € (0,1) such that

[ e - 2 D) <
B\B,

pr " (2)
where B,, = {z € B : |z] < n}. Given any sequence {f;} C AP (1) satisfying || fj|lp,o, < 1 and

fj(z) — 0 uniformly on compact subsets of B, we will show lim; o ||T5f;llg,0. = 0. Similarly
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to the proof of (3.5), we have

1T fillGn = / / [£5(2)|7Rg(2)]7(1 = |2[*)?pa(2)dv(2)

<o 1HEI+C( [ ol -1 L D ae) T g,

‘Z‘Sn B\Bn (pl
< Ck,

if j is large enough. O
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