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Abstract In this paper we study the asymptotic behavior of global classical solutions to the
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1. Introduction and main result

Consider the following first order inhomogeneous quasilinear hyperbolic system

ou Ou

— 4+ Alu)=— =F 1.1

L ) (11)
where u = (ug,...,u,)T is the unknown vector function of (¢,x), A(u) is an n x n matrix with
C? elements a;j(u) (i,j = 1,...,n), F(u) = (Fi(u),...,F,(u))T is a given vector function of u

with C? elements F;(u) (i =1,...,n) and
F(0)=0, VF(0)=0. (1.2)

By hyperbolicity, for any given u on the domain under consideration, A(u) has n real eigen-
values A\ (u), ..., A\n(u) and a complete set of left (resp. right) eigenvectors. For ¢ = 1,...,n, let
Li(w) = (Lin(u), ..., lin(u)) (vesp. ri(u) = (ri1(u),...,7m(u))T) be aleft (resp. right) eigenvector
corresponding to A;(u):

Li(w)A(u) = Ai(u)li(u) (1.3)
and

A(u)ri(u) = XN (u)ri(u). (1.4)
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We have
det |I;;(u)] # 0, resp. det |r;;(u)| # 0. (1.5)

Without loss of generality, we assume that on the domain under consideration
ll(u)rj(u)561]7 i?j:]‘?"'?n? (1.6)

where d;; stands for the Kronecker’s symbol.

We suppose that all \;(u), l;;(u) and r4;(u) (3,5 = 1,...,n) have the same regularity as
ai;(uw) (5,5 =1,...,n).

In particular, if, for any given u on the domain under consideration, A(u) has n distinct real

eigenvalues
A(u) < Ag(u) < -+ < Ap(u), (1)

system (1.1) is called strictly hyperbolic.
First, let us recall the definition of weak linear degeneracy [10,11] and matching condition
related to Ap,(u) [1].

Definition 1.1 The i-th characteristic \;(u) is called weakly linearly degenerate (WLD), if

along the i-th characteristic trajectory u = u*(s) passing through v = 0, defined by
du
{ d_S - ri(u)u (18)
s=0:u=0,
we have

Vi(uw)ri(u) =0, V |u| small, (1.9)

ie.
Ai(ui(s)) = \i(0), VY |s| small. (1.10)

If all characteristics are WLD, then system (1.1) is said to be WLD.

Definition 1.2 F(u) is called satisfying the matching condition related to A\, (u), if in a neigh-

bourhood of u = 0, along the n-th characteristic trajectory u = u™(s) passing through the origin

in the u-space, we have
F(u"(s)) =0, VY |s|small (1.11)

When system (1.1) is strictly hyperbolic and WLD and F(u) € C? satisfies the matching
condition [4], for the Cauchy problem (1.1) with the initial data
t=0:u=¢(z), zeR, (1.12)

where ¢(x) is a C! vector function with the following decaying property: there exists a positive

constant i such that
0= Slelllg{(l + ) (o) + |6/ (@)} < oo, (1.13)

based on the global existence result of the classical solution obtained in [11], it was proved in [5]
that there exists a unique C! vector function ®(x) = (®1(x),...,®,(x))T such that on ¢t > 0, in
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normalized coordinates [10, 11]

n

u(t,z) = > @il — N\i(0)t)es| < KO?(1+1)7", (1.14)

where K is a positive constant independent of (¢, z) and 6, and
e =(0,...,0,%1,0,...,0)7, (1.15)

Notice that each ®;(z — X\;(0)t)e; is a solution to system (1.1).

In this paper we suppose that in a neighbourhood of u = 0,
Ar(w), ..oy Ap—1(u) < Ap(uw). (1.16)
Consider the Cauchy problem for system (1.1) with the initial data
t=0:u=¢(x), x>0, (1.17)

where ¢(z) is a C! vector function with the following decaying property: there exists a positive

constant p such that

9331;%{(1+33)”“(|¢(33)I +1¢' (@)} < oo (1.18).

The following existence theorem was proved in [1]:

Theorem A  Under the hypotheses mentioned above, suppose furthermore that in a neigh-
bourhood of w = 0, Ay (u) is WLD and F(u) satisfies the matching condition related to A, (u).
Then there exists 8y > 0 so small that for any 6 € [0, 6y], Cauchy problem (1.1) and (1.17) admits
a unique global C* solution v = wu(t,x) with small C' norm on the domain D = {(t,z)| t >
0,2 > x,(t)}, where x = x,(t) is the n-th characteristic passing through the origin O(0,0):

de,(t)
—5 = An(u(t, zn(t))),

2, (0) = 0.

In this paper, based on Theorem A, we will prove the following result:

(1.19)

Theorem 1.1 Under the assumptions of Theorem A, there exists a unique C' function ®,,(x)
such that in the generalized normalized coordinates [12], on the existence domain D of the global

classical solution u = u(t,x) to Cauchy problem (1.1) and (1.17), the following estimate holds:
lu(t,z) — ®p (@ — Ap(0)t)en| < KO(1+ 1), (1.20)
where K is a positive constant independent of (t,x) and 6.
Remark 1.1 If F(u) = 0, the conclusion of Theorem 1.1 is valid.
Remark 1.2 Suppose that in a neighbourhood of v = 0,
A(u), .. Ap(w) < Appr(u) = -+ = A (u), (1.21)

where A\(u) £ A\p11(u) = - -+ = A\, (u) is a characteristic with constant multiplicity n—p. Suppose
furthermore that A\p41(w),. .., Ap(u) are WLD [7]. Thus, the conclusion of Theorem 1.1 will be re-
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placed as follows: there exists a unique C* vector function ®(x) = (0,...,0, ®,1(x),. .., Pn(z))T
such that
lult,z) = Y ®ilw = Mi(0)t)e;| < KO(1+1)7", (1.22)
1=p+1

where K is a positive constant independent of (¢, x) and 6.

Remark 1.3 When, in a neighbourhood of v = 0,

AL(w) < Ao (W), ... An(w) (1.23)
or
M) = - = Ap() < Apsr (1), - - A (1), (1.24)
for the initial data
t=0:u=q¢(x), <0 (1.25)
such that
6= iglg{(l + |z (Jo(2)] + ¢/ (2)])} < +oo, (1.26)

similar results hold as in Theorem 1.1 and Remarks 1.1-1.2.

In Section 2 we give some preliminaries, then, the main result is proved in Section 3.

2. Preliminaries

By the proof of Lemma 2.5 in [10], for any given complete system of right eigenvectors
ri(u),...,mp(u) of A(u) (without assuming the strict hyperbolicity), there exists a suitably
smooth invertible transformation v = wu(w) (u(0) = 0) such that in the u-space, for each
i = 1,...,n, the i-th characteristic trajectory passing through @ = 0 coincides with the ;-

axis at least for |u;| small, namely,
ri(ue;)//ei, ¥ |ui|small, i=1,... n, (2.1)

where 7; () denotes the i-th right eigenvector corresponding to r;(u) and e; is given by (1.15).
This transformation is called a generalized normalized transformation, and the unknown

variables U = (%1, ..,u,)" are called generalized normalized variables or generalized normalized

coordinates [12]; for the normalized transformation and the normalized coordinates, also see [10],

[11]. Without loss of generality, we assume that

7 (@) () =1, (2.2)

then, (2.1) can be written as
ri(ue;) =e;, V| usmall, i=1,...,n. (2.3)

Let
w; =Li(wug, i=1,...,n. (2.4)
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y (1.5), we have

Uy = Z wirg(u). (2.5)
k=1
et d 0 B
- - 2.
oo MW (2:6)
denote the directional derivative with respect to t along the i-th characteristic.
We have |2, 8]
=> (A w))wy (wry(u) + F(u), i=1,...,n. (2.7)
z 1
Then, in the corresponding generalized normalized coordinates, it is easy to see that [2, 8]
d’UJi - .
Jok=1
where
piji(u) =0, Vi, j, (2.9)
fink(u) = 07 Vl, ka (210)
or i .
pijk (1) = (Ai(w) — Ag(u)) 8uk- (TULy -« oy TUR—1, Uk, TUE41, - - -, TUR)AT, YV j#£k  (2.11)
0 J
and ) 2p
O°Fi(oTu1,...,0TUp—1,0TUp) .
forw) = [ oule) /0 TR dodr, ¥j#n,  (212)
in which
0(){7, k=1,...,n—1, (2.13)
R = 1, k=n. '
Obviously,
On the other hand, we have [3,6,9]
Wi _ ZBwk u) +vi;(u wJ—l— Z vigk(Wwjwg, i=1,...,n, (2.15)
j=1 k=1 Jok=1
where
Biji(u) = —1i(w)Vr;(u)r(u), (2.16)
pr(u) = le(w) F(u), (2.17)
vij(u) = L;(u)VE (u)rj(u), (2.18)
1 .
ik (w) = 5 {0 (W) = Ae(u)li (W) Vrr(w)r; (w) = VA (u)r; (w)oi + (j1k)}, (2.19)

in which (j]k) stands for all terms obtained by changing j and & in the previous terms. It is easy
to see that

Yijj(u) =0, Vji#i (2.20)
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and
%ii(u) = —V)\i(u)ri(u), Vi. (221)

Moreover, as A, (u) is WLD, in the corresponding generalized normalized coordinates, we have
Yrnn(Unen) = 0, Ap(unen) = An(0), V|u,| small. (2.22)

According to Lemma 2.1 in [2], if in a neighbourhood of u = 0, F(u) € C? with (1.2) satisfying
the matching condition related to A, (u), i.e., (1.10) holds, then in the corresponding generalized
normalized coordinates, we can rewrite (2.15) as

dwi
d;t

= > (Qijr(w)urw; + Yijr(w)wjwy), (2.23)
jk=1

where Q;;x(u) is continuous in a neighbourhood of v = 0, and

Qinn(u) =0, V]u| small, Vi. (2.24)

3. Proof of Theorem 1.1

It is easy to see that under any smooth transformation u = u(@) (1u(0) = 0), the weak linear
degeneracy of A, (u) is invariant. Then, without loss of generality, we may assume that system
(1.1) is written in the corresponding generalized normalized coordinates. In what follows, we
always assume that € > 0 is suitably small.

By (1.16), there exist positive constants g and § so small that

and 5

Without loss of generality, we suppose that
)\1(0) 260, i=1,...,n. (33)
The following lemma comes from [1].

Lemma 3.1 Suppose that in a neighbourhood of u = 0, A(u) € C?, F(u) € C? with (1.2)
satistying the matching condition related to A\, (u), system (1.1) is hyperbolic and (1.16) holds.
Suppose furthermore that A, (u) is WLD and ¢(x) is a C' vector function satisfying (1.18). Then
there exists 8y > 0 so small that for any 6 € [0, 0], Cauchy problem (1.1) and (1.17) admits a
unique global C* solution u = u(t, x) with small C' norm on the domain D = {(t,z)| t > 0,z >

2 (t)}. Moreover, when 0y > 0 is suitably small, the solution u = u(t, z) satisfies

|u(t, z)| < 6. (3.4)
By (3.2) and (3.3), it is easy to see that
rat) 2 On0) = Dyt > 21 (3.5)
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Let

US, = max sup {(1 +x)1+#|ui(t’x)|}7
i=1,...n=1 4 1yep

WS = max sup {(1 +x)1+“|wi(t,x)|},
i=1,...n=1(4 1yep

Usw = max sup |u(t, z)
i=1,...,n (t,x)eD
and

Ws = max sup |w;(t,x)]|.
i=1,....,n (¢ x)eD

Combining Lemma 3.1 and Theorem 1.1 in [1] gives

47

Lemma 3.2 Under the assumptions of Lemma 3.1, there exists a positive constant K inde-

pendent of § and (t,z), such that on the existence domain D, in the corresponding generalized

normalized coordinates, we have the following uniform a priori estimates:

Ugoa Wgou U007WOO S KOH

(3.10)

Throughout this section, we will use the generalized normalized coordinates. For simplicity,

we still denote the generalized normalized coordinates as u = (u1,...,u,)T and the global C*

solution as u = u(t, x).

First, noting (3.5), by Lemma 3.2 we can easily get
lui(t, z)| < Kob(1 4 z)" MW <o +16)7", i=1,...

here and hereafter, C' denotes a positive constant independent of (¢, x) and 6.
Let

D 0 0
Clearly,
D d 0
Dt di + (An(0) — /\n(u))%'
Thus, using (2.8) and (2.22), we have
Du,, du, Oun,
Dot = d—nt + (/\n(unen) - /\n(u))E
- ouy,
= D~ (pur (g + Fagn(wgun ) + Cra(tnen) = A () F2
Jok=1
Then, by Hadamard’s formula, we have
Du,, N
2 = 3 (o wugon + fuge(w)uju),
n G k=1
where
L oA,
. Pnjk(u) — rkn(u)/ —(Tu1, .., TUp—1,up)dr, j=1,...,n—1;k=1,...
Pk (u) = o Ouj

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)
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in which 7y, (u) denotes the n-th component of r, (u).
By (2.9), we have

Prnn(u) = 0. (3.17)

On the existence domain D, we now study the asymptotic behavior of u,(t,z) as t — +oo. For
any fixed (t,z) € D, let a = z — A\,,(0)¢. Noting the definition of D and (3.5), either o > 0 or
a<0.

(1) When o > 0, it follows from (3.15) that

Un (t, ) = un(t, a0 + Ay (0)2)

+‘/Ot i p"]k )u]wk+fn]k( )’U/]’U/k)(s Oé+)\ ( ) )dS (318)

J.k=1

Noting (2.10), (3.17) and (3.5), by Lemma 3.2, for any fixed o > 0 we have

/ 3 (Iuselausion] + fuse (wusinl) 5.+ An(0)s)ds < 82 / (Hil)wd (3.19)

7,k=1

which implies that when ¢ — +o0, the integral

/ Z pnjk w)ujwi + foje(u )ujuk>(s o+ A, (0)s)ds

J,k=1
converges uniformly with respect to e > 0. Moreover, noting that all functions on the righthand
side of (3.18) are continuous with respect to a > 0, we obtain that there exists a unique ®,,(a) €
C°[0, +00) such that

Uun(t,x) — Pp(x — Ay (0)t) — 0 as t — 4o0. (3.20)

Moreover, from (3.18)—(3.20), we have

|un(t x) -9, ( _)‘n(o)t)l

< 73 (pwswsun] + Ut 5.0+ 2a(@)5)as

7,k=1
< Ch? - 1 4s< CO*(1+t)~+ (3.21)
- ¢ (L4s)0tm T = ' '

(2) When « <0, let (to,z0) be the intersection point of line z = A, (0)t + a with z = z,(¢).
Obviously, tg < t, by (3.15), we have

Un(t, ) = un(t, a0+ Ap(0)2)
= un(to, o) —|—/ Z Pl (W)U Wi —I—fnjk(u)ujuk) (s,a+ A\, (0)s)ds. (3.22)
to j,k=1

Then, using (2.8), we have

n

to
U (t,2) =un(0,0) —|—/ Z Pk (W)U Wy —l—fnjk(u)ujuk) (s, 2n(8))ds+
0
J,k=1
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/ Z Pk (W)ujwy + fnjk(u)ujuk)(s,oz + A (0)s)ds

to]k 1

21, (0,0) + I(t, ).

Noting (2.9)—(2.12), (3.16)—(3.17) and (3.5), by Lemma 3.2, for any fixed a < 0 we have

B 1

to

to 1 t
< 06? —d —_—
- [/0 (1+ s)(1+u) St /to 1+ s)(1+u)

t
1
_ 2
=1 /0 T e

[/ (|Pn;k w)ujwg| + |fnjk(u)uj‘uk|)(5,xn(s))ds+

[ (istwysond + 1 oeoysguel) s, 2a(@)5)35]
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(3.23)

(3.24)

Hence, when t — 400, the integral I(¢,a) converges uniformly with respect to o < 0. On the

other hand, noting that all functions on the righthand side of (3.23) are continuous with respect

to «, we obtain that there exists a unique ®,(a) € C°(—o0, 0] such that

Un(t, ) — (2 — A (0)t) = 0 as t — +oo

and

|un(t, x)—fl’ (z = An(0)1)]

< 732 (Ipwswsun] + s 5.0+ 2a(0)5)ds

J,k=1

+oo 1
2 2 —u
< Ch /t 7(1+8)(1+M)d5§09 (1+1)

y (3.18) and (3.23), we get

Combining (1) and (2), there exists a unique C° function

N d,(a), ifa>0,
@n(a) = =
D, (o), ifa<O,
such that
Un(t,x) — Pp(x — Ay (0)t) = 0 as t — +oo
and

[tn (t, ) — @ (z — A (0)2)| < CO*(1 +t)7H

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)

By (3.11) and (3.28)—(3.29), in order to prove Theorem 1.1, it is only necessary to prove ®,(a) €

. do, («a
C1(R). Noting that ®,(a) € C°(R), we only need to show that (I’d—a() € C°(R).

To this end, we calculate

d®,, («) . Du(a+ Aa)— Dy (a)
= lim
da Na—0 Ao
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Un(t, o+ Aa+ A (0)t) — upn (8, + A (0))

= gt >
= lim g Yt et Bat A (0)t) — ua(t o+ An(0)2)
t——+oo Aa—0 Ao
du
= lm_ G ta+ 20, (3.30)

Noting (2.3) and (2.5) and using Hadamard’s formula, we have

8un
E wirg (u E wirg(u) - en + wnry(u) - ey

= Zwk i(u) = ri(uker)) - en + wy

:wn—i-ZIjk ) U Wi, (3.31)
J#k
where
! (%‘;m
Lig(u) = (TULy « ooy TUR—1, Wy TUR 1y - -+, Ty )dT. (3.32)
o Ouj
Thus,
Ouy,
%(f, @+ A (0)) = wa(t, a+ A (0)) + Y (Lo (w)ujwi] (£, @ + A (0)L). (3.33)
Jj#k

By (3.5) and Lemma 3.2, when ¢t — +o0,

Z[Ijk(u)ujwk](t, a+ A (0)t) — 0

7k
uniformly with respect to a € R with the algebraic rate (1 + t)_(1+”). Hence,
. Ouy
tl}TW 8—x(t’ a+ A, (0)t) = t_l}rmoO wp(t, @ + A (0)1). (3.34)

For any fixed point (¢, « + A, (0)t) € D, there exists a unique 5(¢, ) € [0, +00) such that

B(t, a) —i—/o An(u(s, (s, B(t, @))))ds = a + A (0)t,
namely, .
Bt,a) = a—l—/o (A (0) = N (u(s, 2o (s, B(t, @)))))ds, (3.35)

where x = z,(s, 8(t, ) is the n-th characteristic passing through the point (0, 5(¢, «)):

W = An(uls, 2n(s, B(L, 0)))),

(0, B(t, ) = B(t, ).
Clearly,
wp(t, @ + A (0)t) = wi (t, 2, (8, B(E, @))). (3.36)

Lemma 3.3 There exists a unique nonnegative 3(a) € C°(R) such that, when t — +o0, 3(t, )
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uniformly converges to B(«).

Proof Since A\, (u) is WLD, it follows from (3.35) that

t
B(t.) =t [ DhnCinen) = dn(a)] s, (s (). (337)
0
By Hadamard’s formula, (3.37) can be rewritten as
tn—1
Bt,a) = a+/ Z[Jnk(u)u (s, zn(s, B(t, @)))ds, (3.38)
0 k=1
where
Lo,
Jnk(u) = — ; 8—W(Tu1, cey TUp—1,up)d, k=1,...,n—1.

Noting (3.5) and B(¢, o) > 0, (s, 2, (s, 8(¢,@))) € D and, by Lemma 3.2 we have

tn—1
/0 Z | Tk (w)ur| (s, za(s, B(t, @)))ds < 09/ Wd ; (3.39)
which implies that when ¢ — +o00, the integral
tn—1
/ > [k (w)ur](s, 2 (s, B(t, @)))ds
0 k=1

converges uniformly with respect to a. We notice that all functions on the righthand side of
(3.38) are continuous with respect to o € R, so there exists a unique 8(a) € C°(R) such that
when t — +o0,

Bt a) — B(a) (3.40)
uniformly with respect to a € R with the algebraic rate (1 +¢)~*. Moreover, noting 3(t, ) > 0,
B(a) is nonnegative. This completes the proof. O

By Lemma 3.3, noting that w, (¢, x) is a continuous function of ¢ and z, we have

lim w,(0,5(t, @) = w, (0, B(c)). (3.41)

t——+o00

Lemma 3.4 There exists a unique ¥,,(a) € C°(R) such that when t — +o0,

wp(t, 20 (¢, Bt @) — V() (3.42)

uniformly on R with the algebraic rate (1 +t)™*, where v = x,(t, 8(t,«)) stands for the n-th
characteristic passing through the point (0, 8(t, «)).

Proof Noting (2.23), we have
wn (t, oo (t, B(t, @)))
— wa (0, At ) / Z (O (W)t + g (W) wyw0p ) (5, 2 (5, B(E, a)))ds.  (3.43)

7,k=1
Noting (2.20), (2.24) and (3.5) and using Lemma 3.2, we have

/0 S (1 Qe (w)utt] + gt (w)w504]) (5, 20 (5, Bt ) ds

7,k=1
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t n—=1 n n—1
S/ (DD (1Qun(u )ijkl+I%jk(u)ijkl)+Z(Ika(u)ukwnl+|%mk(u)wnwk|)+
0 j=t1k=1 k=1
|(’7nnn(u) Vnnn(unen) S J;n( ﬁ(f Oé)))ds
<o [ / Gnan () = Y mea)) 2 (5,05, 5, s, (344

/ | (1) = A (timen) 02 (5, 20 (5, B(t, ) s

</ gmﬂmn(umw (5, 2a(s, A(t, @)))ds

¢
1
2
where
. Loy
’yfmn(u):/ 67"?" (TUL, -y TUR—1,Up), J=1,...,n—1. (3.46)
0 U
Thus,
¢
1
2
/ Z (@u (s + g el s, 3. Bt ) < OF [ s, (3a7)

which implies that when t — 400, the integral

/ S (@it uptey + g )y ) (5, (s, Bt )

k=1

converges uniformly with respect to @ € R with the algebraic rate (1 4+ ¢)7#. Noting that all
functions on the righthand side of (3.43) are continuous with respect to «, by (3.41) there exists a
unique ¥,,(a) € C°(R) such that when ¢ — +o00, (3.42) holds uniformly on R with the algebraic
rate (1 +¢)~#. The proof of Lemma 3.4 is completed. O

Proof of Theorem 1.1 Clearly, it follows from (3.36) and Lemma 3.4 that

tilm wp (t, @ + A (0)t) = tiigloo wn (t, 20 (t, B(t, @))) = ¥, (o) € CO(R). (3.48)
Then, by (3.30), (3.34) and (3.48), we have
M)de‘) =U,(a) € C°R). (3.49)

Thus, the proof of Theorem 1.1 is completed. O

Acknowledgements The author would like to thank Professor Li Tatsien for his careful in-

struction and to thank Professors Zhou Yi and Wang Libin for their kind help.

References

[1] HAN Weiwei. Global existence of classical solutions to the Cauchy problem on a semi-bounded initial axis for
inhomogeneous quasilinear hyperbolic systems [J]. J. Partial Differential Equations, 2007, 20(3): 273-288.



Asymptotic behavior of quasilinear hyperbolic systems 53

2]
[3]
[4]
[5]
[6]
7]

(8]

[9]
(10]
(1]

(12]

HAN Weiwei. Breakdown of classical solutions to the Cauchy problem on a semi-bounded initial axis for
quasilinear hyperbolic systems [J]. Nonlinear Anal., 2008, 69(5-6): 1830-1850.

JOHN F. Formation of singularities in one-dimensional nonlinear wave propagation [J]. Comm. Pure Appl.
Math., 1974, 27: 377-405.

KONG Dexing. Cauchy Problem for Quasilinear Hyperbolic Systems [M]. Mathematical Society of Japan,
Tokyo, 2000.

KONG Dexing, YANG Tong. Asymptotic behavior of global classical solutions of quasilinear hyperbolic
systems [J]. Comm. Partial Differential Equations, 2003, 28(5-6): 1203-1220.

LI Shumin. Cauchy problem for general first order inhomogeneous quasilinear hyperbolic systems [J]. J.
Partial Differential Equations, 2002, 15(1): 46-68.

LI T T, KONG Dexing, ZHOU Yi. Global classical solutions for quasilinear nonstrictly hyperbolic systems
[J]. Nonlinear Stud., 1996, 3(2): 203-229.

LI T T, WANG Libin. Global existence of weakly discontinuous solutions to the Cauchy problem with a kind
of non-smooth initial data for quasilinear hyperbolic systems [J]. Chinese Ann. Math. Ser. B, 2004, 25(3):
319-334.

LI T T, WANG Libin. Global existence of classical solutions to the Cauchy problem on a semi-bounded
initial axis for quasilinear hyperbolic systems [J]. Nonlinear Anal., 2004, 56(7): 961-974.

LITT,ZHOU Yi, KONG Dexing. Weak linear degeneracy and global classical solutions for general quasilinear
hyperbolic systems [J]. Comm. Partial Differential Equations, 1994, 19(7-8): 1263-1317.

LI T T, ZHOU Yi, KONG Dexing. Global classical solutions for general quasilinear hyperbolic systems with
decay initial data [J]. Nonlinear Anal., 1997, 28(8): 1299-1332.

WANG Libin. Formation of singularities for a kind of quasilinear non-strictly hyperbolic system [J]. Chinese
Ann. Math. Ser. B, 2002, 23(4): 439-454.



