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Abstract In this paper we study the asymptotic behavior of global classical solutions to the

Cauchy problem with initial data given on a semi-bounded axis for quasilinear hyperbolic sys-
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to the infinity, the solution approaches a combination of C1 travelling wave solutions with the
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1. Introduction and main result

Consider the following first order inhomogeneous quasilinear hyperbolic system

∂u

∂t
+ A(u)

∂u

∂x
= F (u), (1.1)

where u = (u1, . . . , un)T is the unknown vector function of (t, x), A(u) is an n × n matrix with

C2 elements aij(u) (i, j = 1, . . . , n), F (u) = (F1(u), . . . , Fn(u))T is a given vector function of u

with C2 elements Fi(u) (i = 1, . . . , n) and

F (0) = 0, ∇F (0) = 0. (1.2)

By hyperbolicity, for any given u on the domain under consideration, A(u) has n real eigen-

values λ1(u), . . . , λn(u) and a complete set of left (resp. right) eigenvectors. For i = 1, . . . , n, let

li(u) = (li1(u), . . . , lin(u)) (resp. ri(u) = (ri1(u), . . . , rin(u))T) be a left (resp. right) eigenvector

corresponding to λi(u):

li(u)A(u) = λi(u)li(u) (1.3)

and

A(u)ri(u) = λi(u)ri(u). (1.4)
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We have

det |lij(u)| 6= 0, resp. det |rij(u)| 6= 0. (1.5)

Without loss of generality, we assume that on the domain under consideration

li(u)rj(u) ≡ δij , i, j = 1, . . . , n, (1.6)

where δij stands for the Kronecker’s symbol.

We suppose that all λi(u), lij(u) and rij(u) (i, j = 1, . . . , n) have the same regularity as

aij(u) (i, j = 1, . . . , n).

In particular, if, for any given u on the domain under consideration, A(u) has n distinct real

eigenvalues

λ1(u) < λ2(u) < · · · < λn(u), (1.7)

system (1.1) is called strictly hyperbolic.

First, let us recall the definition of weak linear degeneracy [10, 11] and matching condition

related to λn(u) [1].

Definition 1.1 The i-th characteristic λi(u) is called weakly linearly degenerate (WLD), if

along the i-th characteristic trajectory u = ui(s) passing through u = 0, defined by
{ du

ds
= ri(u),

s = 0 : u = 0,
(1.8)

we have

∇λi(u)ri(u) ≡ 0, ∀ |u| small, (1.9)

i.e.,

λi(u
i(s)) ≡ λi(0), ∀ |s| small. (1.10)

If all characteristics are WLD, then system (1.1) is said to be WLD.

Definition 1.2 F (u) is called satisfying the matching condition related to λn(u), if in a neigh-

bourhood of u = 0, along the n-th characteristic trajectory u = un(s) passing through the origin

in the u-space, we have

F (un(s)) ≡ 0, ∀ |s| small. (1.11)

When system (1.1) is strictly hyperbolic and WLD and F (u) ∈ C2 satisfies the matching

condition [4], for the Cauchy problem (1.1) with the initial data

t = 0 : u = φ(x), x ∈ R, (1.12)

where φ(x) is a C1 vector function with the following decaying property: there exists a positive

constant µ such that

θ , sup
x∈R

{(1 + |x|)1+µ(|φ(x)| + |φ′(x)|)} < ∞, (1.13)

based on the global existence result of the classical solution obtained in [11], it was proved in [5]

that there exists a unique C1 vector function Φ(x) = (Φ1(x), . . . , Φn(x))T such that on t ≥ 0, in
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normalized coordinates [10, 11]

∣∣u(t, x) −
n∑

i=1

Φi(x − λi(0)t)ei

∣∣ ≤ Kθ2(1 + t)−µ, (1.14)

where K is a positive constant independent of (t, x) and θ, and

ei = (0, . . . , 0,
(i)
→ 1, 0, . . . , 0)T. (1.15)

Notice that each Φi(x − λi(0)t)ei is a solution to system (1.1).

In this paper we suppose that in a neighbourhood of u = 0,

λ1(u), . . . , λn−1(u) < λn(u). (1.16)

Consider the Cauchy problem for system (1.1) with the initial data

t = 0 : u = φ(x), x ≥ 0, (1.17)

where φ(x) is a C1 vector function with the following decaying property: there exists a positive

constant µ such that

θ , sup
x≥0

{(1 + x)1+µ(|φ(x)| + |φ′(x)|)} < ∞. (1.18).

The following existence theorem was proved in [1]:

Theorem A Under the hypotheses mentioned above, suppose furthermore that in a neigh-

bourhood of u = 0, λn(u) is WLD and F (u) satisfies the matching condition related to λn(u).

Then there exists θ0 > 0 so small that for any θ ∈ [0, θ0], Cauchy problem (1.1) and (1.17) admits

a unique global C1 solution u = u(t, x) with small C1 norm on the domain D = {(t, x)| t ≥

0, x ≥ xn(t)}, where x = xn(t) is the n-th characteristic passing through the origin O(0, 0):





dxn(t)

dt
= λn(u(t, xn(t))),

xn(0) = 0.
(1.19)

In this paper, based on Theorem A, we will prove the following result:

Theorem 1.1 Under the assumptions of Theorem A, there exists a unique C1 function Φn(x)

such that in the generalized normalized coordinates [12], on the existence domain D of the global

classical solution u = u(t, x) to Cauchy problem (1.1) and (1.17), the following estimate holds:
∣∣u(t, x) − Φn(x − λn(0)t)en

∣∣ ≤ Kθ(1 + t)−µ, (1.20)

where K is a positive constant independent of (t, x) and θ.

Remark 1.1 If F (u) ≡ 0, the conclusion of Theorem 1.1 is valid.

Remark 1.2 Suppose that in a neighbourhood of u = 0,

λ1(u), . . . , λp(u) < λp+1(u) ≡ · · · ≡ λn(u), (1.21)

where λ(u) , λp+1(u) ≡ · · · ≡ λn(u) is a characteristic with constant multiplicity n−p. Suppose

furthermore that λp+1(u), . . . , λn(u) are WLD [7]. Thus, the conclusion of Theorem 1.1 will be re-
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placed as follows: there exists a unique C1 vector function Φ(x) = (0, . . . , 0, Φp+1(x), . . . , Φn(x))T

such that
∣∣u(t, x) −

n∑

i=p+1

Φi(x − λi(0)t)ei

∣∣ ≤ Kθ(1 + t)−µ, (1.22)

where K is a positive constant independent of (t, x) and θ.

Remark 1.3 When, in a neighbourhood of u = 0,

λ1(u) < λ2(u), . . . , λn(u) (1.23)

or

λ1(u) ≡ · · · ≡ λp(u) < λp+1(u), . . . , λn(u), (1.24)

for the initial data

t = 0 : u = φ(x), x ≤ 0 (1.25)

such that

θ , sup
x≤0

{(1 + |x|)1+µ(|φ(x)| + |φ′(x)|)} < +∞, (1.26)

similar results hold as in Theorem 1.1 and Remarks 1.1–1.2.

In Section 2 we give some preliminaries, then, the main result is proved in Section 3.

2. Preliminaries

By the proof of Lemma 2.5 in [10], for any given complete system of right eigenvectors

r1(u), . . . , rn(u) of A(u) (without assuming the strict hyperbolicity), there exists a suitably

smooth invertible transformation u = u(ũ) (u(0) = 0) such that in the ũ-space, for each

i = 1, . . . , n, the i-th characteristic trajectory passing through ũ = 0 coincides with the ũi-

axis at least for |ũi| small, namely,

r̃i(ũiei)//ei, ∀ |ũi| small, i = 1, . . . , n, (2.1)

where r̃i(ũ) denotes the i-th right eigenvector corresponding to ri(u) and ei is given by (1.15).

This transformation is called a generalized normalized transformation, and the unknown

variables ũ = (ũ1, . . . , ũn)T are called generalized normalized variables or generalized normalized

coordinates [12]; for the normalized transformation and the normalized coordinates, also see [10],

[11]. Without loss of generality, we assume that

r̃T
i (ũ)r̃i(ũ) ≡ 1, (2.2)

then, (2.1) can be written as

r̃i(ũiei) ≡ ei, ∀ |ũi| small, i = 1, . . . , n. (2.3)

Let

wi = li(u)ux, i = 1, . . . , n. (2.4)
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By (1.5), we have

ux =
n∑

k=1

wkrk(u). (2.5)

Let
d

dit
=

∂

∂t
+ λi(u)

∂

∂x
(2.6)

denote the directional derivative with respect to t along the i-th characteristic.

We have [2, 8]

du

dit
=

n∑

k=1

(λi(u) − λk(u))wk(u)rk(u) + F (u), i = 1, . . . , n. (2.7)

Then, in the corresponding generalized normalized coordinates, it is easy to see that [2, 8]

dui

dit
=

n∑

j,k=1

(
ρijk(u)ujwk + fijk(u)ujuk

)
, i = 1, . . . , n, (2.8)

where

ρijj(u) ≡ 0, ∀i, j, (2.9)

fink(u) ≡ 0, ∀i, k, (2.10)

ρijk(u) = (λi(u) − λk(u))

∫ 1

0

∂rki

∂uj

(τu1, . . . , τuk−1, uk, τuk+1, . . . , τun)dτ, ∀ j 6= k (2.11)

and

fijk(u) =

∫ 1

0

θk(τ)

∫ 1

0

∂2Fi(στu1, . . . , στun−1, στun)

∂uj∂uk

dσdτ, ∀ j 6= n, (2.12)

in which

θk(τ) =

{
τ, k = 1, . . . , n − 1,

1, k = n.
(2.13)

Obviously,

ρiji(u) ≡ 0, ∀i, j. (2.14)

On the other hand, we have [3, 6, 9]

dwi

dit
=

n∑

j=1

( n∑

k=1

Bijk(u)ρk(u) + νij(u)
)
wj +

n∑

j,k=1

γijk(u)wjwk, i = 1, . . . , n, (2.15)

where

Bijk(u) = −li(u)∇rj(u)rk(u), (2.16)

ρk(u) = lk(u)F (u), (2.17)

νij(u) = li(u)∇F (u)rj(u), (2.18)

γijk(u) =
1

2
{(λj(u) − λk(u))li(u)∇rk(u)rj(u) −∇λk(u)rj(u)δik + (j|k)}, (2.19)

in which (j|k) stands for all terms obtained by changing j and k in the previous terms. It is easy

to see that

γijj(u) ≡ 0, ∀j 6= i (2.20)
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and

γiii(u) = −∇λi(u)ri(u), ∀i. (2.21)

Moreover, as λn(u) is WLD, in the corresponding generalized normalized coordinates, we have

γnnn(unen) ≡ 0, λn(unen) ≡ λn(0), ∀|un| small. (2.22)

According to Lemma 2.1 in [2], if in a neighbourhood of u = 0, F (u) ∈ C2 with (1.2) satisfying

the matching condition related to λn(u), i.e., (1.10) holds, then in the corresponding generalized

normalized coordinates, we can rewrite (2.15) as

dwi

dit
=

n∑

j,k=1

(Qijk(u)ukwj + γijk(u)wjwk), (2.23)

where Qijk(u) is continuous in a neighbourhood of u = 0, and

Qinn(u) ≡ 0, ∀|u| small, ∀i. (2.24)

3. Proof of Theorem 1.1

It is easy to see that under any smooth transformation u = u(ũ) (u(0) = 0), the weak linear

degeneracy of λn(u) is invariant. Then, without loss of generality, we may assume that system

(1.1) is written in the corresponding generalized normalized coordinates. In what follows, we

always assume that θ > 0 is suitably small.

By (1.16), there exist positive constants δ0 and δ so small that

λn(u) − λi(u
′) ≥ 2δ0, ∀|u|, |u′| ≤ δ, i = 1, . . . , n − 1 (3.1)

and

|λi(u) − λi(u
′)| ≤

δ0

2
, ∀|u|, |u′| ≤ δ, i = 1, . . . , n. (3.2)

Without loss of generality, we suppose that

λi(0) ≥ δ0, i = 1, . . . , n. (3.3)

The following lemma comes from [1].

Lemma 3.1 Suppose that in a neighbourhood of u = 0, A(u) ∈ C2, F (u) ∈ C2 with (1.2)

satisfying the matching condition related to λn(u), system (1.1) is hyperbolic and (1.16) holds.

Suppose furthermore that λn(u) is WLD and φ(x) is a C1 vector function satisfying (1.18). Then

there exists θ0 > 0 so small that for any θ ∈ [0, θ0], Cauchy problem (1.1) and (1.17) admits a

unique global C1 solution u = u(t, x) with small C1 norm on the domain D = {(t, x)| t ≥ 0, x ≥

xn(t)}. Moreover, when θ0 > 0 is suitably small, the solution u = u(t, x) satisfies

|u(t, x)| ≤ δ. (3.4)

By (3.2) and (3.3), it is easy to see that

xn(t) ≥ (λn(0) −
δ0

2
)t ≥

δ0

2
t. (3.5)
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Let

U c
∞ = max

i=1,...,n−1
sup

(t,x)∈D

{(1 + x)1+µ|ui(t, x)|}, (3.6)

W c
∞ = max

i=1,...,n−1
sup

(t,x)∈D

{(1 + x)1+µ|wi(t, x)|}, (3.7)

U∞ = max
i=1,...,n

sup
(t,x)∈D

|ui(t, x)| (3.8)

and

W∞ = max
i=1,...,n

sup
(t,x)∈D

|wi(t, x)|. (3.9)

Combining Lemma 3.1 and Theorem 1.1 in [1] gives

Lemma 3.2 Under the assumptions of Lemma 3.1, there exists a positive constant K0 inde-

pendent of θ and (t, x), such that on the existence domain D, in the corresponding generalized

normalized coordinates, we have the following uniform a priori estimates:

U c
∞, W c

∞, U∞, W∞ ≤ K0θ. (3.10)

Throughout this section, we will use the generalized normalized coordinates. For simplicity,

we still denote the generalized normalized coordinates as u = (u1, . . . , un)T and the global C1

solution as u = u(t, x).

First, noting (3.5), by Lemma 3.2 we can easily get

|ui(t, x)| ≤ K0θ(1 + x)−(1+µ) ≤ Cθ(1 + t)−µ, i = 1, . . . , n − 1, (3.11)

here and hereafter, C denotes a positive constant independent of (t, x) and θ.

Let
D

Dnt
=

∂

∂t
+ λn(0)

∂

∂x
. (3.12)

Clearly,
D

Dnt
=

d

dnt
+ (λn(0) − λn(u))

∂

∂x
. (3.13)

Thus, using (2.8) and (2.22), we have

Dun

Dnt
=

dun

dnt
+ (λn(unen) − λn(u))

∂un

∂x

=
n∑

j,k=1

(
ρnjk(u)ujwk + fnjk(u)ujuk

)
+ (λn(unen) − λn(u))

∂un

∂x
. (3.14)

Then, by Hadamard’s formula, we have

Dun

Dnt
=

n∑

j,k=1

(
ρ̃njk(u)ujwk + fnjk(u)ujuk

)
, (3.15)

where

ρ̃njk(u) =





ρnjk(u) − rkn(u)

∫ 1

0

∂λn

∂uj

(τu1, . . . , τun−1, un)dτ, j = 1, . . . , n − 1; k = 1, . . . , n,

ρnnk(u), j = n; k = 1, . . . , n,
(3.16)
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in which rnn(u) denotes the n-th component of rn(u).

By (2.9), we have

ρ̃nnn(u) ≡ 0. (3.17)

On the existence domain D, we now study the asymptotic behavior of un(t, x) as t → +∞. For

any fixed (t, x) ∈ D, let α = x − λn(0)t. Noting the definition of D and (3.5), either α ≥ 0 or

α ≤ 0.

(1) When α ≥ 0, it follows from (3.15) that

un(t, x) = un(t, α + λn(0)t)

= un(0, α) +

∫ t

0

n∑

j,k=1

(
ρ̃njk(u)ujwk + fnjk(u)ujuk

)
(s, α + λn(0)s)ds. (3.18)

Noting (2.10), (3.17) and (3.5), by Lemma 3.2, for any fixed α ≥ 0 we have

∫ t

0

n∑

j,k=1

(
|ρ̃njk(u)ujwk| + |fnjk(u)ujuk|

)
(s, α + λn(0)s)ds ≤ Cθ2

∫ t

0

1

(1 + s)(1+µ)
ds, (3.19)

which implies that when t → +∞, the integral

∫ t

0

n∑

j,k=1

(
ρ̃njk(u)ujwk + fnjk(u)ujuk

)
(s, α + λn(0)s)ds

converges uniformly with respect to α ≥ 0. Moreover, noting that all functions on the righthand

side of (3.18) are continuous with respect to α ≥ 0, we obtain that there exists a unique Φ̃n(α) ∈

C0[0, +∞) such that

un(t, x) − Φ̃n(x − λn(0)t) → 0 as t → +∞. (3.20)

Moreover, from (3.18)–(3.20), we have

|un(t, x) − Φ̃n(x − λn(0)t)|

≤

∫ ∞

t

n∑

j,k=1

(
|ρ̃njk(u)ujwk| + |fnjk(u)ujuk|

)
(s, α + λn(0)s)ds

≤ Cθ2

∫ +∞

t

1

(1 + s)(1+µ)
ds ≤ Cθ2(1 + t)−µ. (3.21)

(2) When α ≤ 0, let (t0, x0) be the intersection point of line x = λn(0)t + α with x = xn(t).

Obviously, t0 ≤ t, by (3.15), we have

un(t, x) = un(t, α + λn(0)t)

= un(t0, x0) +

∫ t

t0

n∑

j,k=1

(
ρ̃njk(u)ujwk + fnjk(u)ujuk

)
(s, α + λn(0)s)ds. (3.22)

Then, using (2.8), we have

un(t, x) =un(0, 0) +

∫ t0

0

n∑

j,k=1

(
ρnjk(u)ujwk + fnjk(u)ujuk

)
(s, xn(s))ds+
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∫ t

t0

n∑

j,k=1

(
ρ̃njk(u)ujwk + fnjk(u)ujuk

)
(s, α + λn(0)s)ds

,un(0, 0) + I(t, α). (3.23)

Noting (2.9)–(2.12), (3.16)–(3.17) and (3.5), by Lemma 3.2, for any fixed α ≤ 0 we have

n∑

j,k=1

[ ∫ t0

0

(
|ρnjk(u)ujwk| + |fnjk(u)ujuk|

)
(s, xn(s))ds+

∫ t

t0

(
|ρ̃njk(u)ujwk| + |fnjk(u)ujuk|

)
(s, α + λn(0)s)ds

]

≤ Cθ2
[ ∫ t0

0

1

(1 + s)(1+µ)
ds +

∫ t

t0

1

(1 + s)(1+µ)
ds

]

= Cθ2

∫ t

0

1

(1 + s)(1+µ)
ds. (3.24)

Hence, when t → +∞, the integral I(t, α) converges uniformly with respect to α ≤ 0. On the

other hand, noting that all functions on the righthand side of (3.23) are continuous with respect

to α, we obtain that there exists a unique ˜̃Φn(α) ∈ C0(−∞, 0] such that

un(t, x) − ˜̃Φn(x − λn(0)t) → 0 as t → +∞ (3.25)

and

|un(t, x) − ˜̃Φn(x − λn(0)t)|

≤

∫ ∞

t

n∑

j,k=1

(
|ρ̃njk(u)ujwk| + |fnjk(u)ujuk|

)
(s, α + λn(0)s)ds

≤ Cθ2

∫ +∞

t

1

(1 + s)(1+µ)
ds ≤ Cθ2(1 + t)−µ. (3.26)

By (3.18) and (3.23), we get

Φ̃n(0) = ˜̃Φn(0). (3.27)

Combining (1) and (2), there exists a unique C0 function

Φn(α) ,

{
Φ̃n(α), if α ≥ 0,

˜̃Φn(α), if α ≤ 0,

such that

un(t, x) − Φn(x − λn(0)t) → 0 as t → +∞ (3.28)

and

|un(t, x) − Φn(x − λn(0)t)| ≤ Cθ2(1 + t)−µ. (3.29)

By (3.11) and (3.28)–(3.29), in order to prove Theorem 1.1, it is only necessary to prove Φn(α) ∈

C1(R). Noting that Φn(α) ∈ C0(R), we only need to show that dΦn(α)
dα

∈ C0(R).

To this end, we calculate

dΦn(α)

dα
= lim

△α→0

Φn(α + △α) − Φn(α)

△α
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= lim
△α→0

lim
t→+∞

un(t, α + △α + λn(0)t) − un(t, α + λn(0)t)

△α

= lim
t→+∞

lim
△α→0

un(t, α + △α + λn(0)t) − un(t, α + λn(0)t)

△α

= lim
t→+∞

∂un

∂x
(t, α + λn(0)t). (3.30)

Noting (2.3) and (2.5) and using Hadamard’s formula, we have

∂un

∂x
=

n∑

k=1

wkrk(u) · en =

n−1∑

k=1

wkrk(u) · en + wnrn(u) · en

=
n∑

k=1

wk(rk(u) − rk(ukek)) · en + wn

= wn +
∑

j 6=k

Ijk(u)ujwk, (3.31)

where

Ijk(u) =

∫ 1

0

∂rkn

∂uj

(τu1, . . . , τuk−1, uk, τuk+1, . . . , τun)dτ. (3.32)

Thus,
∂un

∂x
(t, α + λn(0)t) = wn(t, α + λn(0)t) +

∑

j 6=k

[Ijk(u)ujwk](t, α + λn(0)t). (3.33)

By (3.5) and Lemma 3.2, when t → +∞,
∑

j 6=k

[Ijk(u)ujwk](t, α + λn(0)t) → 0

uniformly with respect to α ∈ R with the algebraic rate (1 + t)−(1+µ). Hence,

lim
t→+∞

∂un

∂x
(t, α + λn(0)t) = lim

t→+∞
wn(t, α + λn(0)t). (3.34)

For any fixed point (t, α + λn(0)t) ∈ D, there exists a unique β(t, α) ∈ [0, +∞) such that

β(t, α) +

∫ t

0

λn(u(s, xn(s, β(t, α))))ds = α + λn(0)t,

namely,

β(t, α) = α +

∫ t

0

(λn(0) − λn(u(s, xn(s, β(t, α)))))ds, (3.35)

where x = xn(s, β(t, α)) is the n-th characteristic passing through the point (0, β(t, α)):





dxn(s, β(t, α))

ds
= λn(u(s, xn(s, β(t, α)))),

xn(0, β(t, α)) = β(t, α).

Clearly,

wn(t, α + λn(0)t) = wn(t, xn(t, β(t, α))). (3.36)

Lemma 3.3 There exists a unique nonnegative β(α) ∈ C0(R) such that, when t → +∞, β(t, α)
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uniformly converges to β(α).

Proof Since λn(u) is WLD, it follows from (3.35) that

β(t, α) = α +

∫ t

0

[λn(unen) − λn(u)](s, xn(s, β(t, α)))ds. (3.37)

By Hadamard’s formula, (3.37) can be rewritten as

β(t, α) = α +

∫ t

0

n−1∑

k=1

[Jnk(u)uk](s, xn(s, β(t, α)))ds, (3.38)

where

Jnk(u) = −

∫ 1

0

∂λn

∂uk

(τu1, . . . , τun−1, un)d, k = 1, . . . , n − 1.

Noting (3.5) and β(t, α) ≥ 0, (s, xn(s, β(t, α))) ∈ D and, by Lemma 3.2 we have

∫ t

0

n−1∑

k=1

|Jnk(u)uk|(s, xn(s, β(t, α)))ds ≤ Cθ

∫ t

0

1

(1 + s)1+µ
ds, (3.39)

which implies that when t → +∞, the integral

∫ t

0

n−1∑

k=1

[Jnk(u)uk](s, xn(s, β(t, α)))ds

converges uniformly with respect to α. We notice that all functions on the righthand side of

(3.38) are continuous with respect to α ∈ R, so there exists a unique β(α) ∈ C0(R) such that

when t → +∞,

β(t, α) → β(α) (3.40)

uniformly with respect to α ∈ R with the algebraic rate (1 + t)−µ. Moreover, noting β(t, α) ≥ 0,

β(α) is nonnegative. This completes the proof. 2

By Lemma 3.3, noting that wn(t, x) is a continuous function of t and x, we have

lim
t→+∞

wn(0, β(t, α)) = wn(0, β(α)). (3.41)

Lemma 3.4 There exists a unique Ψn(α) ∈ C0(R) such that when t → +∞,

wn(t, xn(t, β(t, α))) → Ψn(α) (3.42)

uniformly on R with the algebraic rate (1 + t)−µ, where x = xn(t, β(t, α)) stands for the n-th

characteristic passing through the point (0, β(t, α)).

Proof Noting (2.23), we have

wn(t, xn(t, β(t, α)))

= wn(0, β(t, α)) +

∫ t

0

n∑

j,k=1

(Qnjk(u)ukwj + γnjk(u)wjwk)(s, xn(s, β(t, α)))ds. (3.43)

Noting (2.20), (2.24) and (3.5) and using Lemma 3.2, we have
∫ t

0

n∑

j,k=1

(|Qnjk(u)ukwj | + |γnjk(u)wjwk|)(s, xn(s, β(t, α)))ds
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≤

∫ t

0

[ n−1∑

j=1

n∑

k=1

(|Qnjk(u)ujwk| + |γnjk(u)wjwk|) +

n−1∑

k=1

(|Qnnk(u)ukwn| + |γnnk(u)wnwk|)+

|(γnnn(u) − γnnn(unen))w2
n|

]
(s, xn(s, β(t, α)))ds

≤ Cθ2

∫ t

0

1

(1 + s)(1+µ)
ds +

∫ t

0

|(γnnn(u) − γnnn(unen))w2
n|(s, xn(s, β(t, α)))ds. (3.44)

Then, noting (2.22) and using Hadamard’s formula and Lemma 3.2 again, we have
∫ t

0

|(γnnn(u) − γnnn(unen))w2
n|(s, xn(s, β(t, α)))ds

≤

∫ t

0

|

n−1∑

j=1

γj
nnn(u)ujw

2
n|(s, xn(s, β(t, α)))ds

≤ Cθ2

∫ t

0

1

(1 + s)(1+µ)
ds, (3.45)

where

γj
nnn(u) =

∫ 1

0

∂γnnn

∂uj

(τu1, . . . , τun−1, un), j = 1, . . . , n − 1. (3.46)

Thus,
∫ t

0

n∑

j,k=1

(|Qnjk(u)ukwj | + |γnjk(u)wjwk|)(s, xn(s, β(t, α)))ds ≤ Cθ2

∫ t

0

1

(1 + s)(1+µ)
ds, (3.47)

which implies that when t → +∞, the integral
∫ t

0

n∑

j,k=1

(Qnjk(u)ukwj + γnjk(u)wjwk)(s, xn(s, β(t, α)))ds

converges uniformly with respect to α ∈ R with the algebraic rate (1 + t)−µ. Noting that all

functions on the righthand side of (3.43) are continuous with respect to α, by (3.41) there exists a

unique Ψn(α) ∈ C0(R) such that when t → +∞, (3.42) holds uniformly on R with the algebraic

rate (1 + t)−µ. The proof of Lemma 3.4 is completed. 2

Proof of Theorem 1.1 Clearly, it follows from (3.36) and Lemma 3.4 that

lim
t→+∞

wn(t, α + λn(0)t) = lim
t→+∞

wn(t, xn(t, β(t, α))) = Ψn(α) ∈ C0(R). (3.48)

Then, by (3.30), (3.34) and (3.48), we have

dΦn(α)

dα
= Ψn(α) ∈ C0(R). (3.49)

Thus, the proof of Theorem 1.1 is completed. 2
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