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Abstract In this paper we obtain theorems of complete convergence for weighted sums of arrays
of rowwise negatively associated (NA) random variables. These results improve and extend the
corresponding results obtained by Sung (2007), Wang et al. (1998) and Li et al. (1995) in
independent sequence case.

Keywords complete convergence; negatively associated random variable; weighted sums; slowly
varying function.

Document code A
MR(2000) Subject Classification 60F15; 60G50
Chinese Library Classification 0211.4

1. Introduction

The concept of complete convergence was introduced by Hsu and Robbins in [14] as follows:
A sequence of random variables {X,,,n > 1} is said to converge completely to a constant C if
S P(|X, — C|] >¢) < oo for all € > 0. From then on, many authors devote their study to

complete convergence [7, 8, 10-13].

Recently, Sung [10] proved the following result:

Theorem A Let {X,,,n > 1} be a sequence of zero-mean independent random variables which

is stochastically dominated by a random variable X, ie., P(|X,| > z) < CP(|X| > z) for

all x > 0 and all n > 1, where C is a positive constant. Assume that FE|X|? < oo, where

vy=p{t+pF+1)>0andp>0. Let {ani,i > 1,n > 1} be an array of real numbers satistying
lan:| = O(1), Z lani|® = O(n?) for some o < . (1)

i=1
Assume that .2 an;X; Is finite a.s.,
(i) If1 <~ <2, then

Z ntP(n_l/p| ZamXi| > 5) < oo foralle>0. (2)
n=1 i=1
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(ii)) If~v > 2, and
iafw = O0(nY) for some q < 2/p, (3)
i=1
then (2) holds.
Let Z be the set of integers and let
Nn,m+1)=t{ke Z:|an| > (m+1)"?}, p>2, n>1, m>1.
Wang et al. [13] proved the following result:

Theorem B Let r > 1, p > 2. Let {X, X;,i € Z} be a sequence of i.i.d. random variables and
let {an;,i € Z} for each n > 1 be a constant sequence with

Nn,m+1)=~mi=D/P n>1 m>12<q<p, (4)
EX =0, when 1<gq(r—1), (5)
Zaii = O(n‘s) as n — oo, when 2 < ¢g(r — 1), where 0 < < 2/p. (6)

i€z

Then the following statements are equivalent:

(i) E|XPUY < oo; (7)
i i(r—1) 1/p
(ii) ; 2 21_71;1123221_ P(n | k;vankXﬂ > 5) < oo, Ve>0. (8)

When p = 2, taking ¢ = 2, and taking

Z lani |7 = 0(1) as n — oo, (9)
i€z
and
EIX|?rVog(1+ |X|) < oo, (10)

instead of (6) and (7), respectively, then the above results still hold.
A finite family of random variables {X;,1 <4 < n} is said to be negatively associated (NA)
if for every pair of disjoint subsets A and B of {1,2,...,n},

COV(fl(Xi,i S A), fQ(Xj,j S B)) <0.

Whenever f; and f> are coordinatewise increasing and such that the covariance exists. An infinite
family of random variables {X;,7 > 1} is NA if for every positive integer n > 2, {X;,1 < i <n}
is NA. An array {X,;,i > 1, n > 1} is rowwise NA if for every positive integer n, the sequence
of random variables {X,;,4 > 1} is NA. This definition was introduced by Alam and Saxena
[1] and carefully studied by Joag-Dev and Proschan [2] and Block et al. [3]. NA sequences
have many good properties and extensive applications in multivariate statistical analysis and
reliability theory, and the notion of NA random variables has received more and more attention
in recent years. We refer to Joag-Dev and Proschan [2] for fundamental properties, Matula [4]
for the three series theorem, Su et al. [5] for a moment inequality, a weak invariance principle
and an example to show that there exists infinite family of non-degenerate non-independent

strictly stationary NA random variables, Shao [6] for the Rosenthal type maximal inequality
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and the Kolmogorov exponential inequality, Su and Qin [7] and Qiu and Gan [8] for complete
convergence, Qiu and Yang [9] for strong laws of large numbers.

The main purpose of this paper is to extend and improve Theorem A and the sufficient
part of Theorem B to arrays of rowwise NA random variables {X,;,i > 1, n > 1} which are
stochastically dominated by a random variable X. That is,

P(|Xpi| >2) <CP(]X|>xz) for all z > 0 and for all i > 1 and n > 1,

where C' is a positive constant.
Throughout this paper, we assume that > ., a,; Xy is finite a.s., C' always stands for a
positive constant which may differ from one place to another.

2. Preliminaries

In order to prove our main result, we need the following lemmas.

Lemma 1 ([6]) Let {X,,n > 1} be a sequence of NA random variables with EX, = 0 and
E|X,|2 <oo, n>1. Let S, = Y.F | Xi, B, = 3.1, EX2. Then for all z > 0,b > 0

22
B,
> < >
P(1r<nka<x |Sk| > x) < 2P( ax | Xk| > b) +4exp(— SBn)+4(4(xb+Bn)

Lemma 2 ([6]) Let {X,,n > 1} be a sequence of NA random variables with EX, = 0 and
E|X, P <00, n>1, where 1 <p < 2. Then

)/ (120)

B> X <2 EIX|P, vn>2.

Lemma 3 Let {X,;,i > 1,n > 1} be an array of random variables which is stochastically
dominated by a random variable X. Then for any ¢ > 0 and x > 0

(i) ElXnil'I(|Xni| < z) < C[EIX[I(1X]| < 2) + 29P(|X] > )],

(ii) E|Xni| (| Xpi| > z) < CE|X|I(|X]| > ).

Lemma 4 Let h(z) > 0 be a slowly varying function as x — 400 and X be a random variable
with E|X|"h(|X|?) < oo for some v > 0 and some p > 0. Then

(i) Y2, 27W/Ph(2HEIXHOI(|X]| < 20+V/P) < O + CE|X|"h(|X|P) for any § > 0,

(i) 32, 29/Ph(29)E|X|~°I(|X]| > 2¥/P) < C + CE|X|"h(|X|P) for some § > 0 such that
v—9>0,

(iii) 32720 27/Ph(2")P(IX| > 27/7) < C + CE|X["h(|X|?).

Proof First of all, we mention that the proofs of (ii) and (iii) are similar to that of (i), so we

only prove (i). By the property of slowly varying function [11], we have

Z 2—i6/ph(2i)E|X|'y+6I(|X| < 2(i+1)/p)
=0

< Z 2710/Pp(2%) 4 Z 270/Pp(2 Z E|X|"H1(20/7 < |X| < 2UF1/P)
7=0
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<O+ Z E|X|"H01(21/P < | X| < 2U+D/P) Z 2-10/Pp (2%
3=0 =J

<C+CY h@)EIXPIP < |X| < 20H1/P)
§=0
<C+CE|X|"h(|XP).
Lemma 5 Let h(z) > 0 be a slowly varying function as x — 400 and {Xp;,% > 1, n > 1} be an
array of random variables which is stochastically dominated by a random variable X satisfying
E|X|"h(|X|P) < 0o, where y =p(t + 3+ 1) > 0 and p > 0. Let {an;,7 > 1,n > 1} be an array
of real numbers satisfying (1). Then we have
() 520 PR may <pcarin 5520 BN P X (| Xoa] < 0/P)[1%8 < C+CEIX[Th(XP)
for any § > 0.
(ii) Y2000 2D R(29) maxgs < pcoitt Y0y Bln” 7 ani Xnid (| Xpi| > n7)[770 < C+CE|X[Yh(|X|P)
for some § > 0 such that v —d > o and v — 9 > 0.

Proof First we note that (1) implies
Z |lani|*t" = O(n?) for any r > 0.
i=1

Thus by C-inequality, Lemmas 3 and 4, we can get

o0

D2 | max S Bl P Xosl ( Xual < nt7)0
j=0 = i=1

< ~i(B+3) (23 .7+6[ v+ <nk e : }
_ng h(2 )ngrggm;mm E|X[°I(|X| <nv)+n"7 P(X|>n?)
< CZ 2_5j/”h(2j)E|X|7+‘5I(|X| < 2(j+1)/p) + CZ 2jv/ph(2j)p(|X| > 2j/p)

=0 =0

< C + CE[X["h(|XP).

Therefore, (i) is proved. By Lemmas 3 and 4, we also get

D 2 EI) | max S Bn Xl (Xi] > 07
j=0 = i=1

J(t+1) g (97 —(v=98)/p =90 y—=34 1/p
< 0202 h(2'),, max  n Z; |ani" T EIXTL(1X] > n'/P)
Jj= i=

<CY 29PR2NEIX]I(X] > 27/7)
j=0

< C+CEIXh(XP).

Thus (ii) is proved. O
3. Main results and proofs

Theorem 1 Let h(z) > 0 be a slowly varying function as ¢ — +oo and {Xp;,0 > 1, n > 1}
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be an array of zero-mean rowwise NA random variables which is stochastically dominated by a
random variable X satisfying E|X|7h(|X|’) < oo, where v = p(t+ 8+ 1) > 0 and p > 0. Let
{ani,i > 1,n > 1} be an array of real numbers satisfying (1) for some o < 7.

(i) Ify > 2, and {an;,i > 1,n > 1} satisfies (3). Moreover, we assume that E|X|* < oo
when v = 2. Then

J(t+1) 1, (93 —-1/p X
Z 2 h(2 )2j<123>2(j+1 P(n |Z i Xni| > 5) < oo forall €>0, (11)
=0 = i=1
and
t —1/p X .
Sn h(n)P(n 1> i Xl > 5) < oo forall e>0. (12)
n=1 i=1

(ii) If1 <~ <2, then (11) and (12) hold.
(iii) Ify =1, and E|X| < oo, then (11) and (12) hold.

Proof If (11) holds, then

i nth(n)P(nfl/p| i i Xni > 5) = i Z nth(n)P(nfl/ﬂ i i Xnil > 5)
n=1 i=1 i=1

J=021<n<27+1

<C+ Cj;o 21ty (27) gjglginz(jﬂ P(n el ; ani Xpi| > 6) < 09,
(12) holds. So, it suffices to show that (11) holds.

If t < —1, by the property of slowly varying function [11], (11) holds and so we assume that
t > —1. Define Uy, = Xl (| Xpi| < n'/P) 4+ nV/P1(X,; > nt/P) — nV/PI(X,; < —nl/?),V,,; =
Xnil (| Xni| > n'/P) = nV/PI(X,; > n'/P) 4 n'/PI(X,,; < —n!/P), for any i > 1,n > 1. Without
loss of generality, we may assume that a,; > 0 for ¢ > 1,n > 1. Then by Joag-Dev and Proschan
2], {anin~YPUn;,i > 1,n > 1} and {ann="/PV,;,i > 1,n > 1} are arrays of rowwise NA
random variables. Since we assume that Z;’il aniXni is finite a.s., there exists positive integer
kn such that P(n=Y/?| 3 | aniXni| > €/2) < 1/nl*2) ¥n > 1. Thus in order to prove (11),
we only need to show that

o0 kn
> 2UDR2)  max  P(nTVPY aniXnil > £/2) < . (13)
j=0

21 <n<2it1 :
- =1

Since EX,,; =0 for any ¢ > 1,n > 1, we can get

%) kn
Z 20D (27)  max  P(n~YP| Z aniXni| > €/2)
i=1

- 21 <m<2it+1
j=0 -

e’} kn
<> 2R max PP ani(Uni — EUyi)| > e/4)+
i=1

jr 21 <n<2i+1
o0 kn
J(t+1) J -1/p ) o )
z}) 2 h(2 )ngrggm P(n=1/7| ;anz(vnz EVyi)| > €/4)
Jj= 1=

2P A+ B. (14)
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(i) When « > 2, by the condition (i) of Theorem 1, we have E|X|? < co. For B, we get by
Cy-inequality and (3) that

kn oo
Dy, = ZVar(n_l/pame-) < Zaiin_wp [EX,QMI(|XM-| > n/P) £ n2PP(|X ;| > nt/P)
i=1 i=1
< Onla2/P) L CniP(|X| > n'/P) < Cpla=2/P),

Since g < %, we can take b > 0 such that (£ — ¢)z5; >t + 1. So we have

2
p

o0 2 oo
Z 2 DR(27)  max  exp ( - (8/—4)) < Z 21D b (27) exp ( - C2j(2/p_q)> < oo, (15)
i=0 =

21 <n<2i+1 8D, /) =
and
o ; D N RN 4
E i (t+1) py (93 (—"1> < 0N " oilla—2) g +t+1ly i _ 16
= ® 0 2255 G+ Do) - Z ) <o 116)

Take § > 0 such that v —J > a and v — 6 > 1. By Markov’s inequality, C,-inequality, Jensen’s
inequality, (1), Lemmas 4 and 5, we get

21 <n<2i+t 1<i<ky,

ZQj(t“)h(?j) max  P( max |[n"Pan;(Vai — EVii)| > b)
=0

J(t+1) (9 ~1pg (V.. — BV,
<3P g | 3P i~ BV > )
SODPIND) a3 [F b X (o > b P )
<C+CY 27Ph(2)P(IX] > 2/7) < oo an

3=0
By (15)—(17) and Lemma 1 we have B < co. For A, we have
kn 0o
Dy = Z Var(n=YPa,Up;) < Z a?,n 2P [EX§11(|XM| < nMP) 4 2P P(|X | > nl/P)}
i=1

=1

< Cnla=2/p) L CniP(|X]| > nl/p) < Cn(a=2/p)

Taking b > 0 such that (% —q)gg5 > t+ 1, similar to the proof of (15) and (16), we have

o0 2
J(t+1) 1, (97 _ e/ )
jgo 2 h(27) 0 glffi“z(m exp ( 8Dy < 0, (18)

and

S ) D, /(48b)
3 20 0R(27)  ma 2 ) < . (19)

= 2i<nenit (4(ba/4 + Dp2)
Taking 6 > 0, by Markov’s inequality, C,-inequality, Jensen’s inequality, (1), Lemmas 4 and 5,

we get

oo

ZQj(t+1)h(2j) max  P( max |n"YPa,;(Un; — EU;)| > b)

” 2i<n<2i+l  "1<i<k,
j=0 -



Complete convergence for weighted sums of arrays of rowwise NA random variables 155

93 (t+1) 1/ _ )
<32, g | 3P U ) 2
SO e mgsz%m;[Eln‘iamxmfuxnnSn%>|7+5+azﬁp<|xm|>né>}
<C+CY 2P P(|X] > 20/7) < oo, (20)
j=0

By (18)—(20) and Lemma 1 we have A < co. So (11) holds.
(ii) Taking § > 0 such that v+ < 2, we get by Markov’s inequality, C.-inequality, Jensen’s

inequality and Lemma 2-Lemma 5 that

e’} kn
A= (4/e)10N " 200FDR2))  max  E[Y nYPani(Uni — EU)| "
: —

20 <n<2i+1
i (1) (o - -1y , Ly v+s 4o , 1
S0 h2),, s, 3[BT o XXl < n3)["™7 4+ 2P| > )
< Q. (21)

We now take 6 > 0 such that v — ¢ > o and v — 9§ > 1. Then we also get that

o0 kn
— y=4 J(t+1) gy (97 “pg (V.. _— |9
B = (4/¢) JZO 2 ) max E| ; n"YPa,; (Vi — EVii)|
N (t+1) (97 N Fa X _ Lyy=6 . v=4 _ 1
< C’Z? h(?)yglgi);jﬂ; [E|n P i Xnil (| Xni| > n?)|"7° +a); " P(| Xy > np)}
< 0. (22)

Thus (11) holds by (14), (21) and (22) when 1 <~y < 2.
(iii) Next, we consider the case v = 1. Similarly to the proof of (21), we have

A < oo. (23)

Now, we prove that B < co. By Lemma 3, there exists a positive constant C7 > 0 such that

B\ Xl I(| Xpi| > x) < CLE|X|I(|X| > x) forall x>0 andalln>1. (24)
Condition (1) implies that there exists a positive constant Cy > 0 such that
Z |ani| < Con® for all n> 1. (25)
i=1
Since E|X| = E|X|" < oo, there exists a positive constant M > 0, when n'/? > M, we have that
E|X|I(|X] > n'/P : 26
XIT(X] > 0'7) < 1o (26)

Since p(t + 8+ 1) =1 and t > —1, we can get that 3 — 1/p = —(t + 1) < 0. For n*/? > M, by
(24)—(26) and Lemma 3, we have

kn (')
> 0P i | B X I(| Xni| > n'/P) < ConVPEIX|I(X] > 0'P) > |an]
i=1 i=1
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< CCon~YPRPEIX|I(|X| > nt/P)

<nTlrs < = (27)
By (27), we have
kn
3
D ani P(|Xni| > nt/?) < T (28)
=1

Taking § > 0 such that y —d = 1 —§ > aand y— 0§ > 0. Let 270/? > M. By Markov’s inequality,
Cy-inequality, Lemmas 4 and 5, (27) and (28), we have

B<C+ Z 2j(t+1)h(2j),

Jj=Jo

kn
p( —1/p ni|:Xni I(| X i 1/p VP (| X 1/p } E)
2 <ne2itt ;" i | X L(| Xni| > 7P) 40 PI(| X > n /P> 3

<C+C Y YRR

J=Jjo
& -1/p 1/p 1/p ey
ngng\z;n il | X (1 Xl > 0/ + 0V /PI(|Xs] > n'/7)]
<C+C Z 2j(t+1)h(2j).
J=Jjo
Bln P X (| Xoi| > 070 + by (| Xi] > n/7)]
o 05 3 (Bl Pani X (1Xi| > /7)1 0l 7P| > )
<C + CE|X|h(|X]) < oo, (29)

Thus (11) holds by (14), (23) and (29) when v = 1.

Remark 1 (i) If there exists a positive constant M > 0 such that h(z) > M for sufficiently
large z, then we can get E|X P8+ < oo from E|X [PEFB+DL(|X|P) < co.

(ii) Put h(z) =1, X, = X;, Vi > 1, n > 1. Let {X;,i > 1} be a sequence of independent
random variables. Then Theorem A is obtained from Theorem 1, since independent random
variables are a special case of NA random variables.

(iii) Let 8=0,t=r—2, h(xz) = 1. If condition (4) holds, then (1) holds according to (2.11)
of [13], where a = g(r — 1), y = p(r = 1), 2 < ¢ < § < p. When 0 < ¢(r — 1) < 2, by (2.11)
of [13], we have Y, ,aZ; = O(1). Therefore, if (4) and (6) hold, we have Y, , a2; = O(n?),
where 0 < § < 2/p. Thus Theorem 1 extends and improves the sufficient part of Theorem B in
i.i.d. case to NA random variables when p > 2.

If condition (1) on the weights is replaced by a weaker condition
|ani| = O(1), > |ani [P = O(nf), (30)
i=1

we have the following theorem.

Theorem 2 Let {X,;,7 > 1, n > 1} be an array of zero-mean rowwise NA random variables
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which is stochastically dominated by a random variable X satisfying F|X |7 log (1 + |X|) < oo,
where v = p(t + 8+ 1) > 0 and p > 0. Let {an;,i > 1,n > 1} be an array of real numbers
satistying (30).

(i) Ifvy > 2, and {an;, 7 > 1,n > 1} satisfies (3), then

Z 29+ max P(n_l/p| ZaniXm| > E) < oo forall € >0, (31)
=0 2 sn<artt i=1
moreover
E:MPOFVHE:mW&M>E)<a>brdls>0 (32)
n=1 i=1

(ii) If 1 <~ <2, then (31) and (32) hold.
Proof The proof is similar to that of Theorem 1, so it is omitted here. O

Remark 2 (i) Obviously, Theorem 2 extends and improves the sufficient part of Theorem B in
i.i.d. case to NA random variables when p = 2.

(i) ¥O0<y=pt+0+1) <1 Let {X,;,7>1,n>1} be an array of arbitrary random
variables, under conditions of Theorem 1 or Theorem 2, the results still hold according to the
proof of [10].

Corollary 1 Let {X,;,i > 1, n > 1} be an array of zero-mean rowwise NA random variables
which is stochastically dominated by a random variable X satisfying E|X|P < oo for some p > 2.
Let {an;,i > 1,n > 1} be an array of real numbers satisfying (3) and
Z lani|® = O(1) for some 2 < 0 < p.
i=1
Then
Z P(n’l/p| Zam-Xm-| > a) < oo for all € > 0.
n=1 i=1

Proof Let ¢t =0 and 8 = 0. Clearly, |a,;| = O(1). Thus the result follows from Theorem 1(i). O

Corollary 2 Let {X,;,i > 1, n > 1} be an array of zero-mean rowwise NA random variables
which is stochastically dominated by a random variable X satisfying E|X|?log|X| < oco. Let
{ani,i > 1,n > 1} be an array of real numbers satisfying

o0

> lanil* = 0(1).

i=1

Then
ZP(n_1/2| Zananil > 5) < oo for all € > 0.
n=1 =1

Proof Lett =0, 8 =0 and p = 2. Clearly |a,;| = O(1). Thus the result follows from Theorem
2(i).

Remark 3 When X,; = X;, Vn > 1, ¢ > 1, let {X;,7 > 1} be a sequence of i.i.d. random
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variables. Corollarys 1 and 2 were proved by Li et al. [12]. Hence Corollaries 1 and 2 extend the
results of Li et al. [12].
From Theorem 1, we can obtain a result on the rate of convergence of moving average pro-

cesses.

Corollary 3 Let {X,;,—00 < i < 00, —00 < n < oo} be an array of zero-mean rowwise
NA random variables which is stochastically dominated by a random variable X satisfying
E|X[Pt*2) < oo for some 0 < p < 2 and p(t +2) > 1. Let {an,—00 < n < oo} be a se-

lan| < oco. Set an; = Z;’:ZH

o0
n=—oo

quence of real numbers such that )
Then

a; for each i and n.

ZntPO Z am-Xm-|/n1/p > 5) < oo forall € >0.
n=1 3

1=—00

Proof The proof is similar to that of Sung [10] and is omitted here.

Remark 4 Corollary 3 extends the Corollary 3 of Sung [10] on independent random variables

to arrays of rowwise NA random variables.
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