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Abstract The cycle length distribution of a graph G of order n is a sequence (c1(G), .. ., cn(Q)),
where ¢;(G) is the number of cycles of length i in G. In general, the graphs with cycle length
distribution (c¢1(G),...,cn(G)) are not unique. A graph G is determined by its cycle length
distribution if the graph with cycle length distribution (c1(G), ..., cn(G)) is unique. Let Kp nir
be a complete bipartite graph and A C E(Ky, nytr). In this paper, we obtain: Let s > 1 be
an integer. (1) If r = 2s,n > s(s — 1) + 2|A|, then Ky nyr — A (A C E(Knntr), |A] < 3) is
determined by its cycle length distribution; (2) If r = 2s + 1,n > s> + 2|A|, Knnsr — A (A C
E(Knntr),|A| < 3) is determined by its cycle length distribution.
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1. Introduction

Let G be a graph of order n. The cycle length distribution, denoted by CLD, of G is a sequence
(c1(G),c2(G), . .., cn(Q)), where ¢;(G) is the number of cycles of length i in G. For a simple graph
G, define ¢1(G) = c2(G) = 0. In general, the graphs G with CLD (¢1(G), c2(G), ..., cn(Q)) are
not unique. A graph G is determined by its CLD if the CLD (¢1(G),c2(G),...,cn(G)) of G
determines uniquely the graph G. Then it is natural to ask what graphs are determined by their
CLDs.

A graph G = (V, E) is called a bipartite graph if its vertex set V(G) can be partitioned into
two parts Vi, V5 such that every edge has one end in V4 and one in V5. A bipartite graph G
in which every two vertices from different partition classes are adjacent is called complete. Let
K, m denote a complete bipartite graph with |V1| = n and V2| = m. Without loss of generality,
assume that n < m in this paper.

In [2, 3], Wang and Shi obtained

G=Kp,—A(ACE(K,,), |Al <1, n <r <min(n+ 6,2n — 3)),

G=K,,—A(ACEK,,), |[Al =2, n <r <min(n + 6,2n — b)),
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G=Kp,—AACE(K,,), |A <3, n<r <min(n+6,2n — 7))

are determined by their CLDs. In [4], the authors improved the results of Wang and Shi and
obtained: If n > 9 + 2| A|, then the bipartite graphs G = K, 47 — A (A C E(Kp nt7), |A] < 3)
are determined by their CLDs.

In this paper, we improve the above results and obtain the following result.

Theorem 1 Let s > 1 be an integer.

(1) Ifr =2s,n> s(s—1)+2|A|, then Ky, ntr — A (A C E(Kp ntr), |A| < 3) is determined
by its CLD.

(2) Ifr =2s+1,n > s>+ 2|A|, then K, nir — A (A C E(Kynir), |A| < 3) is determined
by its CLD.

2. The proof of Theorem 1

In the following, we always use A to denote a subset of the edge set of K, ,,, i.e., A C

E(Kym). Let X; ={G|G = Kpnm — A, |A] = j}, mj = mingex, c4(G), M; = maxgex, c4(G).
Lemma 18! Ifn > j > 2, then
— n\(m\ .[(n-— 1\ /m-—1 n J
i=\2)\2) 77\ 1 1 2)
o= (MY (™ Afn—1\/m—-1 n j ( 1)
i=\2)\2) 77\ 1 1 o )V T
Lemma 20 Ifj > 2, n > j(j +1)/2 + 2, then Mj11 < m;.

Lemma 3 Let G € X;. If m >n > j+ 2, then, in the CLD of G, ¢2,(G) # 0.

We distinguish three cases to prove Theorem 1 according to the order of |A].

Lemma 4 Let s > 1 be an integer. If n and r are integers with
-1 =2
" s(s—1), r=2s,
s2, r=2s+1,
then G = K, p4r is determined by its CLD. Moreover, the CLD of G satisfies

ci(G) = sO)ple =D, i=2p, p=2,...,n;
Z 0, otherwise.

Proof Firstly, we determine the CLD of G = K, ,,4+,. Since G = K, 4, is a simple bipartite
graph, ¢1(G) = c2(G) =0, c2p41(G) =0, forp=1,...,n—1 and ¢;(G) =0 for 2n <i < 2n+r.
For any i = 2p (p = 2,...,n), K, nir has (Z) (”;T) subgraphs K, , of order i, while each K,
has £p[(p — 1)!)? cycles of length i. Therefore

@) =5 (1) ("1 Yoo - 1.

In the following, we will prove that G = K, 5,4, is determined by its CLD by contradiction.
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Clearly, the graphs satisfying the CLD given by the lemma must be bipartite graphs of order
2n + r. Assume that there exists a graph G’ # K, 4, with the same CLD as G. Then
G' = Knpnir — A, where [A| > 1, or G’ = Kpypnir—k — A, where [A| > 0and 0 <k < |5].

Case 1 G' = Ky nyr — A,|A| > 1. By Lemma 1, it is clear that c4(G’) < (g) ("'2”) = 4(G), a

contradiction.

Case 2 G' = Kpypnir—k — A, |[A[>0,0 <k < [Z]. Let [A| = 4. If n4+k > j+ 2, then
0 < j < k+n—2. By Lemma 3, ca121(G’) # 0, which contradicts ¢;(G) = 0 for all j > 2n. Hence
G' € {Kniknir—rk—Al|A]l =j > n+k—1}. Clearly, c4(G') < max|a|—j—pntk—1 c4(Knirnir—k—
A). By Lemma 1,

c4(G’)§<”;k) <n+72“—k> _(n+k_1)<n+ll<:—1><n+rzk—1>+

<n+§_1>(n+r—k—1)

1)

If ¢4(G") < ca(@G), then we have a desired contradiction. Let

Hk) = n+k\(n+r—k—-1\ (n\/n+r '
2 2 2 2
Then, to show that ¢4(G’) < c4(G), it suffices to show H(k) < 0. In the following, we will show
that H(k) < 0.

H(k)— H(k—1) = (”;’k)<n+rgk—1>_<n+l2<:—1><n+72“—k)

= (+k=1(n+r—k-1)z - k).

Hence H (k) increases on [1, 7 ]].

If r = 2s, then

- CECE)- 00

4 n+s)® —2(s2+2)(n +s5)> +2(s> + 1)(n + s) + s* — 5%.
Let

flx) = 22" = 2(s* + 2)a® + 2(s + D) + 5" — &%
Now we prove that f(z) > 0 for z > s. Since

f&2 1) =2(s*+1)% =2 +2)(s* + 1) +2(s* + 1)(s* + 1) + s* — 52
=5t~ 5% >0, for Vs > 1,
to verify that f(z) > 0, it suffices to show that f(x) increases on x > s2. Solving the equation

fla) =627 —4(s* +2)z +2(s> +1) =0
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gives the solutions
242+ Vst +52+1
3 .
Clearly, x1,72 € (0,s%). Hence f'(z) > 0 if z > s?, that is, f(z) is an increasing function on

x > s%. Therefore, f(n +s) > 0 for n > s(s — 1), that is, H(s) < 0. Since H (k) is an increasing
function on 1 < k < s, H(k) < 0.
If r =2s+1, then

mo= (1) (27) - GO

—i[Q(n—i— $)3 —2(s2 +s+1)(n+s)? +s%(s+1)%.

T12 =

Let
flx) =203 —2(s* + s + 1)a? + s%(s + 1)°.
We prove that f(x) > 0 for z > s? 4+ s. Since
f(82+s+1)=2(s>+s+1)% = 2(s* + s+ 1)(s* + 5+ 1)? + 5%(s + 1)?
=s%(s+1)? >0, for Vs > 1,
to verify that f(z) > 0, it suffices to show that f(x) increases on x > s?+s. Solving the equation
f(x) =62% —4(s* +s+ 1)z =0

gives the solutions
2(s*+s+1)
3
Hence f'(z) > 0 for > s? + s, that is, f(x) increases on z > s? + s. Therefore, f(n+s) > 0 for
n > s?, that is, H(s) < 0. Since H(k) is an increasing function on 1 < k < s, we have H (k) < 0.
O

1 =0, zo0 = < s +s.

Lemma 5 Let s > 1 be an integer. If n and r are integers with
s(s=1)+2, r=2s
n >
52 42, r=2s+1
then G = Ky, n+r — A (|A] = 1) is determined by its CLD. Moreover, the CLD of G satisfies

o S0Pl =D = G (T - DN i=2p,p =2, 0
al(G) = 0 otherwise.

Proof Firstly, we determine the CLD of G = K nir — A. Let A = {e} and denote G =
K, ,—A = K, ,—e. Since G is a simple bipartite graph, ¢c; = c3 =0, cop41 =0forp=1,...,n—1
and ¢; = 0 for Vi > 2n. For i =2p,p =2,...,n, By Lemma 4,

i) =5 (1) ("1 Yoo - 112

p p

G ()

Since Ky, n4r has
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subgraphs K, , of order i which contain the edge e as an edge, while each K, , has [(p — 1)!]?
cycles of length ¢ which contain the edge e, K, 4, has

<Z:D (n;iz 1) [(p— D)

cycles of length ¢ which contain the edge e. Hence K, ,,, — e has

@ =3 () (" Yt - v - (P (T -

cycles of length .

In the following, we prove that G is determined by its CLD by contradiction. Suppose
that G’ # K, , — e is a graph with CLD (c¢1(G), ..., cant+r(G)), then G’ must be a bipartite
graph of order 2n 4+ r. By Lemma 4, G’ # K, pt+r. Hence G' = Kppyr — A, |A] > 2 or
G = Kotkntr—k — A, |A| >0,and k£ < \_%J

Case 1 G’ = Ky nir—A, |A| > 2. By Lemma 1, ca(G") < (3) (") —2("7) ("7 ) +(n+r—1).
But ¢s(G) = (5) ("37) — ("Il) ("+I_1) > ¢4(G’), a contradiction.

Case 2 G' = Knykmir—k — A, [A| =35>0, k< |5]. With a similar discussion to the Case 2

of Lemma 4, we have

(G < max  Cy(Knikntr—k — A)
|Al=j=n+k—1

(G < (n—;—k><n—|—r;k—1>.

Hk) = n+k\(n+r—k—1 _(n\(n+r n n—1\/n+r—-1 '
2 2 2 2 1 1
If H(k) <0, then ¢4(G’) < c4(G), we have a desired contradiction.
Clearly, the function H (k) defined here differs only a constant from the function H (k) defined

in the proof of Lemma 4, hence we have H (k) increases on k € [1, | Z]].
If » = 25, then
n+s\[/n+s—1 n\ (n+2s n—1\(/n+2s—1
mo= () ()R ()

= —i[2(n—|— $)3 —2(s2+4)(n+s)2 +2(s>+5)(n+s) + s* + 35 — 4]

and

Let

Hence if H(s) < 0, we have H(k) < 0. Let f(z) = 223 — 2(s> + 4)2? + 2(s*> + 5)z + s* + 35 — 4.
Solving the equation f'(z) = 62% — 4(s? + 4)x + 2(s?> + 5) = 0 gives the solutions x5 =
LS VLR T V§)4+552+1 < s?+2. Hence f'(z) > 0if z > s>+ 2, and f(x) increases on z > s% + 2. Since
f(s2+3)=5*+7s>+8>0, f(z) >0if x > s> + 2. Therefore f(n+s) > 0ifn > s(s—1)+2.
The result follows from H(s) = —1 f(n + s).
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If r =2s+1, then

mo=("37) (57 - ()T () ()
= —2[2(n+8)3 — 22+ 5+3)(n+5)2+4(n+s)+ (s> +s)(s+s+4).

Hence if H(s) < 0, we have H(k) < 0. Let f(z) = 223 — 2(s®> + s + 3)2% + 4z + (s® + s)(s® +
s+ 4). Solving the equation f/(z) = 622 — 4(s> + s + 3)z + 4 = 0 gives the solutions z; 2 =
5% 4s+5+4/(s2+5+3)2—3 2 ’ . 9 . .
3 < s* 4+ s+ 2. Hence f'(x) > 0if > s* + s+ 2, that is, f(x) increases

onz >s?+s+2 Since f(s2+s5+3) =4(s>+s5+3)+ (s> +8)(s>+s+4) >0, f(z) > 0if
x> s?+s+2. Therefore f(n+s) > 0if n > s*+2. The result follows from H(s) = —1 f(n+s).
O

Lemma 6 Let s > 1 be an integer. n and r are integers with
s(s=1)+4, r=2s
n >
52 44, r=2s+1
Then G = Ky ntr — A (|A] = 2) is determined by its CLD.

Proof Since |A| = 2, the subgraphs induced by A in K, 4+, have three configurations (as shown
in Figure 1), denoted by Hy, Ha, Hs, respectively.

H, /1{2\ \z

Figure 1 Three configurations induced by A
Let G; = Kypntr — E(H;), i = 1,2,3. We prove that each G; is determined by its CLD.
Firstly, we prove that G, G2, G3 have different CLDs. It is easy to compute that

- (CT) A )
R e [
ca(Gy) = (;‘)(”;T) —2(”11) ("“LI_l) tntr—1.

Hence ¢4(G1) < ¢c4(G2) < ca(G3), G1,G2,G3 have different CLDs. Next we prove that G = G;
is determined by its CLD. Suppose to the contrary that G’ # G;, i = 1,2,3 is a graph with
the same CLD as G. Then G’ is a bipartite graph of order 2n + r. By Lemmas 4 and 5,
G' # Kpnir—A (A =0,1). Hence G' = Ky pnyr— A, |A] >3 0r G' = Kpyhntr—k — 4, |A] > 0,
and k < [5].

Case 1 G' = Ky nir — A, |A] > 3. By Lemma 2, ¢4(G') < M3 < ma < ¢4(G), a contradiction.
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Case 2 G' = Kyipnir—k — A, |A[ >0, and k < | 5]. With a similar discussion to the Case 2

in the proof of Lemma 4, we have

G') < Cy(Kntknyr—r — A
ca( )—‘A‘:ﬁiﬁk% 4(Kntkntr—k — A)

(G < (n—;—k><n—|—r;k—1>.

Since ¢4(G1) < ¢4(G2) < ¢4(G3), to prove that G = G; is determined by its CLD, it suffices to
prove that c4(G") < ¢4(G1). Let

n+k\/n+r—Fk-1 n\(n+r n—1\/n+r—-1
ma= (0T )0 )T )
Then it suffices to prove that H(k) < 0. Similarly to the proof of Lemma 4, we have H (k)

increases on k € [1, [ §]]. Hence it suffices to prove that H([5]) <O0.
If » = 25, then

- ()OI ()T

= —2[2(n 4 5) 27+ 6)(n + 52 27+ 9)(n+ )+ 5* + 757 — 4]

and

Let
flx) =22 —2(s* +6)2” + 2(s* + 9w + 5" + Ts* — 4.

Solving the equation f/(z) = 622 —4(s>+6)z+2(s>+9) = 0, we have 71 5 = (2+6)+ “354+952+9 <

5?2 + 4. Hence f'(z) > 0 if z > s% + 4, that is, f(z) increases on z > s + 4. Since f(s? +5) =
s*+1552+36 > 0, f(n+s) > 0if n > s(s —1) +4. The result follows from H(s) = —1 f(n+s).
If r =2s+ 1, then

His) = n+s\(n+s\ (n n+2s+1 I n—1\/n+2s 1
2 2 2 2 1 1
1
= —1[2(n—|— 5)2 —2(s2 +5+5)(n+8)2 +8(n+s)+ (s> +5)(s2 +5+8)+4]

Let

flx) =22 —2(s* + 5+ 5)a? + 8z + (s> +5)(s* + 5+ 8) + 4.
Solving the equation f/(x) = 62% —4(s*> + s+ 5)z + 8 = 0 gives the solutions z1 2 = ((s* + s +
5)£+/(s2 +s+5)2 —12)/3 < s>+ s+4. Hence f/(z) > 0if z > s*+s+4, that is, f(z) increases

onz > s?+s+4. Since f(s>+s+5)=8(s2+s5+5)+(s2+5)(s?+5+8)+4>0, f(n+s)>0
if n > s? + 4. The result follows from H(s) = —% f(n+ s). O

Lemma 7 Let s > 1 be an integer. n and r are integers with
s(s—1)4+6, r=2s;
n >
5% + 6, r=2s+1.
Then G = Ky, ntr — A (|A] = 3) is determined by its CLD.
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Proof Since |A| = 3, the subgraphs induced by A in K, 1, have six configurations (as shown
in Figure 2), denoted by Hy, Ha, Hs, Hy, Hs, Hg, respectively.

H, Hs Hj
Hy /b \I/
Figure 2 Six configurations induced by A

Let G; = Kypntr — E(H;), i = 1,2,3,4,5,6. We prove that each G; is determined by its
CLD. It is easy to compute that

- (1) o)) o

o= (1)) v
o= ()3 o Y e
= ()3 o Y e
S I ey
wa- () 3) oY e

Clearly, c4(G1) < ca(G2) < c4(G3) < ca(Ga) < c4(G5) < ca(Gs). Hence G1,Ga, G3,Gy, Gs5,Gg
have different CLDs. Suppose that G’ # G4, i = 1,2,3,4,5,6 is a graph with the same CLD
as G. Then G’ must be a bipartite graph of order 2n + r. By Lemmas 4, 5 and 6, G’ #
Kpn+r — A (|A] =0,1,2). Hence G' = Ky ptr — A, |A| > 4 or G' = Kyypontr—i — A, |A] >0,
and k < [5].

Case 1 G' = Ky nir — A, |A| > 4. By Lemma 2, ¢4(G') < My < mg < ¢4(G), a contradiction.

Case 2 G' = Kyipnir—k — A, |A] > 0, and k < |£]. Similarly to the Case 2 in the proof of

Lemma 4, we have

G < Cy(Kntknyr—r — A
ca( )—‘A‘:ﬁiﬁk% 4(Kntkntr—k — A)
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() < (n—;—k)(n—i—r;k—l)'

Since ¢4(G1) < ¢4(G2) < -+ < ¢4(Gg), to prove that G = G; is determined by its CLD, it suffices
to show that c4(G’) < ¢4(G1). Let

n+k\/n+r—Fk-1 n\(n+r n—1\/n+r—-1
ma= ("3 ()G ()T
Hence it suffices to show H (k) < 0. Similarly to Lemma 4, we have H (k) increases on k € [1, | 5 ]].

Hence it suffices to show H([%]) < 0.
If r = 2s, then

- (7))

—E[Q(n-i- §)3 —2(s +8)(n+ )% +2(s* +13)(n + s) + s* + 115%.

and

Let
fx) = 22% — 2(s* + 8)2® + 2(s* + 13)z + s* + 11s°.

Solving the equation f/(z) = 622 —4(s?+8)x+2(s%+13) = 0, we have z1 5 = ("+8)%v %4“352”5 <

s2 + 6. Hence f'(z) > 0 if x > s? + 6, that is, f(z) increases on x > s? + 6. Since
f(82+7) =s*+2352+84 >0, f(n+s) > 0if n > s(s —1) + 6. The result follows from
H(s)=—1f(n+s).

If r =2s+1, then

n+s\ [ n+s n\/n+2s+1 n—1\/n+2s
mo= (") ("2 7) - G () ()
1
:—Z[Q(n—i—s)?’—2(82+s+7)(n+s)2+12(n+3)+(52+s)(s2+s+12)+12].

Let

flx) =223 —2(s* + s+ 7)o + 122 + (s* + 8)(s* + 5+ 12) + 12.

2 /
Solving the equation f/(z) = 622 —4(s?+s+7)x+12 = 0, we have 21 2 = (s +otD)E §S2+S+7)2_18 <
5?2 4+ s+ 6. Hence f'(z) > 0 if z > s® + s + 6, that is, f(z) increases on z > s* + s + 6. Since
s +s+7)= s“+s+7)+(s“+5)(s“+s+ +12>0, f(n+s)>0in>s*+6. e

£(s2 7) = 12(s? 7) + (5% + 5)(s2 12)+12>0, f(n+s) > 0if n > s> + 6. Th
result follows from H(s) = —1 f(n + s). O

Theorem 1 follows directly from Lemmas 4, 5, 6 and 7.
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