A Note on Zeros of Characters of Finite Groups

ZHANG Jin Shan^{1,2}, SHI Wu Jie²

(1. Department of Mathematics, Leshan Teachers' College, Sichuan 614004, China;

2. School of Mathematics, Suzhou University, Jiangsu 215006, China)

(E-mail: zjscdut@163.com)

Abstract The aim of this note is to classify the finite meta-abelian groups in which every irreducible character vanishes on at most three conjugacy classes.

Keywords finite groups; characters; zeros.

Document code A MR(2000) Subject Classification 20C15 Chinese Library Classification 0152.1

1. Introduction

Let G be a finite group. $\operatorname{Irr}_1(G)$ denotes the set of non-linear irreducible complex characters of G, and p always denotes a prime. For $\chi \in \operatorname{Irr}(G)$, set $v(\chi) := \{g \in G \mid \chi(g) = 0\}$. Clearly, $v(\chi)$ is a union of some conjugacy classes of G. An old theorem of Burnside asserts that $v(\chi)$ is not empty for any $\chi \in \operatorname{Irr}_1(G)$. In this paper, we consider the following problem: given the number of zeros in character table of a finite group G, what can be said about the structure of G? Our aim is to classify the finite meta-abelian group G satisfying the following hypothesis:

(HY) Each $\chi \in Irr_1(G)$ vanishes on at most three conjugacy classes.

The main result of this paper is as follows.

Theorem A finite meta-abelian group G satisfies (HY) if and only if G is one of the following groups:

(1) G is a Frobenius group with abelian kernel G' and a complement of order 2 or 3.

(2) $G \cong D_8$ or Q_8 .

(3) G = G'P, where G' is a normal and abelian 2-complement of G, $P \in Syl_2(G)$, |P| = 4, |Z(G)| = 2, and G/Z(G) is a Frobenius group with kernel $(G/Z(G))' \cong G'$ and a complement P/Z(G) of order 2.

(4) G is a Frobenius group with kernel G' and a cyclic complement of order 4.

(5) $G = (G'\langle t \rangle) \times \langle u \rangle$, where $\langle u \rangle$ is a cyclic group of order 3, t is an involution and $G'\langle t \rangle$ is a Frobenius group with kernel G' and a complement of order 2.

Received date: 2006-05-12; Accepted date: 2007-11-22

Foundation item: the National Natural Science Foundation of China (No. 10571128); the Specialized Research Fund for the Doctoral Program of Higher Education of China (No. 20060285002).

We will call a conjugacy class of G as a G-class. The rest of our notation is standard and taken from [1].

2. Proof of Theorem

First, we give some lemmas for proving the theorem.

Lemma 1 Let G be a meta-abelian group. If [G : G'] = p, then G is a Frobenius group with kernel G' and a complement of order p.

Proof As G' is abelian, the Hall p'-subgroup K of G' is clearly a normal p-complement of G. So G = KP with $P \in \operatorname{Syl}_p(G)$. Next [P : P'] = [G/K : (G/K)'] = [G/K : G'/K] = p, forcing P' = 1 and so K = G'. Note that $C_{G'}(P) \subseteq Z(G) \cap G' = 1$ (See [1, Theorem 5.6]). This implies that P acts as fixed point freely on G', and we are done.

For a finite group G, if G' < G and $|C_G(g)| = |C_{G/G'}(G'g)|$ holds for any $g \in G - G'$, then (G, G') is called a Camina-pair.

Lemma 2^[2, Theorem 2.1] Let (G, G') be a Camina-pair. Suppose that G is not a p-group. Then either G is a Frobenius group with kernel G' or G/G' is a p-group for some prime p. In this case, G has a normal p-complement M, M < G' and $C_G(m) \subseteq G'$ for all $m \in M - \{1\}$.

Lemma 3^[3, Lemma 19.1] Let P be a p-group of class ≤ 2 and suppose that P acts non-trivially on some p'-group Q such that $C_P(x) \subseteq P'$ for all $x \in Q - \{1\}$. Then the action is Frobenius and P is either cyclic or isomorphic to Q_8 .

Proof of Theorem The sufficiency is obvious. We need only to prove the necessity. Take $\varphi \in$ Irr₁(G). Since G' is abelian by the hypothesis, $\varphi_{G'}$ is not irreducible. It follows by [1, Theorem 6.22] that there exists a linear character λ of a subgroup H with $G' \leq H < G$ such that $\varphi = \lambda^G$. Then $G - H \subseteq v(\varphi)$.

Assume that [H:G'] = m and [G:H] = r. Then we have

$$G = H + Hx_1 + \dots + Hx_{r-1}, x_i \notin H,$$

and

$$H = G' + G'y_1 + \dots + G'y_{m-1}, y_j \notin G'.$$

It follows that

$$G - H = \sum_{i=1}^{r-1} \sum_{j=1}^{m-1} G' y_j x_i + \sum_{i=1}^{r-1} G' x_i.$$
(*)

For $x \notin G'$, G'x is a G-class or a union of some G-classes, and so we conclude by the above equality (*) that G - H consists of at least m(r-1) G-classes. Bearing in mind that $G - H \subseteq v(\varphi)$, then G - H consists of at most 3 G-classes (since $v(\varphi)$ consists of at most 3 G-classes by the hypothesis), and thus we obtain that $m(r-1) \leq 3$, that is, $[H:G']([G:H]-1) \leq 3$.

Since $[H : G']([G : H] - 1) \le 3$, one of the following three cases occurs: (i) [G : G'] = 2 or [G : G'] = 3; (ii) [G : G'] = 4; (iii) [H : G'] = 3, [G : H] = 2.

(I) Suppose that [G:G'] = 2 or [G:G'] = 3.

In this case, by Lemma 1, we can easily conclude that G satisfies (1) of the theorem.

(II) Suppose that [G:G'] = 4.

In this case, we have $G - G' = G'x \cup G'y \cup G'z$, where $x, y, z \in G - G'$. Note that G' is abelian, we obtain that G = KP, where K is an abelian normal 2-complement of G and $P \in Syl_2(G)$. Clearly, $K \leq G'$. Then $|P| \geq 4$ and $G/K \cong P$. In particular, every element of Irr(P) vanishes on at most 3 P-classes.

Suppose first that $|P| \ge 8$. Then P is of maximal class (see [4, P.375]). Assume that $|P| \ge 16$. As P is of maximal class, one of the upper central series member must have index 16. Now every group of order 16 has a non-linear irreducible character which vanishes on at least 4 classes (see [5, P.300]). Thus P is either a group of order 4 or a non-abelian group of order 8.

Now suppose that $G/K \cong P$ is a non-abelian group of order 8. Let χ be the unique element of $\operatorname{Irr}_1(G/K)$. We can easily conclude that $G - G' \subseteq v(\chi)$. It follows from the hypothesis that $v(\chi)$ consists of at most 3 *G*-classes. Then $G'x = x^G$, $G'y = y^G$ and $G'z = z^G$. Thus $|C_G(g)| = |C_{G/G'}(G'g)| = 4$ for every $g \in G - G'$. Hence (G, G') is a Camina-pair. If *G* is not a 2-group, then by Lemmas 2 and 3, we see that $P \cong Q_8$ and *G* is a Frobenius group with kernel *M* and a complement isomorphic to Q_8 . Thus *G* has an irreducible character χ with $\chi(1) = 8$ such that $v(\chi)$ consists of at least 4 *G*-classes, and we obtain a contradiction. So if |P| = 8, then G = P, and thus *G* satisfies (2) of the theorem.

Next suppose that $G/K \cong P$ is of order 4. Notice that $C_{G'}(P) \subseteq Z(G) \cap G' = 1$ (See [1, Theorem 5.6]), we have $C_{G'}(P) = \{1\}$. Since G' is abelian and [G : G'] = 4, it follows by [1, Theorem 6.15] that $\chi(1) = 2$ or 4 for every $\chi \in \operatorname{Irr}_1(G)$.

Assume that $\chi(1) = 2$ for all $\chi \in \operatorname{Irr}_1(G)$. Then, since $C_{G'}(P) = \{1\}$, we obtain that |Z(G)| = 2 (see [1, Theorem 12.5 and Lemma 12.12]) and thus [G/Z(G) : (G/Z(G))'] = 2. Bearing in mind that $(G/Z(G))' \cong G'$ is abelian, we get from Lemma 1 that G/Z(G) is a Frobenius group with kernel $(G/Z(G))' \cong G'$ and a complement of order 2. Thus G satisfies (3) of the theorem.

Assume that there exists $\chi \in \operatorname{Irr}_1(G)$ such that $\chi(1) = 4$. Recall that [G : G'] = 4, we can easily conclude that $\chi = \lambda^G$, where λ is a linear character of G'. It follows that $G'x \cup G'y \cup$ $G'z = G - G' = v(\chi)$, and thus G'g is a G-class for all $g \in G - G'$. So, we conclude that $|C_G(g)| = [G : G'] = 4 = |P|$ for all $g \in P - \{1\}$. It follows that G = G'P is a Frobenius group with kernel G' and a cyclic complement of order 4 (see [1, Problems (7.1), p.121] and [4, V, theorem 8.7]), and thus G satisfies (4) of the theorem.

(III) Suppose that [H:G'] = 3 and [G:H] = 2.

We have $G - H = G'x \cup G'y \cup G'z$, where $x, y, z \notin H$. Since $G - H \subseteq v(\varphi)$ and $v(\varphi)$ consists of at most 3 *G*-classes, we conclude that $G - H = v(\varphi)$ and $G'x = x^G$, $G'y = y^G$ and $G'z = z^G$. It follows that $|C_G(g)| = 6$ for all $g \in G - H$.

Clearly, G - H contains an involution t, and $|C_G(t)| = 6$ implies that $|G|_2 = 2$. Thus $G = H\langle t \rangle$ and |H| is odd.

On the other hand, by the second orthogonality relation we have

$$|C_G(g)| = |G/G'| + \sum \{|\chi(g)|^2 \mid \chi \in \mathrm{Irr}_1(G)\}$$

for all $g \in G - G'$. Then $\chi(g) = 0$ for all $g \in G - H$ and all $\chi \in \operatorname{Irr}_1(G)$, that is, $G - H \subseteq v(\chi)$ for all $\chi \in \operatorname{Irr}_1(G)$. So, we obtain that $G - H = v(\chi)$ for all $\chi \in \operatorname{Irr}_1(G)$, and hence θ_H is not irreducible for every $\theta \in \operatorname{Irr}_1(G)$.

Now we claim that H is abelian. If else, let $\alpha \in \operatorname{Irr}_1(H)$ and $\theta \in \operatorname{Irr}_1(G)$ with $[\theta_H, \alpha] \neq 0$. Then $\theta_H = \alpha + \alpha^t$ and $\alpha^G = \theta$. As G' is abelian, $\alpha_{G'} = \beta_1 + \beta_2 + \beta_3$ with $\beta_i \in \operatorname{Irr}(G')$. Then $I_H(\beta_1) = G'$ so that $(\beta_1)^H = \alpha$. Then $\theta = \alpha^G = ((\beta_1)^H)^G = (\beta_1)^G$. So $G - G' \subset v(\theta) = G - H$, a contradiction. Hence H is abelian.

Clearly, $C_G(t)$ contains an element u of order 3 so that $u \in H$ and as H is abelian, $\langle t, H \rangle \subset C_G(u)$ and so $u \in Z(G)$. As $G' \cap Z(G) = 1$ (see [1, Theorem 5.6]), $u \in H - G'$. Note that $C_G(t) = \langle t \rangle \times \langle u \rangle$ with $t, u \notin G'$. Thus $C_G(t) \cap G' = 1$ and so $G = G'C_G(t) = (G'\langle t \rangle)\langle u \rangle$. As $u \in Z(G), G = (G'\langle t \rangle) \times \langle u \rangle$.

Finally, $C_G(t) \cap G' = 1$ implies that $G'\langle t \rangle$ is a Frobenius group with kernel G' and a complement of order 2. Hence G satisfies (5) of the theorem. The proof is completed.

Remark As in the proof of Theorem, we see that for such a group G, there exists a normal subgroup N such that G - N contains 2 G-classes or 3 G-classes. Qian treated such groups G in [6]. Of course, the set of such groups is big, and it is impossible to classify them completely.

Acknowledgment The first author is grateful to Professor Ren Yongcai for his helps. Both authors thank the referee for making numerous suggestions and pointing out misprints.

References

- [1] ISAACS I M. Character Theory of Finite Groups [M]. Academic Press, New York-London, 1976.
- [2] ISAACS I M. Coprime group actions fixing all nonlinear irreducible characters [J]. Canad. J. Math., 1989, 41(1): 68–82.
- [3] MANZ O, WOLF T R. Representations of Solvable Groups [M]. Cambridge University Press, Cambridge, 1993.
- [4] HUPPET B. Endlich Gruppen I [M]. Berlin: Springer-Verlag, 1967.
- [5] JAMES G, LIEBECK M. Representations and Character of Groups [M]. Cambridge: Cambridge University Press, 1993.
- [6] QIAN Guohua, SHI Wujie, YOU Xingzhong. Conjugacy classes outside a normal subgroup [J]. Comm. Algebra, 2004, 32(12): 4809–4820.