Cardinal Numbers of Some Sets (VIII)*

Yang An-Zhou (杨安洲)

Let X be an infinite set, $C = \{B: B \text{ is a Boolean algebra defined on the } X\}$, Define $\hat{B} = \{D: D \text{ is isomorphie to } B\}$, $C_1 = \{\hat{B}: B \in C \text{ & } B \text{ is atomic}\}$, $C_2 = \{\hat{B}: B \in C \text{ & } B \text{ is atomic}\}$, then $|C_1| = |C_2| = 2^{|X|}$. The power set of X is denoted by P(X), P(X) is a field of sets (Under Union and Intersection of sets, and Complement of set), Suppose $K = \{F: F \text{ js a field of sets & } F \subseteq P(X)\}$, $K_1 = \{\hat{F}: F \in K\}$, $K_2 = \{\hat{F}: F \in K \text{ & } F \text{ is not atomic}\}$ then $|K_1| = |K_2| = 2^{|X|}$.

Cardinal Numbers of Some Sets (IX)*

Yang An-Zhou (杨安洲)

Let X be an infinite set, $C = \{G: G \text{ is a group defined on the } X\}$, Define $\hat{G} = \{H: H \text{ is isomorphic to } G\}$, $C_2 = \{\hat{G}: G \in C \& G \text{ js not commutative}\}$, then $|C_2| = 2^{|X|}$. If $K = \{F: F \text{ is a division ring defined on the } X\}$, $K_1 = \{\hat{F}: F \in K \& F \text{ is not commutative}\}$, $K_2 = \{\hat{F}: F \in K \& F \text{ is commutative}\}$, then $|K_1| = |K_2| = 2^{|X|}$. Suppose $T(X) = \{\varphi: \varphi \in X^X \& \varphi \text{ is bijective}\}$, $S = \{G: G \text{ is a subgroup of } T(X)\}$, $S_1 = \{\hat{G}: G \in S \& G \text{ is commutative}\}$, $S_2 = \{\hat{G}: G \in S \& G \text{ is not commutative}\}$, then $|S_1| = |S_2| = 2^{|X|}$. Department of mathematics,

The Industrial University of Peking, April 27, 1983.

^{*}Received Apr. 29, 1983.