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Abstract Under the framework of uniformly smooth Banach spaces, Chang[1] proved in 2006

that the sequence {xn} generated by the iteration xn+1 = αn+1f(xn) + (1 − αn+1)Tn+1xn

converges strongly to a common fixed point of a finite family of nonexpansive maps {Tn}, where

f : C → C is a contraction. However, in this paper, the author considers the iteration in

more general case that {Tn} is an infinite family of nonexpansive maps, and proves that Chang’s

result holds still in the setting of reflexive Banach spaces with the weakly sequentially continuous

duality mapping.
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1. Introduction

Let E be a Banach space, C be a nonempty closed convex subset of E, and {T1, T2, . . .} be

an infinite family of nonexpansive mappings from C into itself. In this paper, we are interested

in the following iterative scheme

xn+1 = αn+1f(xn) + (1 − αn+1)Tn+1xn, ∀n ≥ 0. (1.1)

Here, we assume that x0 ∈ E is any given initial data, f : C → C is a given contractive mapping,

and {αn} is a sequence in [0, 1].

Many authors studied some special cases of iterative scheme (1.1). Indeed, if f(x) ≡ u ∈ C,

and T is a nonexpansive mapping on C, a subset of a Hilbert space, then the iteration (1.1) is

reduced to the following iteration:

xn+1 = αn+1u + (1 − αn+1)Txn, ∀n ≥ 0, (1.2)

which was firstly introduced and studied by Halpern in 1967[2]. In 1992, Wittmann also consid-

ered the iteration (1.2)[4]. He improved and extended the corresponding results of Halpern[2] and

Lions[3]. In 1980, Reich[5] extended Halpern’s result to all uniformly smooth Banach spaces, and
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in 1994 he extended Wittmann’s result to the uniformly smooth space with a weakly sequentially

continuous duality mapping (see [6, Theorem and Remark 1]).

If C is a nonempty closed convex subset of a Hilbert space, Ti : C → C is a nonexpansive

mapping for each i = 1, 2, . . . , N, and f(x) ≡ u (a given point in C), then (1.2) is equivalent to

the following iteration with a finite family of nonexpansive mapping {Tn}N
n=1:

xn+1 = αn+1u + (1 − αn+1)Tn+1xn, ∀n ≥ 0, Tn = Tn(modN), (1.3)

which was introduced and studied in Bauschke in 1996[8]. In 2005, Jung[7,Theorem 10] considered

it in the framework of uniformly smooth Banach spaces with the weakly sequentially continuous

duality mapping, which might imply that the class of uniformly smooth Banach spaces is dif-

ferent from the class of reflexive Banach spaces with the weakly sequentially continuous duality

mapping. Indeed, firstly we say, there exist reflexive Banach spaces with the weakly continuous

duality mapping, for example, the sequence spaces lp for all p ∈ (1, +∞). Next, we say, not all

uniformly smooth Banach spaces admit a weakly continuous duality mapping. Indeed, we can

consider Lp in the case of p 6= 2. For example, L4([0, 2π]) is such a uniformly smooth Banach

space that none of its duality mappings is weakly continuous (see, [14, Section 4]). Finally, it

is obvious that not all reflexive Banach spaces (with the weakly continuous duality mapping)

belong to the class of uniformly smooth Banach spaces.

If T : C → C is a nonexpansive mapping, and f : C → C is a contractive mapping, then

(1.1) is reduced to the following iteration:

xn+1 = αn+1f(xn) + (1 − αn+1)Txn, ∀n ≥ 0, (1.4)

which was firstly introduced and studied by Moudafi[9] in the setting of Hilbert spaces. In 2004,

Xu[10] extended and improved the result of Moudafi[9] from Hilbert spaces to uniformly smooth

Banach spaces.

In 2006, Chang[1] considered the following iteration in uniformly smooth Banach space E:

xn+1 = αn+1f(xn) + (1 − αn+1)Tn+1xn, Tn = Tn(mod N), ∀n ≥ 0, (1.5)

where {T1, T2, . . . , TN} is a finite family of nonexpansive mappings on C, a closed convex subset

of E.

Now in this paper we extend the iteration (1.1) to a more general case that {T1, T2, . . . , Tn, . . .}

is an infinite family of nonexpansive mappings, and study its convergence in the framework of

reflexive Banach spaces which admit the weakly sequentially continuous duality mapping.

2. Preliminaries

Throughout this paper, we assume, E is a real Banach space, and E∗ is the dual space of

E. Suppose that C is a nonempty closed convex subset of E, and that F (T ) is the set of fixed

points of mapping T . Denote the generalized duality pairing between E and E∗ by 〈·, ·〉, and the

identity mapping by I. The normalized duality mapping J : E → 2E∗

is defined by

J(x) = {f ∈ E∗, 〈x, f〉 = ‖x‖ · ‖f‖ = ‖f‖2 = ‖x‖2}, x ∈ E. (2.1)
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If {xn} is a sequence in E, then xn → x (resp., xn ⇀ x, xn ⇀∗ x) denotes strong (resp., weak

and weak∗) convergence of the sequence {xn} to x.

Definition 2.1[11] A Banach space is said to admit a weakly sequentially continuous normalized

duality mapping J , if J : E → E∗ is single-valued and weak-weak∗ sequentially continuous. i.e.,

if xn ⇀ x in E, then J(xn) ⇀∗ J(x) in E∗.

Definition 2.2 Let U = {x ∈ E : ‖x‖ = 1}. E is said to be a smooth Banach space, if the limit

limt→0
‖x+ty‖−‖x‖

t
exists for x, y ∈ U .

Definition 2.3 (1) A mapping f : C → C is said to be a Banach contraction on C with a

contractive constant α ∈ (0, 1) if ‖f(x) − f(y)‖ ≤ α‖x − y‖ for all x, y ∈ C.

(2) Let T : C → C be a mapping. T is said to be nonexpansive, if ‖Tx−Ty‖ ≤ ‖x− y‖, for

all x, y ∈ C.

Lemma 2.1[12] Let {an}, {bn}, {cn} be three nonnegative real sequences satisfying the following

condition:

an+1 ≤ (1 − λn)an + bn + cn, ∀n ≥ n0,

where n0 is some nonnegative integer, {λn} ⊂ [0, 1] with
∑∞

n=0 λn = ∞, bn = o(λn) and
∑∞

n=0 cn < ∞, then an → 0 as n → ∞.

Lemma 2.2[13] Let E be a real Banach space, and J : E → 2E∗

be the normalized duality

mapping. Then for any x, y ∈ E, the following conclusion holds:

‖x‖2 + 2〈y, j(x)〉 ≤ ‖x + y‖2 ≤ ‖x‖2 + 2〈y, j(x + y)〉, ∀ j(x) ∈ J(x), j(x + y) ∈ J(x + y).

Lemma 2.3[15] If E admits a weakly sequentially continuous normalized duality mapping, and

if T : E → E is a nonexpansive mapping, then the mapping I − T is demiclosed. That is, for

any sequence {xn} in E, if xn ⇀ x and (xn − Txn) → y, then (I − T )x = y.

3. Main results

Let E be a real Banach space, and C be a nonempty closed convex subset of E. Denote

S = T1T2 · · ·Tn · · · , where {T1, T2, . . .} is an infinite family of nonexpansive mappings from C to

itself. Suppose, f : C → C is any given Banach contractive mapping with a contractive constant

α ∈ (0, 1). Define a mapping S
f
t : C → C by

S
f
t (x) = tf(x) + (1 − t)S(x), x ∈ C. (3.1)

Now we can easily know from (3.1) that S
f
t : C → C is a Banach contraction mapping. Hence,

S
f
t has a unique fixed point zt in C by Banach’s Contraction Mapping Principle, which implies

that for any given t ∈ (0, 1) there exists a corresponding zt ∈ F (St) such that zt is the unique

solution in C for the following equation

zt = tf(zt) + (1 − t)S(zt). (3.2)
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Particularly for a single nonexpansive map T , which implies S = T in (3.2). Xu[10, Theorem 4.1]

showed in the setting of a uniformly smooth Banach space that zt → z ∈ F (T ). Here, z is a

solution in F (T ) for the following variational inequality:

〈(I − f)z, j(z − u)〉 ≤ 0, ∀u ∈ F (T ).

Now, for an infinite family of nonexpansive mappings, we give a similar result in the framework

of reflexive Banach spaces with the weakly sequentially continuous normalized duality mapping.

Theorem 3.1 Let E be a reflexive Banach space which admits a weakly sequentially continuous

normalized duality mapping J from E to E∗, and C be a nonempty closed convex subset of E.

Assume, f : C → C is a given Banach contraction with a contractive constant α ∈ (0, 1). Let

{zt : t ∈ (0, 1)} be the net defined by (3.2), and Ti : C → C, i = 1, 2, . . . be nonexpansive

mappings satisfying the following conditions:

(i)
⋂∞

n=1 F (Tn) 6= ∅;

(ii)
⋂∞

n=1 F (Tn) = F (T1T2 · · ·Tn · · · ) = F (T2T3 · · ·Tn · · ·T1) = · · · = F (TnTn+1 · · ·T2T1) =

· · · = F (S),

where S = T1T2 · · ·Tn · · · , then, as t → 0, {zt} converges strongly to a common fixed point

q ∈
⋂∞

n=1 F (Tn) such that q is the unique solution in
⋂∞

n=1 F (Tn) for the following variational

inequality

〈(I − f)q, j(q − u)〉 ≤ 0, ∀u ∈
∞⋂

n=1

F (Tn). (3.3)

Proof On the one hand, for any u ∈
⋂∞

n=1 F (Tn), we can get by (3.2)

‖zt − [tf(zt) + (1 − t)u]‖ ≤ (1 − t)‖Szt − u‖ ≤ (1 − t)‖zt − u‖. (3.4)

On the other hand, we have by Lemma 2.2

‖zt − [tf(zt) + (1 − t)u]‖2 = ‖(1 − t)(zt − u) + t(zt − f(zt))‖
2

≥ (1 − t)2‖zt − u‖2 + 2t(1 − t)〈zt − f(zt), j(zt − u)〉. (3.5)

It follows from (3.4) and (3.5) that

2t(1 − t)〈zt − f(zt), j(zt − u)〉 ≤ ‖zt − [tf(zt) + (1 − t)u]‖2 − (1 − t)2‖zt − u‖2 ≤ 0. (3.6)

Then we get by (3.6)

〈zt − f(zt), j(zt − u)〉 ≤ 0, ∀u ∈
∞⋂

n=1

F (Tn), ∀j(zt − u) ∈ J(zt − u). (3.7)

Since f is a Banach contraction, we know for any u ∈
⋂∞

n=1 F (Tn)

〈f(zt) − f(u), j(zt − u)〉 ≤ α‖zt − u‖2. (3.8)

Since

〈zt − f(zt), j(zt − u)〉 = 〈zt − u + u − f(u) + f(u) − f(zt), j(zt − u)〉

= ‖zt − u‖2 + 〈u − f(u), j(zt − u)〉 + 〈f(u) − f(zt), j(zt − u)〉



Iteration for an infinite family of nonexpansive maps 643

≥ ‖zt − u‖2 + 〈u − f(u), j(zt − u)〉 − ‖f(u) − f(zt)‖ · ‖zt − u‖

≥ (1 − α)‖zt − u‖2 + 〈u − f(u), j(zt − u)〉, (3.9)

we can deduce by (3.7) and (3.9) that

(1 − α)‖zt − u‖2 + 〈u − f(u), j(zt − u)〉 ≤ 0. (3.10)

Now we get by (3.10)

(1 − α)‖zt − u‖2 ≤ 〈u − f(u), j(u − zt)〉 ≤ ‖u − f(u)‖ · ‖u − zt‖. (3.11)

It follows from (3.11) that

‖zt − u‖ ≤
‖u − f(u)‖

1 − α
. (3.12)

This implies that {zt : t ∈ (0, 1)} is bounded. Thus, both {S(zt) : t ∈ (0, 1)} and {f(zt) : t ∈

(0, 1)} are bounded. Then it follows by (3.2) that

‖zt − S(zt)‖ ≤ t‖f(zt) − S(zt)‖ → 0, as t → 0.

Thus,

lim
t→0

‖zt − S(zt)‖ = 0. (3.13)

Next we prove that {zt : t ∈ (0, 1)} is relatively compact. Indeed, since E is reflexive and

{zt : t ∈ (0, 1)} is bounded, for any subsequence {ztn
} ⊂ {zt} with tn ∈ (0, 1), there exists a

subsequence of {ztn
} (for simplicity we still denote it by {ztn

}) such that

ztn
⇀ q as tn → 0. (3.14)

We can easily see by (3.13)

‖ztn
− S(ztn

)‖ → 0, as tn → 0,

which together with (3.14) and Lemma 2.3 implies I − S has the demiclosed property. Thus,

q ∈ F (S) =

∞⋂

n=1

F (Tn). (3.15)

Taking u = q and t = tn in (3.11), we get

‖ztn
− q‖2 ≤

〈q − f(q), j(q − ztn
)〉

1 − α
. (3.16)

Since J is weakly sequentially continuous, we know

lim
tn→0

‖ztn
− q‖2 ≤ lim

tn→0

〈q − f(q), j(q − ztn
)〉

1 − α
= 0. (3.17)

Finally, we will prove that the entire net {zt, t ∈ (0, 1)} converges strongly to q. Indeed, suppose

the contrary that there exists another subsequence {zti
} of {zt} such that zti

→ q′ as ti → 0. By

the same method as given above, we can also prove that q′ ∈ F (S) =
∞⋂

n=1
F (Tn). Now we predict

that

〈(I − f)q′, j(q′ − u)〉 ≤ 0, ∀u ∈
∞⋂

n=1

F (Tn).
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Indeed, for any given ∀u ∈
⋂∞

n=1 F (Tn), both {zt − u} and {zt − f(zt)} are bounded. Then we

can deduce by the assumption on the normalized duality mapping J and limti→0 zti
= q′ that

|〈(I − f)zti
, j(zti

− u)〉 − 〈(I − f)q′, j(q′ − u)〉|

= |〈(I − f)zti
− (I − f)q′, j(zti

− u)〉 + 〈(I − f)q′, j(zti
− u) − j(q′ − u)〉|

≤ ‖(I − f)zti
− (I − f)q′‖ · ‖zti

− u‖ + |〈(I − f)q′, j(zti
− u) − j(q′ − u)〉| → 0, as ti → 0.

Hence, we know by (3.7)

〈(I − f)q′, j(q′ − u)〉 = lim
ti→0

〈(I − f)zti
, j(zti

− u)〉 ≤ 0. (3.18)

Similarly we can also prove that

〈(I − f)q, j(q − u)〉 ≤ 0. (3.19)

Now we take u = q in (3.18) and u = q′ in (3.19), respectively. Then we can easily see by adding

up these two inequalities that

〈(I − f)q − (I − f)q′, j(q − q′)〉 ≤ 0.

Thus,

‖q − q′‖2 ≤ 〈f(q) − f(q′), j(q − q′)〉 ≤ α‖q − q′‖2.

This implies that q = q′, and hence Theorem 3.1 has been proved. 2

Theorem 3.2 Let E be a reflexive Banach space which admits a weakly sequentially continuous

normalized duality mapping J from E to E∗, and C be a nonempty closed convex subset of E.

Assume that f : C → C is a given Banach contraction with a contractive constant α ∈ (0, 1),

and {zt : t ∈ (0, 1)} is the net defined by (3.2). Suppose, {Ti : C → C, i = 1, 2, . . .} is an infinite

family of nonexpansive mappings satisfying the following conditions:

(i)
⋂∞

n=1 F (Tn) 6= ∅;

(ii)
⋂∞

n=1 F (Tn) = F (T1T2 · · ·Tn · · · ) = F (T2T3 · · ·Tn · · ·T1) = · · · = F (TnTn+1 · · ·T2T1) =

· · · = F (S),

where S = T1T2 · · ·Tn · · · .

Let x0 ∈ C be any given point, and {xn} be generated by the iteration (1.1) and x0 ∈ C. If,

in addition, the following conditions hold:

(a) limn→∞ αn = 0;

(b)
∑∞

n=0 αn = ∞;

(c) ‖xn − Sxn‖ → 0,

then {xn} generated by x0 ∈ C and iteration (1.1) converges strongly to q = limt→0 zt such that

q is the unique solution in
⋂∞

n=1 F (Tn) for the following variational inequality:

〈(I − f)q, j(q − u)〉 ≤ 0, ∀u ∈
∞⋂

n=1

F (Tn).

Proof By Theorem 3.1, we know lim
t→0

zt = q ∈
⋂∞

n=1 F (Tn). Then we have by (1.1)

‖xn+1 − q‖ ≤ αn+1‖f(xn) − q‖ + (1 − αn+1)‖Tn+1(xn) − q‖
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≤ αn+1(‖f(xn) − f(q)‖ + ‖f(q) − q‖) + (1 − αn+1)‖xn − q‖

≤ αn+1‖f(q) − q‖ + (1 − (1 − α)αn+1)‖xn − q‖

≤ max{‖xn − q‖,
‖f(q) − q‖

1 − α
}.

Now we can obtain by induction

‖xn − q‖ ≤ max{‖x0 − q‖,
‖f(q) − q‖

1 − α
}, for all n ≥ 0. (3.20)

This proves that {xn} is bounded. Since {zt} is bounded, there exists a constant M > 0 such

that

‖xn‖ + ‖xn‖
2 + ‖q‖2 + ‖q‖ + ‖zt‖ + ‖zt‖

2 < M, for all n ≥ 0 and t ∈ (0, 1).

On the other hand, we can get by (1.1) and Lemma 2.2

‖xn+1 − q‖2 ≤ (1 − αn+1)
2‖Tn+1xn − q‖2 + 2αn+1〈f(xn) − q, j(xn+1 − q)〉

≤ (1 − αn+1)
2‖xn − q‖2 + 2αn+1〈f(xn) − q, j(xn+1 − q)〉. (3.21)

Since f is a contractive mapping, we obtain

2αn+1〈f(xn) − q, j(xn+1 − q)〉

= 2αn+1〈f(xn) − f(q) + f(q) − q, j(xn+1 − q)〉

≤ 2αn+1α‖xn − q‖ · ‖xn+1 − q‖ + 2αn+1〈f(q) − q, j(xn+1 − q)〉

≤ αn+1α(‖xn − q‖2 + ‖xn+1 − q‖2) + 2αn+1〈f(q) − q, j(xn+1 − q)〉

≤ αn+1α(‖xn − q‖2 + ‖xn+1 − q‖2) + 2αn+1γn+1, (3.22)

where

γn = max{ 0, 〈f(q) − q, j(xn − q)〉}, for all n ≥ 0. (3.23)

It follows by (3.21) and (3.22) that

‖xn+1 − q‖2 ≤ (1 − αn+1)
2‖xn − q‖2 + αn+1α(‖xn − q‖2 + ‖xn+1 − q‖2) + 2αn+1γn+1.

Thus,

(1 − αn+1α)‖xn+1 − q‖2 ≤ ((1 − αn+1)
2 + αn+1α)‖xn − q‖2 + 2αn+1γn+1.

On the other hand, we know by the condition (a) that there exists a nonnegative integer n1 such

that

2(1 − α)αn+1 ∈ [0, 1) and 1 − αn+1α ≥
1

2
for all n ≥ n1.

Thereby, we have

‖xn+1 − q‖2 ≤
((1 − αn+1)

2 + αn+1α)

1 − αn+1α
‖xn − q‖2 +

2αn+1γn+1

1 − αn+1α

≤ (1 −
2αn+1(1 − α)

1 − αn+1α
)‖xn − q‖2 +

α2
n+1

1 − αn+1α
(‖xn‖ + ‖q‖)2 +

2αn+1γn+1

1 − αn+1α

≤ (1 − 2αn+1(1 − α))‖xn − q‖2 +
α2

n+1

1 − αn+1α
· 2(‖xn‖

2 + ‖q‖2) +
2αn+1γn+1

1 − αn+1α
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≤ (1 − 2(1 − α)αn+1)‖xn − q‖2 + 4Mα2
n+1 + 4αn+1γn+1

≤ (1 − 2(1 − α)αn+1)‖xn − q‖2 + 4αn+1(Mαn+1 + γn+1), ∀n > n1. (3.24)

Next we show limn→∞ γn = 0.

Indeed, there exists a subsequence {xnk
} ⊂ {xn} such that

lim sup
n→∞

〈q − f(q), j(q − xn)〉 = lim
k→∞

〈q − f(q), j(q − xnk
)〉. (3.25)

Since E is reflexive and {xn} is bounded, there exists a subsequence {xni
} ⊂ {xnk

} such that

xni
⇀ x0 as i → ∞. Then we obtain by (3.25)

lim sup
n→∞

〈q − f(q), j(q − xn)〉 = lim
i→∞

〈q − f(q), j(q − xni
)〉.

It follows by the condition (c) that

‖xni
− S(xni

)‖ → 0, as i → ∞.

Now we see by the Lemma 2.3 that x0 ∈ F (S) =
⋂∞

n=1 F (Tn). Therefore, we get by (3.3)

lim sup
n→∞

〈q − f(q), j(q − xn)〉 = lim
i→∞

〈q − f(q), j(q − xni
)〉 = 〈q − f(q), j(q − x0)〉 ≤ 0.

This implies that for any given ε > 0 there correspondingly exists a positive integer n2 > n1

such that

〈q − f(q), j(q − xn)〉 < ε, ∀n > n2.

Thus, we have 0 ≤ γn < ε, and hence γn → 0. Now, we take λn = 2(1−α)αn+1), an = ‖xn−q‖2,

bn = 4αn+1(Mαn+1 + γn+1) and cn = 0 for all n > n2. By (3.24) we can conclude by Lemma

2.1 that

lim
n→∞

‖xn − q‖ = 0, i.e., xn → q = lim
t→0

zt and q ∈
∞⋂

n=1

F (Tn).

This completes the proof of Theorem 3.2. 2

Theorem 3.3 Let E be a reflexive Banach space which admits a weakly sequentially continuous

normalized duality mapping J from E to E∗, C be a nonempty closed convex subset of E, and

f : C → C be a given Banach contraction with a contractive constant α ∈ (0, 1). Suppose that

T : C → C is a nonexpansive mapping with F (T ) 6= ∅, and x0 ∈ C is any given point. Let {xn}

be generated by the iteration (1.4) and x0 ∈ C. If, in addition, the following conditions hold:

(a) limn→∞ αn = 0;

(b)
∑∞

n=0 αn = ∞;

(c)
∑∞

n=0 |αn+1 − αn| < ∞ or limn→∞
αn

αn+1
= 1,

then {xn} generated by (1.4) converges strongly to q = limt→0 zt such that q is the unique

solution in F (T ) for the following variational inequality:

〈(I − f)q, j(q − u)〉 ≤ 0, ∀u ∈ F (T ).

Here, the net {zt : t ∈ (0, 1)} is defined by (3.2) in the case that S = T .
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Proof In Theorem 3.2, we put T1 = T2 = · · · = T and S = T . Now, we only need to show that

the condition ‖xn − Txn‖ → 0 holds.

Indeed, similarly to the proof in Theorem 3.2, we can also prove and get (3.20). Thus, {xn}

is bounded. So are {f(xn)} and {Txn}. Hence, there exists a constant M0 > 0 such that

‖f(xn)‖ + ‖Txn‖ < M0, for all n ≥ 0.

It follows by the iteration (1.4) that

‖xn − Txn‖ = ‖αnf(xn−1) + (1 − αn)Txn−1 − Txn‖

≤ αn‖f(xn−1) − Txn‖ + (1 − αn)‖Txn−1 − Txn‖

≤ 2αnM0 + ‖xn−1 − xn‖. (3.26)

On the other hand, we get by (1.4)

‖xn+1 − xn‖

= ‖αn+1(f(xn) − f(xn−1)) + (αn+1 − αn)(f(xn−1) − Txn−1) + (1 − αn+1)(Txn − Txn−1)‖

≤ αn+1α‖xn − xn−1‖ + |αn+1 − αn| · ‖f(xn−1) − Txn−1‖ + (1 − αn+1)‖xn − xn−1‖

≤ (1 − (1 − α)αn+1)‖xn − xn−1‖ + M |αn+1 − αn|. (3.27)

If
∑∞

n=0 |αn+1 − αn| < ∞, we can get by (3.27) and Lemma 2.1 that ‖xn+1 − xn‖ → 0.

If limn→∞
αn

αn+1
= 1, we may take λn = (1 − α)αn+1 and

bn = M |αn+1 − αn| = Mαn+1|1 −
αn

αn+1
| = o(λn).

Then by (3.27) we have an = ‖xn − xn−1‖ → 0. Hence, it follows by (3.26) that

‖xn − Txn‖ ≤ 2αnM0 + ‖xn−1 − xn‖ → 0.

Thus, the condition (c) in Theorem 3.2 does hold. Now we can finish the proof of Theorem 3.3

by the methods applied in Theorem 3.2. 2

Remark (1) Conclusions of Chang[1, Theorem 1] and Xu[10, Theorem 4.2] hold in the setting of

uniformly smooth Banach spaces. Now, these conclusions hold still in our Theorems 3.2 and 3.3

under the framework of reflexive Banach spaces with the weakly sequentially continuous duality

mapping. Moreover, this paper extends their results from a finite family of nonexpansive maps

to an infinite family of ones. In addition, by way of the methods applied in Chang[1,Theorem 1]

we can similarly prove that the conditions (a)–(c) of our Theorem 3.2 are in fact necessary and

sufficient.

(2) Particularly, in the case that {Tn} is a finite family of nonexpansive mappings and

f(xn) ≡ u, we have in fact proved by our Theorem 3.2 that the result of Jung[7,Theorem 10] holds

still in the setting of reflexive Banach spaces with the weakly sequentially continuous normalized

duality mapping, against to the framework of uniformly smooth Banach spaces with the weakly

sequentially continuous normalized duality mapping[7, Theorem 10].

(3) This paper is not the unique paper which extends some results from uniformly smooth
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Banach spaces to reflexive Banach spaces with the weakly sequentially continuous normalized du-

ality mapping. For example, in 2006, Xu[16, Theorem 3.1] extended similarly the result of Reich[5].
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