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1. Introduction

In 1998, Ben-El-Mechaiekh, et al.[1] introduced and studied the abstract convexity con-

cept and the L-convexity structure on topological spaces. Recently, Ding[2] studied the class

KKM(X, Y ) of mappings and Himmelberg type fixed point theorems. Ding[3] introduced the

GLKKM mapping, and obtained some GLKKM theorems, Ky Fan matching theorems, fixed

point theorems and a minimax inequality in L-convex spaces. Ding[4] proved a continuous selec-

tion theorem, coincidence theorems, fixed point theorems, a minimax inequality and existence

theorems of solutions for generalized equilibrium problems in L-convex spaces. Ding[5] yielded

some KKM theorems, coincidence theorems and some fixed point theorems in L-convex spaces.

Lu and Tang[6] established an intersection theorem, fixed point theorem, maximal element the-

orem, coincidence theorem, minimax inequalities and saddle point theorem in L-convex spaces.

In this paper, a new GLKKM theorem in L-convex spaces is established. As applications, a new

variational inequality, section theorem, maximal element theorem and fixed point theorem are

obtained in L-convex spaces. These results unify, improve and generalize some recent results in

the reference therein.

2. Preliminaries

Let X be a nonempty set. We denote by F(X) and 2X the family of all nonempty finite

subsets of X and the family of all subsets of X , respectively. Let X , Y be two nonempty sets
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and F : X → 2Y a mapping. Then the mapping F ∗ : Y → 2X is defined by F ∗(y) := X \F−1(y)

for each y ∈ Y . Let (X, Γ) be an L-convex space[1−6]. A set D ⊂ X is said to be L-convex if for

each A ∈ F(D), Γ(A) ⊂ D. We denote by L(X) the family of all nonempty L-convex subsets of

X .

Following [1]–[6], let X be a nonempty set and (Y, Γ) be an L-convex space. A mapping

G : X → 2Y is said to be a GLKKM mapping if for each {x1, . . . , xn} ∈ F(X), there exists

{y1, . . . , yn} ∈ F(Y ) such that for any nonempty subset {yi1 , . . . , yik
} ⊂ {y1, . . . , yn}, we have

Γ({yi1 , . . . , yik
}) ⊂

⋃k

j=1 G(xij
). When (Y, Γ) is a hyperconvex space, H-space, G-convex space

or G-H-convex space, the above definition was given by Kirk, et al.[7], Chang and Ma[8], Ding[9],

Tan[10] and Verma[11], respectively.

Definition 2.1
[12] Let X be a nonempty set, (Y, Γ) an L-convex space and γ ∈ R a real

number. A function f : X × Y → R := R ∪ {±∞} is said to be generalized γ-L-diagonally

quasiconcave (resp., generalized γ-L-diagonally quasiconvex) in x if for each {x1, . . . , xn} ∈ F(X),

there exists {y1, . . . , yn} ∈ F(Y ) such that for each {yi1 , . . . , yik
} ⊂ {y1, . . . , yn} and for each

y ∈ Γ({yi1 , . . . , yik
}), min1≤j≤k f(xij

, y) ≤ γ (resp., max1≤j≤k f(xij
, y) ≥ γ).

Lemma 2.1
[12] Let X be a nonempty set, (Y, Γ) an L-convex space and γ ∈ R a real number.

Then a function f : X × Y → R is generalized γ-L-diagonally quasiconcave (resp., generalized

γ-L-diagonally quasiconvex) in x if and only if the mapping F : X → 2Y defined by F (x) := {y ∈

Y : f(x, y) ≤ γ} (resp., F (x) := {y ∈ Y : f(x, y) ≥ γ}) for each x ∈ X is a GLKKM mapping.

Remark 2.1 As shown in Remark 1.2 of Wen[12], Definition 2.1 unifies and generalizes Definition

3.1 of Ding[3], the definition of the hyper γ-generalized quasiconcave (resp., hyper γ-generalized

quasiconvex) of Kirk, et al.[7] and the other corresponding definitions.

Now, we introduce the following definitions.

Definition 2.2 Let {Gi}i∈I be a family of subsets of a topological space X and K be a

nonempty compact subset of X . {Gi}i∈I is said to be weakly transfer compactly open (resp.,

weakly transfer compactly closed ) relative to K if {Gi ∩ K}i∈I is transfer open (resp., transfer

closed).

Definition 2.3 Let X be a nonempty set, Y a topological space and K a nonempty compact

subset of Y . A mapping G : X → 2Y is said to be weakly transfer compactly open valued

(resp., weakly transfer compactly closed valued) relative to K if the family {G(x)}x∈X is weakly

transfer compactly open (resp., weakly transfer compactly closed) relative to K.

Remark 2.2 Clearly, each transfer compactly open valued (resp., transfer compactly closed

valued) mapping (see Ding[5, p 420] and Definition 1 of Lu and Tang[6]) is weakly transfer com-

pactly open valued (resp., weakly transfer compactly closed valued), but the inverse is not true

in general.

Definition 2.4 Let X be a nonempty set, Y a topological space, K a nonempty compact subset
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of Y and γ ∈ R a real number. A function f : X × Y → R is said to be weakly γ-transfer com-

pactly lower semicontinuous (in short, w.γ-t.c.l.s.c) (resp., weakly γ-transfer compactly upper

semicontinuous (in short, w.γ-t.c.u.s.c)) relative to K in y if for all x ∈ X and y ∈ K, f(x, y) > γ

(resp., f(x, y) < γ) implies that there exist a relatively open neighborhood N(y) of y in K and

x′ ∈ X such that f(x′, z) > γ (resp., f(x′, z) < γ) for all z ∈ N(y).

Remark 2.3 Obviously, a γ-transfer compactly lower semicontinuous (resp., γ-transfer com-

pactly upper semicontinuous) function (see [12, Definition 1.3]) is w.γ-t.c.l.s.c (resp., w.γ-t.c.u.s.c),

but the inverse is not true in general. Hence, Definition 2.4 unifies and generalizes Definition

2.6 of Kirk, et al.[7], Definition 1.3 of Wen[12], Definition 4.1 of Ding[13], Definition 1.5(4) of

Zhang[14], Definition (4) of Wu[15, p 285], Definition 8 of Tian[16] and Definition 2.6 of Ding[17].

We have the following lemma.

Lemma 2.2 Let X be a nonempty set, Y a topological space, K a nonempty compact subset of

Y and γ ∈ R a real number. A function f : X×Y → R is w.γ-t.c.l.s.c (resp., w.γ-t.c.u.s.c) relative

to K in y if and only if the mapping F : X → 2Y defined by F (x) := {y ∈ Y : f(x, y) ≤ γ}

(resp., F (x) := {y ∈ Y : f(x, y) ≥ γ} for each x ∈ X is weakly transfer compactly closed valued

relative to K.

Remark 2.4 Lemma 2.2 improves and generalizes Lemma 3 of Lu and Tang[6], Lemma 2.7 of

Kirk, et al.[7], Lemma 1.4 of Wen[12] and the corresponding result of Ding[17, p 25].

Definition 2.5 Let X be a topological space, Y a nonempty set, K a nonempty compact

subset of X . A mapping F : X → 2Y is said to be have the weakly compactly local intersection

property relative to K if for each x ∈ K with F (x) 6= ∅, there exists an open neighborhood N(x)

of x such that
⋂

z∈N(x)∩K F (z) 6= ∅.

Remark 2.5 A mapping with compactly local intersection property (see [5, p420]) has the

weakly compactly local intersection property, but the inverse is not true in general.

The following result is the improving version of Lemma 1.3 of Wen[12] and Lemma 2.1 of

Ding[18].

Lemma 2.3 X be a topological space, Y a nonempty set, K a nonempty compact subset of

X and G : X → 2Y be a mapping such that G(x) 6= ∅ for each x ∈ K. Then the following

conditions are equivalent:

(a) G has the weakly compactly local intersection property relative to K;

(b) For each y ∈ Y , there exists an open subset Oy of X (which may be empty) such that

Oy ∩ K ⊂ G−1(y) and K =
⋃

y∈Y (Oy ∩ K);

(c) There exists a mapping F : X → 2Y such that for each y ∈ Y , F−1(y) is open or empty

in X , F−1(y) ∩ K ⊂ G−1(y), and K =
⋃

y∈Y (F−1(y) ∩ K);
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(d) For each x ∈ K, there exists y ∈ Y such that x ∈ cintXG−1(y) ∩ K and

K =
⋃

y∈Y

(cintXG−1(y) ∩ K) =
⋃

y∈Y

(G−1(y) ∩ K);

(e) G−1 is weakly transfer compactly open valued relative to K on X .

3. Main results

Theorem 3.1 Let X be a nonempty set, (Y, Γ) an L-convex space, K a nonempty compact

subset of Y , G : X → 2Y a GLKKM mapping with weakly transfer compactly closed values rela-

tive to K. Suppose there exists M ∈ F(X) such that
⋂

x∈M clG(x) ⊂ K. Then
⋂

x∈X G(x) 6= ∅.

Proof Note that the mapping clG is closed valued, and hence clG is compactly closed val-

ued. Since G is a GLKKM mapping, clG is also a GLKKM mapping. By virtue of The-

orem 2.1 of Ding[3], {clG(x)}x∈X has the finite intersection property. Note that K is com-

pact and
⋂

z∈M clG(z) ⊂ K. Then {clG(x) ∩
⋂

z∈M clG(z)}x∈X is a family of closed subsets

with the finite intersection property in K. By the compactness of K, we have
⋂

x∈X clG(x) =
⋂

x∈X(clG(x) ∩
⋂

z∈M clG(z)) 6= ∅.

Now, define a mapping F : X → 2Y by F (x) := G(x) ∩
⋂

z∈M G(z) for each x ∈ X .

Since G is weakly transfer compactly closed valued relative to K and for each x ∈ X , F (x) :=

G(x) ∩
⋂

z∈M G(z) ⊂
⋂

z∈M clG(z) ⊂ K, F is transfer closed valued. In virtue of Lemma 2.4 of

Kirk, et al.[7], we have
⋂

x∈X F (x) =
⋂

x∈X clF (x). Hence,
⋂

x∈X

G(x) =
⋂

x∈X

(G(x) ∩
⋂

z∈M

G(z))

=
⋂

x∈X

F (x) =
⋂

x∈X

clF (x)

=
⋂

x∈X

(clG(x) ∩
⋂

z∈M

clG(z))

6= ∅. 2

Remark 3.1 If Y is compact, by letting K = Y , then the condition that there exists M ∈ F(X)

such that
⋂

z∈M clG(z) ⊂ K is satisfied trivially. Therefore, Theorem 3.1 unifies, improves and

generalizes Theorem 2.2(1) of Ding[3], Corollary 2.6 of Kirk, et al.[7], Theorem 1 of Chang and

Ma[8], Theorem 2.3(1) and 2.4 of Tan[10], Theorem 2.1 of Verma[11], Theorem 3.2(i) of Ding[17],

Theorem 4 of Khamsi[19], the KKM Theorem of Park[20], Theorem 1.1 of Chowdhury[21], Theorem

1.1 of Chowdhury, et al.[22], Theorem 2.2 of Verma[23] and Theorem 1 of Park[24].

Theorem 3.2 Let X be a nonempty set, (Y, Γ) an L-convex space, γ ∈ R a real number, K a

nonempty compact subset of Y and f, g : X × Y → R two functions such that

(1) There exists M ∈ F(X) such that
⋂

x∈M clY {y ∈ Y : g(x, y) ≤ γ} ⊂ K;

(2) g(x, y) is generalized γ-L-diagonally quasiconcave in x;

(3) For each (x, y) ∈ X × Y , g(x, y) ≤ γ implies f(x, y) ≤ γ;

(4) g(x, y) is w.γ-t.c.l.s.c. relative to K in y.
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Then there exists y∗ ∈ Y such that f(x, y∗) ≤ γ for all x ∈ X .

Proof Define two mappings F, G : X → 2Y by F (x) := {y ∈ Y : f(x, y) ≤ γ} and G(x) :=

{y ∈ Y : g(x, y) ≤ γ} for each x ∈ X , respectively. Then by (1), there exists M ∈ F(X) such

that
⋂

x∈M clG(x) ⊂ K. By (2) and Lemma 2.1, G is a GLKKM mapping. By (3), for each

x ∈ X , {y ∈ Y : g(x, y) ≤ γ} ⊂ {y ∈ Y : f(x, y) ≤ γ}, hence, G(x) ⊂ F (x). By (4) and

Lemma 2.2, G is weakly transfer compactly closed valued relative to K. In virtue of Theorem

3.1, ∅ 6=
⋂

x∈X G(x) ⊂
⋂

x∈X F (x). Take y∗ ∈
⋂

x∈X F (x). Then f(x, y∗) ≤ γ for all x ∈ X . 2

Remark 3.2 If Y is compact, by letting K = Y , then the condition (1) is satisfied trivially. If

f(x, y) is lower semicontinuous in y, the condition (4) is certainly satisfied. Therefore, Theorem

3.2 unifies, improves and generalizes Theorem 3.5 of Ding[3], Theorem 2.8 of Kirk, et al.[7],

Theorems 3.1, 3.2, 3.3 of Tan[10], Theorems 3.1, 3.2, 3.3 of Verma[11], Theorem 4 of Tian[16],

Theorem 4.2 of Ding[17], Theorems 2.1, 2.2 of Chowdhury, et al.[22], Theorem 2.3 of Verma[25],

Theorems 2.1, 2.2 of Verma[26], Theorem 2.1 and Corollaries 2.2, 2.3, 2.4 of Tan, et al.[27] and

Theorem 2.11.15 of Yuan[28].

Theorem 3.3 Let (X, Γ) be an L-convex space, K a nonempty compact subset of X and

A, B ⊂ X × X two subsets such that

(1) The mapping G : X → 2X defined by G(x) := {y ∈ X : (x, y) ∈ B} for each x ∈ X is

weakly transfer compactly closed valued relative to K;

(2) For each x ∈ X , (x, x) ∈ B;

(3) For each y ∈ X , {x ∈ X : (x, y) 6∈ B} = ∅ or ∈ L(X);

(4) There exists M ∈ F(X) such that
⋂

x∈M clX{y ∈ X : (x, y) ∈ B} ⊂ K;

(5) B ⊂ A.

Then there exists y∗ ∈ X such that X × {y∗} ⊂ A.

Proof Define two functions f, g : X × X → R by

f(x, y) :=

{

1, if (x, y) 6∈ A,

0, if (x, y) ∈ A,

and

g(x, y) :=

{

1, if (x, y) 6∈ B,

0, if (x, y) ∈ B,

for each (x, y) ∈ X ×X , respectively. Note that for each x ∈ X , G(x) := {y ∈ X : (x, y) ∈ B} =

{y ∈ X : g(x, y) ≤ 0}. Then by (1) and Lemma 2.2, g(x, y) is w.0-t.c.l.s.c. relative to K in y.

By (2), we have

(a) for each x ∈ X , g(x, x) ≤ 0.

By (3), we have

(b) for each y ∈ X , {x ∈ X : g(x, y) > 0} = ∅ or ∈ L(X).

By (4), there exists M ∈ F(X) such that
⋂

x∈M clX{y ∈ X : g(x, y) ≤ 0} ⊂ K. By (5),

for each (x, y) ∈ X × X , g(x, y) ≤ 0 implies f(x, y) ≤ 0. We claim that g(x, y) is general-
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ized 0-L-diagonally quasiconcave in x. Otherwise, there exists {x1, . . . , xn} ∈ F(X), for each

{y1, . . . , yn} ∈ F(X), there exist {yi1 , . . . , yik
} ⊂ {y1, . . . , yn} and y ∈ Γ({yi1 , . . . , yik

}) such

that min1≤j≤kg(xij
, y) > 0. Especially, for {x1, . . . , xn} ∈ F(X), there exist {xi1 , . . . , xik

} ⊂

{x1, . . . , xn} and y0 ∈ Γ({xi1 , . . . , xik
}) such that min1≤j≤k g(xij

, y0) > 0, and then, by (b),

{xi1 , . . . , xik
} ⊂ {x ∈ X : g(x, y0) > 0} ∈ L(X). Thus y0 ∈ Γ({xi1 , . . . , xik

}) ⊂ {x ∈ X :

g(x, y0) > 0}. Hence g(y0, y0) > 0, which contradicts (a). Finally, in virtue of Theorem 3.2,

there exists y∗ ∈ X such that f(x, y∗) ≤ 0 for all x ∈ X , which implies that X × {y∗} ⊂ A.

Remark 3.3 If X is compact, by letting K = X , then the condition (4) is satisfied trivially. If X

is a hyperconvex metric space, (X, Γ) is an L-convex space, certainly. If G is transfer open valued

or transfer compactly open valued, the condition (1) is satisfied trivially. If {x ∈ X : (x, y) 6∈ B}

is hyperconvex, of course, {x ∈ X : (x, y) 6∈ B} is L-convex. Therefore, Theorem 3.3 improves

and generalizes Theorem 3.2 of Kirk, et al.[7] and Theorem 3 of Chen and Shen[29] in several

aspects.

Theorem 3.4 Let (X, Γ) be an L-convex space, K a nonempty compact subset of X and

P, Q : X → 2X two mappings such that

(1) P−1 is weakly transfer compactly open valued relative to K;

(2) For each x ∈ X , x 6∈ P (x);

(3) For each x ∈ X , P (x) = ∅ or ∈ L(X);

(4) There exists M ∈ F(X) such that
⋂

x∈M clP ∗(x) ⊂ K;

(5) For each x ∈ X , Q(x) ⊂ P (x).

Then there exists x∗ ∈ X such that Q(x∗) = ∅.

Proof Let A := {(x, y) ∈ X × X : x 6∈ Q(y)} and B := {(x, y) ∈ X × X : x 6∈ P (y)}. Then

by (1), P ∗ : X → 2X defined by P ∗(x) = X \ P−1(x) = {y ∈ X : (x, y) ∈ B} for each x ∈ X is

weakly transfer compactly closed valued relative to K. By (2), for each x ∈ X , (x, x) ∈ B. By

(3), for each y ∈ X , {x ∈ X : (x, y) 6∈ B} = P (y) = ∅ or ∈ L(X). By (4), there exists M ∈ F(X)

such that
⋂

x∈M clX{y ∈ X : (x, y) ∈ B} ⊂ K. By (5), B ⊂ A. Hence, in virtue of Theorem 3.3,

there exists y∗ ∈ X such that X × {y∗} ⊂ A, which implies Q(y∗) = ∅. 2

Remark 3.4 As shown in Remark 3.3, Theorem 3.4 improves and generalizes Theorem 3.4 of

Kirk, et al.[7] and Theorem 2 of Wu[15] in several aspects.

Obviously, Theorem 3.4 implies the following Fan-Browder type fixed point theorem.

Theorem 3.5 Let (X, Γ) be an L-convex space, K a nonempty compact subset of X and

P : X → 2X \ {∅} a mapping such that

(1) P satisfies one of the conditions (a) ∼ (e) in Lemma 2.3;

(2) For each x ∈ X , P (x) ∈ L(X);

(3) There exists M ∈ F(X) such that
⋂

x∈M clP ∗(x) ⊂ K.

Then there exists x∗ ∈ X such that x∗ ∈ P (x∗).
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Remark 3.5 Theorem 3.5 unifies, improves and generalizes Theorem 3.1 of Kirk, et al.[7], Lemma

2.2 of Zhang[14], Lemma 1 of Wu[15], Theorem 3 of Park[20], Theorem 2.3-A of Chowdhury, et

al.[22], Theorem 2.4 of Verma[23], Theorems 2, 3, 4, 8 of Park[24], Corollary 2 and Corollary 3

of Chen and Shen[29], Theorem 2 of Horvath[30, p 350], Theorem 3.6 of Yuan[31], Corollary 2.3 of

Tarafdar[32], Theorem 2.1, Corollaries 2.1, 2.2, 2.3 of Tarafdar[33] and Theorem 4.1 of Watson[34].
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