Extended Cesàro Operators between Different Bergman Spaces in the Ball

Xiao Fen LÜ

Department of Mathematics, Huzhou Teachers College, Zhejiang, 313000, P. R. China

Abstract In this paper, we obtain the characterizations on μ for $(p,q)-\varphi$ Carleson measure, and discuss the boundedness (and compactness) of the extended Cesàro operators T_g between different weighted Bergman spaces as some application.

Keywords extended Cesàro operator; Bergman space; normal function.

Document code A MR(2010) Subject Classification 47B38 Chinese Library Classification O174.56

1. Introduction

Let **B** be the open unit ball of $\mathbf{C^n}$, and let $H(\mathbf{B})$ be the set of all holomorphic functions on **B**. A positive continuous function φ on [0,1) is called normal if there are three constants $0 \le \delta < 1$ and -1 < a < b such that

$$\frac{\varphi(r)}{(1-r)^a} \text{ is decreasing on } [\delta, 1) \text{ and } \lim_{r \to 1} \frac{\varphi(r)}{(1-r)^a} = 0; \tag{1.1}$$

$$\frac{\varphi(r)}{(1-r)^b}$$
 is increasing on $[\delta, 1)$ and $\lim_{r \to 1} \frac{\varphi(r)}{(1-r)^b} = \infty$. (1.2)

We extend it to **B** by $\varphi(z) = \varphi(|z|)$. For $0 the weighted Bergman space <math>A_a^p(\varphi)$ is the space of all functions $f \in H(\mathbf{B})$ for which

$$||f||_{p,\varphi} = \left(\int_{\mathbf{R}} |f(z)|^p \varphi(z) dv(z)\right)^{\frac{1}{p}} < \infty.$$

Moreover, Hu [1] shows that

$$||f||_{p,\varphi} \simeq |f(0)| + \left(\int_{\mathbf{B}} |\Re f(z)|^p (1-|z|^2)^p \varphi(z) dv(z)\right)^{\frac{1}{p}}$$
 (1.3)

for all $f \in H(\mathbf{B})$. Here and afterward, the expression $A(f) \simeq B(f)$ means there exists C such that for all f, $C^{-1}A(f) \leq B(f) \leq CA(f)$, where C stands for finite positive constant whose value may change from line to line but independent of f.

Received June 11, 2009; Accepted April 26, 2010

Supported by the National Natural Science Foundation of China (Grant No. 10771064), the Natural Science Foundation of Zhejiang Province (Grant Nos. Y7080197; Y6090036; Y6100219) and Foundation of Creative Group in Universities of Zhejiang Province (Grant No. T200924).

E-mail address: lvxf@hutc.zj.cn

 $X. F. L\ddot{U}$

For $g \in H(\mathbf{B})$, the extended Cesàro operator T_g on $H(\mathbf{B})$ is defined by

$$T_g f(z) = \int_0^1 f(tz) \Re g(tz) \frac{\mathrm{d}t}{t}, \quad z \in \mathbf{B},$$

where $\Re g(z) = \sum_{j=1}^n z_j \frac{\partial g(z)}{\partial z_j}$ is the radial derivative of g. The boundedness and compactness of T_g on the Bergman spaces have been characterized by many authors [1–3]. Moreover, the same problems of T_g on many function spaces, such as mixed norm spaces, Hardy spaces, Bloch type spaces, Dirichlet type spaces and Zygmund spaces, have been studied [2,4–9]. Our work is to obtain the necessary and sufficient condition for g such that T_g is bounded or compact from $A_a^p(\varphi_1)$ to $A_a^q(\varphi_2)$ for all $0 < p, q < \infty$.

2. Some preliminary results

For $z \in \mathbf{B}$ and r > 0, denote by E(z,r) the Bergman ball on \mathbf{B} . It is well known that $|E(z,r)| \simeq (1-|z|^2)^{n+1}$ and

$$|1 - \langle z, w \rangle| \simeq 1 - |z| \simeq 1 - |w|, \quad \varphi(z) \simeq \varphi(w) \quad \text{for } w \in E(z, r).$$
 (2.1)

Suppose $0 < p, q < \infty$. A finite positive Borel measure μ on **B** is called a $(p,q) - \varphi$ Carleson measure if

$$\sup_{a \in \mathbf{B}} \frac{\mu(E(a,r))}{(1-|a|)^{\frac{(n+1)q}{p}} \varphi(a)^{\frac{q}{p}}} < \infty.$$

Moreover, if

$$\lim_{|a| \to 1} \frac{\mu(E(a,r))}{(1-|a|)^{\frac{(n+1)q}{p}} \varphi(a)^{\frac{q}{p}}} = 0,$$

then μ is called a vanishing $(p,q)-\varphi$ Carleson measure.

Lemma 2.1 ([10]) For any r > 0, there exists a sequence $\{a^j\} \subseteq \mathbf{B}$ satisfying:

- (1) $\mathbf{B} = \bigcup_{i=1}^{\infty} E(a^{i}, r);$
- (2) There is a positive integer N such that each point in **B** belongs to at most N of the sets $E(a^j, 2r)$.

Lemma 2.2 Let $0 , and let <math>\varphi$ be normal. Suppose μ is a finite positive Borel measure on **B**, then the following statements are equivalent:

- (1) The identity operator $i: A_a^p(\varphi) \to L^q(\mu)$ is bounded;
- (2) μ is a $(p,q) \varphi$ Carleson measure.

Furthermore,

$$||i|| \simeq \sup_{a \in \mathbf{B}} \frac{\mu(E(a,r))^{\frac{1}{q}}}{(1-|a|)^{\frac{n+1}{p}}\varphi(a)^{\frac{1}{p}}}.$$
 (2.2)

Proof $(1) \Rightarrow (2)$. For any $a \in \mathbf{B}$, set

$$f_a(z) = \frac{(1 - |a|^2)^{\beta}}{\varphi(a)^{\frac{1}{p}} (1 - \langle z, a \rangle)^{\frac{n+1}{p} + \beta}}, \quad z \in \mathbf{B}.$$
 (2.3)

Here β is large enough. Then, $||f_a||_{p,\varphi} \leq C$ by [1]. (2.1) yields

$$\frac{\mu(E(a,r))}{(1-|a|)^{\frac{(n+1)q}{p}}\varphi^{\frac{q}{p}}(a)} \le C \int_{\mathbf{B}} |f_a(z)|^q \mathrm{d}\mu(z) \le C ||f_a||_{p,\varphi}^q \le C.$$
 (2.4)

 $(2) \Rightarrow (1)$. For $f \in H(\mathbf{B})$, we have

$$|f(z)|^p \le \frac{C}{|E(z,r)|} \int_{E(z,r)} |f(w)|^p \mathrm{d}v(w)$$

$$\simeq \frac{1}{\varphi(z)(1-|z|)^{n+1}} \int_{E(z,r)} |f(w)|^p \varphi(w) \mathrm{d}v(w).$$

Hence,

$$\sup_{z \in E(a,r)} |f(z)|^p \le \frac{C}{\varphi(a)(1-|a|)^{n+1}} \int_{E(a,2r)} |f(w)|^p \varphi(w) dv(w). \tag{2.5}$$

This implies

$$\int_{\mathbf{B}} |f(w)|^q d\mu(w) \leq \sum_{j=1}^{\infty} \int_{E(a^j, r)} |f(w)|^q d\mu(w)
\leq \sum_{j=1}^{\infty} \mu(E(a^j, r)) \Big(\sup_{w \in E(a^j, r)} |f(w)|^p \Big)^{\frac{q}{p}}
\leq \sum_{j=1}^{\infty} \frac{\mu(E(a^j, r))}{\varphi(a^j)^{\frac{q}{p}} (1 - |a^j|)^{\frac{(n+1)q}{p}}} \Big(\int_{E(a^j, 2r)} |f(w)|^p \varphi(w) dv(w) \Big)^{\frac{q}{p}}
\leq NC \Big(\int_{\mathbf{B}} |f(w)|^p \varphi(w) dv(w) \Big)^{\frac{q}{p}}.$$

This, together with (2.4), we have (2.2). \square

Lemma 2.3 ([1]) Let $0 < q < p < \infty$, and let φ be normal. Suppose μ is a finite positive Borel measure on **B**, then a necessary and sufficient condition for a constant G > 0 to exist such that

$$\left(\int_{\mathbf{B}} |f(z)|^q \mathrm{d}\mu(z)\right)^{\frac{1}{q}} \le G\left(\int_{\mathbf{B}} |f(z)|^p \varphi(z) \mathrm{d}v(z)\right)^{\frac{1}{p}}$$

for all $f \in A_a^p(\varphi)$ is that $\int_{\mathbf{B}} \hat{\mu}(z)^s \varphi(z) dv(z) < \infty$, where $\frac{1}{s} + \frac{q}{p} = 1$, $\hat{\mu}(z) = \frac{\mu(E(z,1))}{(1-|z|^2)^{n+1}\varphi(z)}$. Furthermore,

$$\left(\int_{\mathbf{B}} \hat{\mu}(z)^s \varphi(z) \mathrm{d}v(z)\right)^{\frac{1}{s}} \le CG^q. \tag{2.6}$$

Lemma 2.4 Let $0 , and let <math>\varphi$ be normal. Suppose μ is a finite positive Borel measure on **B**, then the following statements are equivalent:

- (1) The identity operator $i: A_a^p(\varphi) \to L^q(\mu)$ is compact;
- (2) μ is a vanishing $(p,q) \varphi$ Carleson measure.

Proof (1) \Rightarrow (2). For $a \in \mathbf{B}$, define the test function as (2.3), then $||f_a||_{p,\varphi} \leq C$, and $\{f_a\}$ converges to 0 uniformly on any compact subset of \mathbf{B} as $|a| \to 1$. It follows that

$$0 \le \frac{\mu(E(a,r))}{(1-|a|)^{\frac{(n+1)q}{p}} \varphi^{\frac{q}{p}}(a)} \le C \int_{\mathbf{B}} |f_a(z)|^q \mathrm{d}\mu(z) \to 0, \quad |a| \to 1.$$

548 X. F. $L\ddot{U}$

 $(2)\Rightarrow(1)$. For any r>0, by Lemma 2.1, we can choose a sequence $\{a^j\}\subseteq \mathbf{B}$ with $|a^j|\to 1$ as $j\to\infty$ satisfying (i) $\mathbf{B}=\bigcup_{j=1}^\infty E(a^j,r)$; (ii) There is a positive integer N such that each point $z\in \mathbf{B}$ belongs to at most N of the sets $E(a^j,2r)$. Then for any $\varepsilon>0$, by (2), there exists a positive integer J_0 , if $j>J_0$,

$$\frac{\mu(E(a^j, r))}{(1 - |a^j|)^{\frac{(n+1)q}{p}} \varphi^{\frac{q}{p}}(a^j)} < \varepsilon. \tag{2.7}$$

Suppose $\{f_k\}$ is any norm bounded sequence in $A_a^p(\varphi)$ and $f_k \to 0$ uniformly on each compact subsets of **B**. We claim that $\lim_{k\to\infty} \|f_k\|_{L^q(\mu)} = 0$. In fact, by (2.5) we obtain

$$||f_k||_{L^q(\mu)}^q \le \left(\sum_{j=1}^{J_0} + \sum_{j=J_0+1}^{\infty}\right) \frac{\mu(E(a^j, r))}{\varphi(a^j)^{\frac{q}{p}} (1 - |a^j|)^{\frac{(n+1)q}{p}}} \left(\int_{E(a^j, 2r)} |f_k(w)|^p \varphi(w) dv(w)\right)^{\frac{q}{p}}$$

$$= I_1 + I_2.$$

On the one hand, for $1 \leq j \leq J_0$, $E(a^j, 2r)$ is a compact subset of **B**, then $I_1 < \varepsilon$ if k is sufficiently large. On the other hand, (2.7) yields

$$I_2 \le CN\varepsilon \Big(\int_{\mathbf{B}} |f_k(w|^p \varphi(w) dv(w)\Big)^{\frac{q}{p}} < C\varepsilon.$$

Therefore, $i: A^p_a(\varphi) \to L^q(\mu)$ is compact. \square

3. Main results

Theorem 3.1 Let $g \in H(\mathbf{B})$, and let φ_1 , φ_2 be both normal. Then $T_g : A_a^p(\varphi_1) \to A_a^q(\varphi_2)$ is bounded if and only if

(i) For
$$0 , $\sup_{a \in \mathbf{B}} \frac{(1-|a|)^{q-\frac{(n+1)q}{p}} \varphi_2(a)}{\frac{q}{\varphi_1^p}(a)} \int_{E(a,r)} |\Re g(z)|^q \mathrm{d}v(z) < \infty$. Moreover,$$

$$||T_g|| \simeq \sup_{a \in \mathbf{B}} \frac{(1-|a|)^{1-\frac{n+1}{p}} \varphi_2^{\frac{1}{q}}(a)}{\varphi_1^{\frac{1}{p}}(a)} \left(\int_{E(a,r)} |\Re g(z)|^q \mathrm{d}v(z) \right)^{\frac{1}{q}}. \tag{3.1}$$

(ii) For $0 < q < p < \infty$,

$$\int_{\mathbf{B}} \frac{|\Re g(z)|^{\frac{pq}{p-q}} (1-|z|^2)^{\frac{pq}{p-q}} \varphi_2^{\frac{p}{p-q}}(z)}{\varphi_1^{\frac{q}{p-q}}(z)} \mathrm{d}v(z) < \infty. \tag{3.2}$$

Moreover,

$$||T_g|| \simeq \left(\int_{\mathbf{B}} \frac{|\Re g(z)|^{\frac{pq}{p-q}} (1-|z|^2)^{\frac{pq}{p-q}} \varphi_2^{\frac{p}{p-q}}(z)}{\varphi_1^{\frac{q}{p-q}}(z)} \mathrm{d}v(z) \right)^{\frac{p-q}{pq}}.$$

Proof First, for $f, g \in H(\mathbf{B})$, by direct calculation we see $\Re(T_g f)(z) = f(z)\Re g(z)$. By (1.3) and $T_g f(0) = 0$, the operator $T_g : A_a^p(\varphi_1) \to A_a^q(\varphi_2)$ is bounded if and only if there exists C such that

$$||T_g f||_{q,\varphi_2}^q \simeq \int_{\mathbf{B}} |f(z)|^q \Re g(z)|^q (1-|z|^2)^q \varphi_2(z) dv(z) \le C ||f||_{p,\varphi_1}^q$$
(3.3)

for all $f \in A_a^p(\varphi_1)$. Set $d\mu_g(z) = |\Re g(z)|^q (1 - |z|^2)^q \varphi_2(z) dv(z)$.

- (i) For $0 , Lemma 2.2 means that (3.3) holds if and only if <math>\mu_g$ is a $(p,q) \varphi_1$ Carleson measure. Furthermore, (3.1) follows by (2.2).
 - (ii) For $0 < q < p < \infty$, Lemma 2.3 yields that (3.3) holds if and only if

$$\int_{\mathbf{B}} \hat{\mu_g}(z)^s \varphi_1(z) \mathrm{d}v(z) < \infty.$$

Since $\hat{\mu_g}(z) = \frac{\mu_g(E(z,1))}{(1-|z|^2)^{n+1}\varphi_1(z)} \ge \frac{C|\Re g(z)|^q(1-|z|^2)^q\varphi_2(z)}{\varphi_1(z)}$, together with (2.6), we have

$$\left(\int_{\mathbf{B}} \frac{|\Re g(z)|^{\frac{pq}{p-q}} (1-|z|^2)^{\frac{pq}{p-q}} \varphi_2^{\frac{p}{p-q}}(z)}{\varphi_1^{\frac{q}{p-q}}(z)} \mathrm{d}v(z)\right)^{\frac{p-q}{p}} \le C \left(\int_{\mathbf{B}} \hat{\mu}_g(z)^s \varphi_1(z) \mathrm{d}v(z)\right)^{\frac{1}{s}} \le C \|T_g\|^q. \tag{3.4}$$

Conversely, (1.3) and Hölder's inequality yield

$$||T_{g}f||_{q,\varphi_{2}}^{q} \simeq \int_{\mathbf{B}} |f(z)|^{q} |\Re g(z)|^{q} (1 - |z|^{2})^{q} \varphi_{2}(z) dv(z)$$

$$\leq \left\{ \int_{\mathbf{B}} \left[\frac{|\Re g(z)|^{q} (1 - |z|^{2})^{q} \varphi_{2}(z)}{\varphi_{1}^{\frac{q}{p}}(z)} \right]^{\frac{p}{p-q}} dv(z) \right\}^{\frac{p-q}{p}} \times \left\{ \int_{\mathbf{B}} [|f(z)|^{q} \varphi_{1}^{\frac{q}{p}}(z)]^{\frac{p}{q}} dv(z) \right\}^{\frac{q}{p}}$$

$$\leq \left\{ \int_{\mathbf{B}} \frac{|\Re g(z)|^{\frac{pq}{p-q}} (1 - |z|^{2})^{\frac{pq}{p-q}} \varphi_{2}^{\frac{p}{p-q}}(z)}{\varphi_{1}^{\frac{q}{p-q}}(z)} dv(z) \right\}^{\frac{p-q}{p}} \cdot ||f||_{p,\varphi_{1}}^{q}$$

$$(3.5)$$

for any $f \in A_a^p(\varphi_1)$. Furthermore, (3.4) and (3.5) show

$$||T_g|| \simeq \left\{ \int_{\mathbf{B}} |\Re g(z)|^{\frac{pq}{p-q}} (1-|z|^2)^{\frac{pq}{p-q}} \frac{\varphi_2^{\frac{p}{p-q}}(z)}{\varphi_1^{\frac{q}{p-q}}(z)} \mathrm{d}v(z) \right\}^{\frac{p-q}{pq}}. \quad \Box$$

Theorem 3.2 Let $g \in H(\mathbf{B})$, and let φ_1 , φ_2 be both normal. Then $T_g: A_a^p(\varphi_1) \to A_a^q(\varphi_2)$ is compact if and only if

(i) For
$$0 , $\lim_{|a| \to 1} \frac{(1-|a|)^{q-\frac{(n+1)q}{p}} \varphi_2(a)}{\varphi_1^p(a)} \int_{E(a,r)} |\Re g(z)|^q dv(z) = 0$.$$

(ii) For $0 < q < p < \infty$, (3.2) holds.

Proof (i) Set $\mu_q(z)$ as in Theorem 3.1, then

$$||T_g f||_{q,\varphi_2}^q \simeq \int_{\mathbf{B}} |f(z)|^q \Re g(z)|^q (1-|z|^2)^q \varphi_2(z) dv(z) = \int_{\mathbf{B}} |f(z)|^q d\mu_g(z).$$

Thus, $T_g: A_a^p(\varphi_1) \to A_a^q(\varphi_2)$ is compact if and only if $i: A_a^p(\varphi) \to L^q(\mu_g)$ is compact, which is equivalent to that μ_g is a vanishing $(p,q) - \varphi_1$ Carleson measure if 0 by Lemma 2.4.

(ii) The necessity is clear by Theorem 3.1. We will show the sufficiency. For any $\varepsilon > 0$, by (3.2), there is some $\eta \in (0,1)$ such that

$$\int_{\mathbf{B}\backslash\mathbf{B}_{\eta}} |\Re g(z)|^{\frac{pq}{p-q}} (1-|z|^2)^{\frac{pq}{p-q}} \frac{\varphi_2^{\frac{p}{p-q}}(z)}{\varphi_1^{\frac{q}{p-q}}(z)} \mathrm{d}v(z) < \varepsilon,$$

where $\mathbf{B}_{\eta} = \{z \in \mathbf{B} : |z| \leq \eta\}$. Given any sequence $\{f_j\} \subseteq A_a^p(\varphi_1)$ satisfying $||f_j||_{p,\varphi_1} \leq 1$ and $f_j(z) \to 0$ uniformly on compact subsets of \mathbf{B} , we will show $\lim_{j \to \infty} ||T_g f_j||_{q,\varphi_2} = 0$. Similarly

550 $X. F. L\ddot{U}$

to the proof of (3.5), we have

$$||T_{g}f_{j}||_{q,\varphi_{2}}^{q} \simeq \left(\int_{\mathbf{B}_{\eta}} + \int_{\mathbf{B}\backslash\mathbf{B}_{\eta}}\right) |f_{j}(z)|^{q} |\Re g(z)|^{q} (1 - |z|^{2})^{q} \varphi_{2}(z) dv(z)$$

$$\leq C_{1} \sup_{|z| \leq \eta} |f_{j}(z)|^{q} + C_{2} \left(\int_{\mathbf{B}\backslash\mathbf{B}_{\eta}} |\Re g(z)|^{\frac{pq}{p-q}} (1 - |z|^{2})^{\frac{pq}{p-q}} \frac{\varphi_{2}^{\frac{p}{p-q}}(z)}{\varphi_{1}^{\frac{q}{p-q}}(z)} dv(z)\right)^{\frac{p-q}{p}} ||f_{j}||_{p,\varphi_{1}}^{q}$$

$$\leq C\varepsilon,$$

if j is large enough. \square

References

- HU Zhangjian. Extended Cesàro operators on Bergman spaces [J]. J. Math. Anal. Appl., 2004, 296(2): 435–454.
- [2] XIAO Jie. Riemann-Stieltjes operators on weighted Bloch and Bergman spaces of the unit ball [J]. J. London Math. Soc. (2), 2004, 70(1): 199–214.
- [3] LI Songxiao, STEVIĆ S. Riemann-Stieltjes operators between different weighted Bergman spaces [J]. Bull. Belg. Math. Soc. Simon Stevin, 2008, 15(4): 677–686.
- [4] HU Zhangjian. Extended Cesàro operators on mixed norm spaces [J]. Proc. Amer. Math. Soc., 2003, 131(7): 2171–2179
- [5] STEVIĆ S. On an integral operator on the unit ball in \mathbb{C}^n [J]. J. Inequal. Appl., 2005, 1: 81–88.
- [6] ZHANG Xuejun. Weighted Cesàro operators on Dirichlet type spaces and Bloch type spaces of Cⁿ [J]. Chinese Ann. Math. Ser. A, 2005, 26(1): 139–150. (in Chinese)
- [7] LI Songxiao. Volterra composition operators between weighted Bergman spaces and Bloch type spaces [J].
 J. Korean Math. Soc., 2008, 45(1): 229–248.
- [8] AVETISYAN K, STEVIĆ S. Extended Cesàro operators between different Hardy spaces [J]. Appl. Math. Comput., 2009, 207(2): 346–350.
- [9] FANG Zhongshan, ZHOU Zehua. Extended Cesáro operators on Zygmund spaces in the unit ball [J]. J. Comput. Anal. Appl., 2009, 11(3): 406–413.
- [10] ZHU Kehe. Spaces of Holomorphic Functions in the Unit Ball [M]. Springer-Verlag, New York, 2005.