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0. Introduction

In 1956, Aronszajn and Panitchpakdi[1] introduced the notion of hyperconvex metric spaces.

Recently, Khamsi[2] established a hyperconvex version of the famous KKM-Fan principle. Yuan[3]

studied the characterization for a mapping with finitely metrically open values being a generalized

metric KKM mapping in hyperconvex spaces. Park[4] obtained a Ky Fan matching theorem for

open covers, a coincidence theorem and other results for hyperconvex spaces. Kirk et al.[5]

established KKM theory in hyperconvex spaces and as applications of their results, the fixed

point theorem, maximal element theorem, intersection theorem, section theorem and the other

results were given in hyperconvex spaces. In [6], we established a Browder fixed point theorem

in noncompact admissible subsets of noncompact hyperconvex spaces, which was used to derive

two Ky Fan coincidence theorems.

In 2001, Ding and Xia[7] introduced H-metric spaces and generalized H-KKM mappings,

and established some generalized H-KKM type theorems for generalized H-KKM mappings in

H-metric spaces. In 2005, Meng et al.[8] introduced G-convex metric spaces and established some

generalized KKM type theorems and fixed point theorems in G-convex metric spaces. In [9], we

first introduced the new notion of L-convex metric spaces, and then established some GLKKM
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type theorems for GLKKM mappings and a Browder fixed point theorem in L-convex metric

spaces.

In this paper, a new GLKKM type theorem is established for noncompact complete L-convex

metric spaces. As applications, the properties of the solution set of variational inequalities,

intersection point sets, Ky Fan sections and maximal element sets are shown, and a Fan-Browder

fixed point theorem is obtained. Our results unify, improve and generalize some recent known

results in several aspects.

1. Preliminaries

Let X be a nonempty set. We denote by F(X) and 2X the family of all nonempty finite

subsets of X and the family of all subsets of X , respectively, by |A| the cardinality of A for each

A ∈ F(X), and by △n the standard n-dimensional simplex with vertices e0, e1, . . . , en. Let D

be a subset of a topological space X . We denote by clXD the closure of D in X and by intXD

the interior of D in X .

Let X , Y be two nonempty sets and F : X → 2Y a mapping. Then the mapping F ∗ : Y → 2X

is defined by F ∗(y) := X \F−1(y) for each y ∈ Y . Let X be a nonempty set and Y a topological

space. A mapping G : X → 2Y is said to be transfer compactly closed (resp., open) valued if

for each x ∈ X and for each compact set K ⊂ Y , y 6∈ G(x) ∩ K (resp., y ∈ G(x) ∩ K) implies

that there exists x′ ∈ X such that y 6∈ clK(G(x′) ∩ K) (resp., y ∈ intK(G(x′) ∩ K))[10, p1058].

Clearly, each open (resp., closed) valued mapping is transfer open (resp., closed) valued and is

also compactly open (resp., closed) valued. Each transfer open (resp., closed) valued mapping

and each compactly open (resp., closed) valued mapping is transfer compactly open (resp., closed)

valued, but the inverse is not true in general.

Following Ben-El-Mechaiekh et al.[11], an L-convexity structure on a topological space X is

given by a mapping Γ : F(X) → 2X satisfying the following condition: for each A ∈ F(X) with

|A| = n + 1, there exists a continuous mapping φA : ∆n → Γ(A) such that B ∈ F(A) with

|B| = J +1, implies φA(∆J ) ⊂ Γ(B), where ∆J denotes the face of ∆n corresponding B ∈ F(A).

The pair (X, Γ) is then called an L-convex space. A set D ⊂ X is said to be L-convex if for each

A ∈ F(D), Γ(A) ⊂ D. We denote by L(X) the family of all nonempty L-convex subsets of X .

Let X be a nonempty set and (Y, Γ) be an L-convex space. A mapping G : X → 2Y is said to

be a GLKKM mapping if for each {x1, . . . , xn} ∈ F(X), there exists {y1, . . . , yn} ∈ F(Y ) such

that for any nonempty subset {yi1 , . . . , yik
} ⊂ {y1, . . . , yn}, we have Γ({yij

: j = 1, . . . , k}) ⊂
⋃k

j=1 G(xij
).

When (Y, Γ) is a hyperconvex space, H-space, G-convex space or G-H-convex space, the

above definition was given by Kirk et al.[5], Chang and Ma[12], Ding[10], Tan[13] and Verma[14],

respectively.

The following definition is the improving version of Definition 3.1 of Ding[15].

Definition 1.1 Let X be a nonempty set, (Y, Γ) an L-convex space and γ ∈ R a real number.

A function g : X × Y → R̄ := R ∪ {±∞} is said to be generalized γ-L-diagonally quasiconcave
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(resp., quasiconvex) in x if for each {x1, . . . , xn} ∈ F(X), there exists {y1, . . . , yn} ∈ F(Y ) such

that for each nonempty subset {yi1 , . . . , yik
} ⊂ {y1, . . . , yn} and for each y ∈ Γ({yi1 , . . . , yik

}),

min1≤j≤k g(xij
, y) ≤ γ (resp., max1≤j≤k g(xij

, y) ≥ γ).

Remark 1.1 In Definition 3.1 of Ding[15], only the generalized γ-L-diagonally quasiconcave

was defined. Obviously, the generalized γ-L-diagonally quasiconcave is the generalization of the

generalized γ-H-diagonally quasiconcave in Ding and Xia[7].

Clearly, we have the following lemma.

Lemma 1.1 Let X be a nonempty set, (Y, Γ) an L-convex space and γ ∈ R a real number.

Then a function g : X × Y → R̄ is generalized γ-L-diagonally quasiconcave (resp., generalized

γ-L-diagonally quasiconvex) in x if and only if the mapping G : X → 2Y defined by G(x) := {y ∈

Y : g(x, y) ≤ γ} (resp., G(x) := {y ∈ Y : g(x, y) ≥ γ}) for each x ∈ X is a GLKKM mapping.

Remark 1.2 (1) Lemma 1.1 generalizes Lemma 4.1 of Ding and Xia[7] and Lemma 4.1 of

Ding[16] from H-spaces to L-convex spaces under weaker assumptions of g and G.

(2) Note that a GLKKM mapping is the generalization of a GMKKM mapping. By Lemma

1.1 here and Lemma 2.7 of Kirk et al.[5], it is clear that the generalized γ-L-diagonally quasicon-

cave (resp., generalized γ-L-diagonally quasiconvex) is a generalization of the hyper γ-generalized

quasiconcave (resp., hyper γ-generalized quasiconvex) of Kirk et al.[5].

Let (M, d) be a metric space. We denote by µ the usual Kuratowksi measure of noncompact-

ness on M . For any nonempty bounded subset A of M , its closed ball hull co(A) is defined by

co(A) :=
⋂

{B ⊂ M : B is a closed ball containing A}. A subset A ⊂ M is called admissible if

A = co(A). A is said to be finitely metrically closed if for each F ∈ F(M), co(F ) ∩ A is closed.

It is obvious that A is finitely metrically closed if A is closed in M .

In [9], we introduced the following definition.

Definition 1.2[9] (M, d, Γ) is said to be an L-convex metric space if (M, d) is a metric space

and (M, Γ) is an L-convex space such that Γ(A) ⊂ co(A) for each A ∈ F(M).

Clearly, L-convex metric spaces include hyperconvex spaces of Aronszajn et al.[1−6], H-metric

spaces of Ding and Xia[7] and G-convex metric spaces of Meng et al.[8], but the inverse is not

true in general. From Definition 1.2, we have the following facts: (a) Γ({x}) = {x} for each

x ∈ M ; (b) For each A ∈ F(M), co(A) is L-convex.

The following result is Theorem 2.1 of Wen[9].

Lemma 1.2[9] Let X be a nonempty set, (M, d, Γ) an L-convex metric space and T : X → 2M \

{∅} a mapping with finitely metrically closed values. Then {T (x)}x∈X has the finite intersection

property if and only if T is a GLKKM mapping.

The following result, in which Y need not be a topological space, is the improving version of

Lemma 2.1 of Ding[17].

Lemma 1.3 Let X be a topological space, Y a nonempty set, K a nonempty compact subset
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of X and G : X → 2Y a mapping such that G(x) 6= ∅ for each x ∈ K. Then the following

conditions are equivalent:

(a) G has the compactly local intersection property;

(b) For each y ∈ Y , there exists an open subset Oy of X (which may be empty) such that

Oy ∩ K ⊂ G−1(y) and K =
⋃

y∈Y (Oy ∩ K);

(c) There exists a mapping F : X → 2Y such that for each y ∈ Y , F−1(y) is open or empty

in X , F−1(y) ∩ K ⊂ G−1(y), and K =
⋃

y∈Y (F−1(y) ∩ K);

(d) For each x ∈ K, there exists y ∈ Y such that x ∈ cintG−1(y) ∩ K and

K =
⋃

y∈Y

(cintG−1(y) ∩ K) =
⋃

y∈Y

(G−1(y) ∩ K);

(e) G−1 is transfer compactly open valued on X .

The following definition is the improving version of Definition 4.1 of Ding[18].

Definition 1.3 Let X be a nonempty set, Y a topological space and γ ∈ R a real number.

A function g : X × Y → R̄ is said to be γ-transfer compactly lower semicontinuous (in short,

γ-t.c.l.s.c.) (resp., γ-transfer compactly upper semicontinuous (in short, γ-t.c.u.s.c.)) in y if for

each nonempty compactly subset K of Y and for each x ∈ X and y ∈ K, g(x, y) > γ (resp.,

g(x, y) < γ) implies that there exist x′ ∈ X and a relatively open neighborhood N (y) of y in K

such that g(x′, z) > γ (resp., g(x′, z) < γ) for all z ∈ N (y).

Remark 1.3 In Definition 4.1 of Ding[18], X was assumed to be a topological space and

only the γ-transfer compactly lower semicontinuous was defined. Obviously, the upper (resp.,

lower) semicontinuous, transfer upper (resp., lower) semicontinuous and transfer compactly up-

per (resp., lower) semicontinuous are special cases of γ-transfer compactly upper (resp., lower)

semicontinuous, and the W-lower semicontinuous (see Definition 1.5(4) of Zhang[19] and Defi-

nition (4) of Wu[20, p285]) is also a special case of γ-transfer compactly lower semicontinuous.

Therefore, Definition 1.3 unifies and generalizes Definition 2.6 of Kirk et al.[5], Definition 4.1 of

Ding[18], Definition 1.5(4) of Zhang[19], Definition (4) of Wu[20, p285] and Definition 8 of Tian[21].

The following lemma is obvious.

Lemma 1.4 Let X be a nonempty set, Y a topological space and γ ∈ R a real number. Then

a function g : X × Y → R̄ is γ-t.c.l.s.c. (resp., γ-t.c.u.s.c.) in y if and only if the mapping

G : X → 2Y defined by G(x) := {y ∈ Y : g(x, y) ≤ γ} (resp., G(x) := {y ∈ Y : g(x, y) ≥ γ}) for

each x ∈ X is transfer compactly closed valued.

2. Main results

Theorem 2.1 Let X be a nonempty set and (M, d, Γ) a complete L-convex metric space.

Suppose G : X → 2M is a GLKKM mapping with transfer compactly closed values and

infx∈X µ(G(x)) = 0. Then
⋂

x∈X G(x) is nonempty and compact.

Proof Define the mapping clG : X → 2M by clG(x) := clMG(x) for each x ∈ X . Then clG is
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closed valued, and hence clG is finitely metrically closed valued. Since G is a GLKKM mapping,

clG is also a GLKKM mapping. By virtue of Lemma 1.2, {clG(x)}x∈X has the finite intersection

property. Note that M is complete and infx∈X µ(clG(x)) = infx∈X µ(G(x)) = 0. In virtue of

Lemma 4.1 of Kirk et al.[5],
⋂

x∈X clG(x) is nonempty and compact.

Now, define a mapping F : X → 2M by F (x) := G(x) ∩
⋂

y∈X clG(y) for each x ∈ X . Since

G is transfer compactly closed valued and
⋂

y∈X clG(y) is nonempty and compact, F is transfer

closed valued. By Lemma 2.4 of Kirk et al.[5], we have
⋂

x∈X F (x) =
⋂

x∈X clF (x). Hence,

⋂

x∈X

G(x) = (
⋂

x∈X

G(x)) ∩ (
⋂

x∈X

clG(x))

=
⋂

x∈X

(G(x) ∩
⋂

y∈X

clG(y))

=
⋂

x∈X

F (x) =
⋂

x∈X

clF (x)

=
⋂

x∈X

cl(G(x) ∩
⋂

y∈X

clG(y))

=
⋂

x∈X

clG(x).

Therefore,
⋂

x∈X G(x) is nonempty and compact.

Remark 2.1 Note that a metric space (M, d) is complete if (M, d) is hyperconvex by Proposition

1 of Khamsi[2]. Suppose there exists x0 ∈ X such that G(x0) is compact. Then µ(G(x0)) = 0, and

hence infx∈X µ(G(x)) = 0, certainly. G is transfer compactly closed valued if G is closed valued

or transfer closed valued. G is a GLKKM mapping if G is an MKKM mapping. Hence, Theorem

2.1 unifies, improves and generalizes Theorem 4 of Khamsi[2], the KKM theorem of Park[4] and

Corollary 2.6 of Kirk et al.[5] from hyperconvex spaces to L-convex metric spaces under weaker

assumptions of G. Meanwhile, Theorem 2.1 replaces conclusions of all theorems cited above that
⋂

x∈X G(x) is nonempty by the stronger conclusion that
⋂

x∈X G(x) is nonempty and compact.

In addition, the proof method of Theorem 2.1 is different from that of corresponding theorems

in the references cited above.

Theorem 2.2 Let γ ∈ R be a real number, X be a nonempty set and (M, d, Γ) a complete

L-convex metric space. Suppose g : X × M → R̄ such that

(1) infx∈X µ({y ∈ M : g(x, y) ≤ γ}) = 0 (resp., infx∈X µ({y ∈ M : g(x, y) ≥ γ}) = 0);

(2) g is generalized γ-L-diagonally quasiconcave (reap., quasiconvex) in x;

(3) g(x, y) is γ-t.c.l.s.c. (resp., γ-t.c.u.s.c.) in y.

Then {y ∈ M : g(x, y) ≤ γ for all x ∈ X} (resp., {y ∈ M : g(x, y) ≥ γ for all x ∈ X}) is

nonempty and compact.

Proof We only prove the conclusion for the case that {y ∈ M : g(x, y) ≤ γ for all x ∈ X} is

nonempty and compact. The other case can be proved similarly.

Define a mapping G : X → 2M by G(x) := {y ∈ M : g(x, y) ≤ γ} for each x ∈ X . Then, by
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(1), infx∈X µ(G(x)) = 0. By (2) and Lemma 1.1, G is a GLKKM mapping. By (3) and Lemma

1.4, G is transfer compactly closed valued. Therefore, in virtue of Theorem 2.1,
⋂

x∈M G(x) is

nonempty and compact, i.e., {y ∈ M : g(x, y) ≤ γ for all x ∈ M} is nonempty and compact.

Remark 2.2 Since hyperconvex spaces and H-metric spaces are special cases of L-convex metric

spaces, the generalized γ-L-diagonally quasiconcave (resp., quasiconvex) is the generalization

of the generalized γ-H-diagonally quasiconcave (resp., quasiconvex) and the generalized γ-L-

diagonally quasiconcave (resp., generalized γ-L-diagonally quasiconvex) is a generalization of the

hyper γ-generalized quasiconcave (resp., hyper γ-generalized quasiconvex). Then, Theorem 2.2

improves and generalizes Theorem 2.8 of Kirk et al.[5], Theorem 4.1 of Ding and Xia[7], Theorem

4 of Liu[22] and Theorem 2.11.15 of Yuan[23] in several aspects, and replaces conclusions of all

theorems cited above that {y ∈ M : g(x, y) ≤ γ for all x ∈ X} (resp., {y ∈ M : g(x, y) ≥ γ for all

x ∈ X}) is nonempty by the stronger conclusion that {y ∈ M : g(x, y) ≤ γ for all x ∈ X} (resp.,

{y ∈ M : g(x, y) ≥ γ for all x ∈ X}) is nonempty and compact.

Corollary 2.1 Let γ ∈ R be a real number, (M, d, Γ) a complete L-convex metric space and X

a nonempty L-convex subset of M . Suppose g : X × M → R̄ such that

(1) infx∈X µ({y ∈ M : g(x, y) ≤ γ}) = 0 (resp., infx∈X µ({y ∈ M : g(x, y) ≥ γ}) = 0);

(2) For each y ∈ M , {x ∈ X : g(x, y) > γ} (resp., {x ∈ X : g(x, y) < γ}) = 0 or ∈ L(M);

(3) For each x ∈ X , g(x, x) ≤ γ (resp., g(x, x) ≥ γ);

(4) g(x, y) is γ-t.c.l.s.c. (resp., γ-t.c.u.s.c.) in y.

Then {y ∈ M : g(x, y) ≤ γ for all x ∈ X} (resp., {y ∈ M : g(x, y) ≥ γ for all x ∈ X}) is

nonempty and compact.

Proof We only prove the conclusion for the case that {y ∈ M : g(x, y) ≤ γ for all x ∈ X} is

nonempty and compact.

Define a mapping G : X → 2M by G(x) := {y ∈ M : g(x, y) ≤ γ} for each x ∈ X .

We claim that G is a GLKKM mapping. Otherwise, there exists {x1, . . . , xn} ∈ F(X), for

each {y1, . . . , yn} ∈ F(M), there exist a nonempty subset {yi1 , . . . , yik
} of {y1, . . . , yn} and

y ∈ Γ({yi1 , . . . , yik
}) such that y 6∈

⋃k

j=1 G(xij
). Especially, for {x1, . . . , xn} ∈ F(X) ⊂ F(M),

there exist a nonempty subset {xi1 , . . . , xik
} of {x1, . . . , xn} and y0 ∈ Γ({xi1 , . . . , xik

}) such that

y0 6∈
⋃k

j=1 G(xij
), which results in that for all xij

∈ {xi1 , . . . , xik
}, g(xij

, y0) > γ. By (2), we

have {xi1 , . . . , xik
} ⊂ {x ∈ X : g(x, y0) > γ} ∈ L(M). Thus y0 ∈ Γ({xi1 , . . . , xik

}) ⊂ {x ∈ X :

g(x, y0) > γ}. Hence, g(y0, y0) > γ, which contradicts (3). Therefore, G is a GLKKM mapping.

By Lemma 1.1, g is generalized γ-L-diagonally quasiconcave in x. By (1) and (4), in virtue of

Theorem 2.2, {y ∈ M : g(x, y) ≤ γ for all x ∈ X} is nonempty and compact.

Theorem 2.3 Let (M, d, Γ) be a complete L-convex metric space, X be a nonempty L-convex

subset of M and A ⊂ X × M a nonempty subset such that

(1) infx∈X µ({y ∈ M : (x, y) ∈ A}) = 0;

(2) For each y ∈ M , {x ∈ X : (x, y) 6∈ A} = ∅ or ∈ L(M);

(3) For each x ∈ X , (x, x) ∈ A;
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(4) The mapping G : X → 2M defined by G(x) := {y ∈ M : (x, y) ∈ A} for each x ∈ X is

transfer compactly closed valued;

Then {y ∈ M : X × {y} ⊂ A} is nonempty and compact.

Proof Define a function g : X × M → R by

g(x, y) :=

{

1, if (x, y) ∈ A,

0, if (x, y) 6∈ A,

for each (x, y) ∈ X × M . Then for each x ∈ X , G(x) := {y ∈ M : (x, y) ∈ A} = {y ∈ M :

g(x, y) ≥ 1}. Moreover, by (1), infx∈X µ(G(x)) = 0. By (2), for each y ∈ M , {x ∈ X : g(x, y) <

1} = ∅ or ∈ L(M). By (3), for each x ∈ X , g(x, x) ≥ 1. By (4), G : X → 2M defined by

G(x) = {y ∈ M : g(x, y) ≥ 1} for each x ∈ X is transfer compactly closed valued. In virtue of

Lemma 1.4, g(x, y) is 1-t.c.u.s.c. in y. Therefore, by virtue of Corollary 2.1, {y ∈ M : g(x, y) ≥ 1

for all x ∈ X} is nonempty and compact, which implies that {y ∈ M : X×{y} ⊂ A} is nonempty

and compact.

Remark 2.3 If X = M is a compact admissible subset of a hyperconvex space, M is a complete

L-convex metric space and the condition (1) is satisfied trivially. If for each y ∈ M , {x ∈ X :

(x, y) 6∈ A} is admissible or sub-admissible, of course, the condition (2) is satisfied trivially. If

G is closed valued or transfer closed valued, the condition (4) is certainly satisfied. Therefore,

Theorem 2.3 improves and generalizes Theorem 3.2 of Kirk et al.[5], Theorem 3.2 of Wen[6] and

Theorem 3 of Chen and Shen[24] in several aspects and strengthens all conclusions of theorems

cited above.

Theorem 2.4 Let (M, d, Γ) be a complete L-convex metric space, X be a nonempty L-convex

subset of M and G : X → 2M a mapping such that

(1) infx∈X µ(G(x)) = 0;

(2) For each y ∈ M , G∗(y) = ∅ or ∈ L(M);

(3) For each x ∈ X , x ∈ G(x);

(4) G is transfer compactly closed valued.

Then
⋂

x∈X G(x) is nonempty and compact.

Proof Let A := {(x, y) ∈ X × M : y ∈ G(x)}. Then G(x) = {y ∈ M : (x, y) ∈ A} for

each x ∈ X , and G∗(y) = X \ G−1(y) = {x ∈ X : y 6∈ G(x)} = {x ∈ M : (x, y) 6∈ A} for

each y ∈ M . Hence, by (1), infx∈X µ({y ∈ M : (x, y) ∈ A}) = 0. By (2), for each y ∈ M ,

{x ∈ X : (x, y) 6∈ A} = ∅ or ∈ L(M). By (3), for each x ∈ X , (x, x) ∈ A. By (4), the mapping

G : X → 2M defined by G(x) := {y ∈ M : (x, y) ∈ A} for each x ∈ X is transfer compactly

closed valued. In virtue of Theorem 2.3, {y ∈ M : X × {y} ⊂ A} is nonempty and compact,

which implies that
⋂

x∈X G(x) is nonempty and compact.

Remark 2.4 If X = M is a compact admissible subset of a hyperconvex space, G∗ is admissible

valued and G is closed, then M is a complete L-convex metric space and the conditions (1), (2)

and (4) are satisfied trivially. Therefore, Theorem 2.4 improves and generalizes Theorem 3.3 of
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Kirk et al.[5] and Theorem 3.3 of Wen[6] in several aspects and strengthens their conclusions.

Theorem 2.5 Let (M, d, Γ) be a complete L-convex metric space, X be a nonempty L-convex

subset of M and G : M → 2X such that

(1) infx∈X µ(G∗(x)) = 0;

(2) For each y ∈ M , G(y) = ∅ or ∈ L(M);

(3) For each x ∈ X , x 6∈ G(x);

(4) G−1 is transfer compactly open valued.

Then {x ∈ M : G(x) = ∅} is nonempty and compact.

Proof Let A := {(x, y) ∈ X×M : x 6∈ G(y)}. Note that for each x ∈ X , G∗(x) = M \G−1(x) =

{y ∈ M : x 6∈ G(y)} = {y ∈ M : (x, y) ∈ A}, and for each y ∈ M , G(y) = {x ∈ X : x ∈ G(y)} =

{x ∈ X : (x, y) 6∈ A}. Then, by (1), infx∈X µ({y ∈ M : (x, y) ∈ A}) = 0. By (2), for each

y ∈ M , {x ∈ X : (x, y) 6∈ A} = ∅ or ∈ L(M ). By (3), for each x ∈ X , (x, x) ∈ A. By (4), the

mapping G∗ defined by G∗(x) := {y ∈ M : (x, y) ∈ A} for each x ∈ X is transfer compactly

closed valued. In virtue of Theorem 2.3, {y ∈ M : X × {y} ⊂ A} is nonempty and compact.

Therefore, {x ∈ M : G(x) = ∅} is nonempty and compact.

Remark 2.5 As we have noted in remarks above, Theorem 2.5 improves and generalizes Theo-

rem 3.4 of Kirk et al.[5] in several aspects and strengthens its conclusion. In addition, the proof

method of Theorem 2.5 is different from that of corresponding theorems in references.

As an immediate consequence of Theorem 2.5, we have the following Fan-Browder fixed point

theorem in noncompact L-convex metric spaces.

Theorem 2.6 Let (M, d, Γ) be a complete L-convex metric space and G : M → 2M \ {∅} such

that

(1) infx∈M µ(G∗(x)) = 0;

(2) For each y ∈ M , G(x) ∈ L(M);

(3) G satisfies one of the conditions (a)∼(e) in Lemma 1.3.

Then there exists x0 ∈ M such that x0 ∈ G(x0).

Remark 2.6 Theorem 2.6 unifies, improves and generalizes Theorem 3 of Park[4], Theorem

3.1 of Kirk[5], Theorem 3.1 of Wen[6], Lemma 2.2 of Zhang[19], Corollarys 2 and 3 of Chen and

Shen[24] and Theorem 8 of Park[25].
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