On a Class of Analytic Functions Defined by Ruscheweyh Derivatives

LI Shu Hai¹, DAI Jin Jun², TANG Huo¹

(1. Department of Mathematics, Chifeng College, Inner Mongolian 024000, China;

2. Department of Mathematics, Central China Normal University, Hubei 430079, China)

(E-mail: lishms66@sina.com)

Abstract In the present paper a class of extended close-to-convex functions $Q_{k,\lambda}(\alpha,\beta,\rho)$ defined by making use of Ruscheweyh derivatives is introduced and studied. We provide integral representations, distortion theorem, radius of close-to-convexity and Hadamard product properties for this class.

Keywords Ruscheweyh derivatives; close-to-convex function; Hadamard product.

Document code A MR(2000) Subject Classification 30C45 Chinese Library Classification 0174.5

1. Introduction

Suppose that the parameters λ , α , β , ρ satisfy $\lambda > -1$, $\alpha \ge 0$, $0 \le \beta \le 1$, $0 \le \rho < 1$. Let H_k (k = 1, 2, ...) be the class of functions of the form

$$f(z) = z + \sum_{n=1}^{\infty} a_{k+n} z^{k+n}$$

which are analytic in the unit disk $U = \{z : |z| < 1\}$. Let $P_k(\beta)$ denote the class of functions of the form $p(z) = 1 + p_k z^k + \cdots$ which are analytic in U and satisfy $\operatorname{Re} p(z) > \beta$. Let $S_k^*(\beta)$ and $K_k(\beta)$ stand for β class starlike function and β class convex function in H_k , respectively.

A function $f(z) \in H_k$ is said to be in the class $C_k(\beta, \rho)$ if and only if there exists $g(z) \in S_k^*(\beta)$ such that

$$\operatorname{Re}\frac{zf'(z)}{g(z)} > \rho, \ z \in U.$$

From [9], we know that

$$f(z) \in K_k(\beta) \Leftrightarrow zf'(z) \in S_k^*(\beta).$$

For fixed real number $\lambda > -1$, the operator D^{λ} is defined by

$$D^{\lambda}f(z) = \frac{z}{(1-z)^{\lambda+1}} * f(z), \quad f(z) \in H_k,$$
(1.1)

Received date: 2007-10-29; Accepted date: 2008-07-07

Foundation item: the Natural Science Foundation of Inner Mongolia (No. 2009MS0113); Higher School Research Foundation of Inner Mongolia (No. NJzy08510).

where the operation * stands for Hadamard product. The operator D^{λ} is the Ruscheweyh derivative introduced in [1,10] and is of the following properties:

$$D^{\lambda}f(z) = z + \sum_{n=1}^{\infty} \frac{(\lambda+1)\cdots(\lambda+k+n-1)}{(k+n-1)!} a_{k+n} z^{k+n};$$
(1.2)

$$z(D^{\lambda}f(z))' = (\lambda+1)D^{\lambda+1}f(z) - \lambda D^{\lambda}f(z).$$
(1.3)

Next we introduce new functions class.

Definition 1.1 If a function $f(z) \in H_k$ satisfies condition

$$\operatorname{Re}\left\{(1-\alpha)\frac{D^{\lambda}f(z)}{z} + \alpha(D^{\lambda}f(z))'\right\} > \beta, \quad z \in U,$$
(1.4)

then we denote $f(z) \in V_{k,\lambda}(\alpha,\beta)$.

Definition 1.2 Suppose $f(z) \in H_k$. If there exists a function $g(z) \in V_{k,\lambda}(\alpha,\beta)$ such that

$$\operatorname{Re}\frac{z\left(D^{\lambda}f(z)\right)'}{D^{\lambda}g(z)} > \rho, \quad z \in U,$$
(1.5)

then we denote $f(z) \in Q_{k,\lambda}(\alpha,\beta,\rho)$.

In [2], the functions class $Q_{1,0}(0, \frac{1}{2}, 0)$ was studied and distortion theorem, univalent radius and rotation theorem were obtained, but Hadamard product has not been solved. We will study the close-to-convex function class $Q_{k,\lambda}(\alpha, \beta, \rho)$ introduced above which is a great extension of [2].

As in [3], we introduce linear operator L(a,c) which is more general than D^{λ} . Let

$$\phi(a,c;z) = \sum_{n=0}^{\infty} \frac{(a)_n}{(c)_n} z^{n+1}, \quad z \in U, \ c \neq 0, -1, -2, \dots$$
$$L(a,c)f(z) = \phi(a,c;z) * f(z), \quad f(z) \in H_k$$
(1.6)

where $(\zeta)_n = \frac{\Gamma(\zeta+n)}{\Gamma(\zeta)}$. From [4], we know that L(a,c) is continuous mapping from H_k to H_k . It is easy to see that

$$\phi(2(1-\alpha), 1; z) = \frac{z}{(1-z)^{2(1-\alpha)}}$$
(1.7)

and for c > a > 0, we have

$$L(a,c)f(z) = \int_0^1 u^{a-1} f(uz) d\eta(a,c-a)(u),$$
(1.8)

where η is **B** distribution

$$d\eta(a, c-a)(u) = \frac{u^{a-1}(1-u)^{c-a-1}}{B(a, c-a)} du.$$
(1.9)

If $a \neq 0, -1, -2, \ldots$, then L(c, a) is the inverse mapping of L(a, c), so L(a, c) is one-to-one mapping from H_k to H_k . It is obvious that

$$L(a,c) = L(a,b)L(b,c) = L(b,c)L(a,b), \quad b,c \neq -1, -2, \dots$$

If g(z) = zf'(z), then g(z) = L(2,1)f(z), f(z) = L(1,2)g(z).

On a class of analytic functions defined by Ruscheweyh derivatives

By (1.6) and (1.7), we have

$$L(\lambda + 1, 1)f(z) = D^{\lambda}f(z).$$
(1.10)

In view of the operator L(a, c) and (1.10), we may write (1.5) as:

$$\operatorname{Re}\frac{L(2,1)L(\lambda+1,1)f(z)}{L(\lambda+1,1)g(z)} > \rho, \quad z \in U.$$
(1.11)

In the present paper, we deduce integral representations of function in $Q_{k,\lambda}(\alpha,\beta,\rho)$. Distortion theorems, radius of close-to-convexity and Hadamard product properties are obtained for functions belonging to this class. Then we solve the closeness of Hadamard product in [2].

2. Integral representations

If $g(z) \in V_{k,\lambda}(\alpha,\beta)$, then it is not difficult to verify that there exists $p(z) = 1 + p_k z^k + \cdots \in P_k(\beta)$ such that

$$g(z) \in V_{k,\lambda}(\alpha,\beta) \Leftrightarrow zp(z) = L(\frac{1}{a}, \frac{1}{a} + 1)L(\lambda + 1, 1)g(z) \Leftrightarrow L(1, \lambda + 1)g(z)$$
$$= L(\frac{1}{a}, \frac{1}{a} + 1)(zp(z)).$$

In view of the Herglotz formula^[5] of positive real part and the property of $L(\lambda + 1, 1)$, we prove the following result:

Theorem 2.1 If $g(z) \in V_{k,\lambda}(\alpha,\beta)(\alpha>0)$, then there exists left continuous probability measure $\eta(x)$ on $X = \{x : |x| = 1\}$ such that

$$g(z) = L(1, \lambda + 1) \Big\{ \frac{1}{\alpha z^{\frac{1}{\alpha} - 1}} \int_0^z t^{\frac{1}{\alpha} - 1} \Big[\int_{|x| = 1} \frac{1 + (1 - 2\beta)tx}{1 - tx} \mathrm{d}\eta(x) \Big] \mathrm{d}t \Big\},$$
(2.1)

or there exists $p(z) \in P_k(\beta)$ such that

$$g(z) = L(1, \lambda + 1) \Big\{ \frac{1}{\alpha z^{\frac{1}{\alpha} - 1}} \int_0^z t^{\frac{1}{\alpha} - 1} p(t) \mathrm{d}t \Big\}.$$

For fixed parameters $\lambda, \alpha, \beta, V_{k,\lambda}(\alpha, \beta)$ and left continuous probability measure points $\{\eta(x)\}$ on X are one-to-one correspondence through the relation expressed by (2.1).

Theorem 2.2 A function $f(z) \in Q_{k,\lambda}(\alpha,\beta,\rho)(\alpha>0)$ if and only if there exists left continuous probability measures $\eta(x), \mu(x)$ on $X = \{x : |x| = 1\}$ such that

$$f(z) = L(1, \lambda + 1)L(1, 2) \Big\{ \Big[\frac{1}{\alpha z^{\frac{1}{\alpha} - 1}} \int_0^z t^{\frac{1}{\alpha} - 1} \Big(\int_{|x| = 1} \frac{1 + (1 - 2\beta)tx}{1 - tx} d\eta(x) \Big) dt \Big] \times \Big[\int_{|x| = 1} \frac{1 + (1 - 2\rho)zx}{1 - zx} d\mu(x) \Big] \Big\},$$

$$(2.2)$$

when $\lambda = 0$,

$$f(z) = L(1,2) \left\{ \left[\frac{1}{\alpha z^{\frac{1}{\alpha}-1}} \int_{0}^{z} t^{\frac{1}{\alpha}-1} \left(\int_{|x|=1} \frac{1+(1-2\beta)tx}{1-tx} \mathrm{d}\eta(x) \right) \mathrm{d}t \right] \times \left[\int_{|x|=1} \frac{1+(1-2\rho)zx}{1-zx} \mathrm{d}\mu(x) \right] \right\}.$$
(2.3)

For fixed parameters $\lambda, \alpha, \beta, \rho, Q_{k,\lambda}(\alpha, \beta, \rho)$ and left continuous probability measure points $\{(\eta(x), \mu(x))\}$ on $X \times X$ are one-to-one correspondence through the relation expressed by (2.2).

Proof Let $f(z) \in Q_{k,\lambda}(\alpha,\beta,\rho)$. Then there exists $g(z) \in V_{k,\lambda}(\alpha,\beta)$ such that

$$\operatorname{Re}\frac{z(L(\lambda+1,1)f(z))'}{L(\lambda+1,1)g(z)} > \rho, \quad z \in U.$$

By Theorem 2.1, we have

$$g(z) = L(1, \lambda + 1) \Big\{ \frac{1}{\alpha z^{\frac{1}{\alpha} - 1}} \int_0^z t^{\frac{1}{\alpha} - 1} \Big[\int_{|x| = 1} \frac{1 + (1 - 2\beta)tx}{1 - tx} \mathrm{d}\eta(x) \Big] \mathrm{d}t \Big\},$$
(2.4)

where $\eta(x)$ is left continuous probability measure on X. By Herglots formula^[5] for the functions in P class, we get

$$\frac{z(L(\lambda+1,1)f(z))'}{L(\lambda+1,1)g(z)} = \int_{|x|=1} \frac{1+(1-2\rho)xz}{1-xz} d\mu(x),$$
(2.5)

where $\mu(x)$ is left continuous probability measure on X. From (2.4) and (2.5), we deduce that

$$\begin{split} L(2,1)L(\lambda+1,1)f(z) = &\Big\{ \Big[\frac{1}{\alpha z^{\frac{1}{\alpha}-1}} \int_0^z t^{\frac{1}{\alpha}-1} \Big(\int_{|x|=1} \frac{1+(1-2\beta)tx}{1-tx} \mathrm{d}\eta(x) \Big) \mathrm{d}t \Big] \times \\ &\Big[\int_{|x|=1} \frac{1+(1-2\rho)zx}{1-zx} \mathrm{d}\mu(x) \Big] \Big\}. \end{split}$$

By using the property of $L(\lambda + 1, 1)$, we get (2.2). Conversely it is true too. When $\lambda = 0$, (2.2) reduce to (2.3). For fixed parameters $\lambda, \alpha, \beta, \rho$, since $\{(\eta(x), \mu(x))\}$ and $P_k(\beta) \times P_k(\rho)$ are one-to-one correspondence, $P_k(\beta) \times P_k(\rho)$ and $Q_{k,\lambda}(\alpha, \beta, \rho)$ are one-to-one correspondence too, so the last result is true. This completes the proof of Theorem 2.2.

3. Distortion theorems

Lemma 3.1^[6] Let $p(z) = 1 + p_k z^k + \dots \in P_k(0)$ $(z \in U, k \ge 1)$. Then for |z| = r < 1, we have $\frac{1 - r^k}{1 + r^k} \le \operatorname{Re} p(z) \le \frac{1 + r^k}{1 - r^k}.$

The result is sharp.

If $\operatorname{Re} p(z) > \beta$, then by setting $q(z) = p(z) - \beta$, we have $\operatorname{Re}(p(z) - \beta) > 0$. Hence it is easy to get from Lemma 3.1 and integral representation of positive real part functions^[5] that

Lemma 3.2 Let
$$q(z) = 1 + q_k z^k + \dots \in P_k(\beta)$$
 $(z \in U, k \ge 1)$. Then for $|z| = r < 1$, we have

$$\frac{1 - (1 - 2\beta)r^k}{1 + r^k} \le \operatorname{Re}q(z) \le |q(z)| \le \frac{1 + (1 - 2\beta)r^k}{1 - r^k}.$$

The result is sharp.

Theorem 3.1 Let $\alpha > 0$, $f(z) \in Q_{k,\lambda}(\alpha, \beta, \rho)$. Then for |z| = r < 1, we have

$$\frac{1 - (1 - 2\rho)r^{k}}{r\alpha(1 + r^{k})} \int_{0}^{1} t^{\frac{1}{\alpha} - 1} \frac{1 - (1 - 2\beta)(rt)^{k}}{1 + (rt)^{k}} dt \leq |(L(\lambda + 1, 1)f(z))'| \\
\leq \frac{1 + (1 - 2\rho)r^{k}}{r\alpha(1 - r^{k})} \int_{0}^{1} t^{\frac{1}{\alpha} - 1} \frac{1 + (1 - 2\beta)(rt)^{k}}{1 - (rt)^{k}} dt.$$
(3.1)

The result is sharp.

Proof Let $f(z) \in Q_{k,\lambda}(\alpha,\beta,\rho)$. Then there exists $g(z) \in V_{k,\lambda}(\alpha,\beta)$ such that

$$\operatorname{Re}\frac{z(L(\lambda+1,1)f(z))'}{L(\lambda+1,1)g(z)} > \rho, \quad z \in U.$$

Set $\frac{z(L(\lambda+1,1)f(z))'}{L(\lambda+1,1)g(z)} = q(z), z \in U$. Then $\operatorname{Re}q(z) > \rho$. Firstly, we prove the distortion property of $|L(\lambda+1,1)g(z)|$. By Lemma 3.2 and Since $g(z) \in V_{k,\lambda}(\alpha,\beta)$, there exists $\operatorname{Re}p(z) > \beta$ such that

$$|L(\lambda+1,1)g(z)| \ge \operatorname{Re}(L(\lambda+1,1)g(z)) = \operatorname{Re}\left\{\frac{1}{\alpha z^{\frac{1}{\alpha}-1}} \int_{0}^{1} t^{\frac{1}{\alpha}-1} \frac{1-(1-2\beta)(rt)^{k}}{1+(rt)^{k}} dt\right\}$$
$$\ge \frac{1}{\alpha} \int_{0}^{1} t^{\frac{1}{\alpha}-1} \frac{1-(1-2\beta)(rt)^{k}}{1+(rt)^{k}} dt;$$
(3.2)

$$\begin{aligned} |L(\lambda+1,1)g(z)| &= \left|\frac{1}{\alpha z^{\frac{1}{\alpha}-1}} \int_0^1 t^{\frac{1}{\alpha}-1} p(t) dt\right| \le \frac{1}{\alpha} \int_0^1 t^{\frac{1}{\alpha}-1} |p(zt)| dt \\ &\le \frac{1}{\alpha} \int_0^1 t^{\frac{1}{\alpha}-1} \frac{1+(1-2\beta)(rt)^k}{1-(rt)^k} dt. \end{aligned}$$
(3.3)

Since $z(L(\lambda + 1, 1)f(z))' = L(2, 1)L(\lambda + 1, 1)f(z) = q(z)L(\lambda + 1, 1)g(z), z \in U$. By (3.2), (3.3) and Lemma 3.2, we have

$$\begin{aligned} &\frac{1-(1-2\rho)r^k}{\alpha(1+r^k)} \int_0^1 t^{\frac{1}{\alpha}-1} \frac{1-(1-2\beta)(rt)^k}{1+(rt)^k} \mathrm{d}t \le |q(z)L(\lambda+1,1)g(z)| \\ &\le \frac{1+(1-2\rho)r^k}{\alpha(1-r^k)} \int_0^1 t^{\frac{1}{\alpha}-1} \frac{1+(1-2\beta)(rt)^k}{1-(rt)^k} \mathrm{d}t. \end{aligned}$$

We get (3.1). Equality in (3.1) is obtained by function

$$f(z) = L(1, \lambda + 1)L(1, 2) \left[\frac{1 + (1 - 2\rho)z^k}{\alpha(1 - z^k)z^{\frac{1}{\alpha} - 1}} \int_0^z t^{\frac{1}{\alpha} - 1} \frac{1 + (1 - 2\beta)t^k}{1 - t^k} dt \right]$$
(3.4)

at $z = re^{i\frac{\pi}{k}}$.

4. Radius of close-to-convexity

Lemma 4.1^[7] If $q(z) = 1 + q_k z^k + \dots \in P_k(\beta)$ $(z \in U, k \ge 1)$, then for |z| = r < 1, we have $\left| \frac{zq'(z)}{q(z)} \right| \le \frac{2k(1-2\beta)r^k}{(1-r^k)[1+(1-2\beta)r^k]}.$

The result is sharp.

Theorem 4.1 Let $\alpha > 0$, $f(z) \in Q_{k,\lambda}(\alpha, \beta, \rho)$. Then $D^{\lambda}f(z)$ is close-to-convex in disk $|z| < r_1$, where r_1 is the minimum positive root of the following equation:

$$1 - 2[m + k(1 - m)]r^{k} - (1 - 2m)r^{2k} = 0$$
(4.1)

and

$$m = \frac{1}{\alpha} \int_0^1 t^{\frac{1}{\alpha} - 1} \frac{1 - (1 - 2\beta)t^k}{1 + t^k} dt < 1.$$
(4.2)

Proof Let $f(z) \in Q_{k,\lambda}(\alpha, \beta, \rho)$. It suffices to prove that $D^{\lambda}g(z)$ is starlike function. Let $F(z) = \frac{D^{\lambda}g(z)}{z}$. Then F(z) is analytic in U. By Theorem 2.1, Lemma 3.2 and since $g(z) \in V_{k,\lambda}(\alpha, \beta)$,

there exists $p(z) \in P(\beta)$ such that

$$\operatorname{Re}\frac{L(\lambda+1,1)g(z)}{z} = \operatorname{Re}\left\{\frac{1}{\alpha z^{\frac{1}{\alpha}}} \int_{0}^{1} t^{\frac{1}{\alpha}-1} p(t) dt\right\} > m = \frac{1}{\alpha} \int_{0}^{1} t^{\frac{1}{\alpha}-1} \frac{1-(1-2\beta)t^{k}}{1+t^{k}} dt.$$

Noticing the definition of F(z) and by making use of Lemma 4.1, we have

$$\operatorname{Re}\left\{\frac{z(D^{\lambda}g(z))'}{D^{\lambda}g(z)}\right\} = 1 + \operatorname{Re}\frac{zF'(z)}{F(z)} \ge 1 - \left|\frac{zF'(z)}{F(z)}\right| \ge \frac{1 - 2[m + k(1 - m)]r^k - (1 - 2m)r^{2k}}{(1 - r^k)[1 + (1 - 2m)r^k]}$$

Let $\varphi(r) = 1 - 2[m + k(1 - m)]r^k - (1 - 2m)r^{2k}$. Then $\varphi(r)$ is continuous on [0, 1] and $\varphi(0) = 1 > 0$, $\varphi(1) = -2k(1 - m) < 0$. So (4.1) has minimum positive root in (0, 1) denoted by r_1 . For $|z| < r_1$, we have $\operatorname{Re}\{\frac{z(D^{\lambda}g(z))'}{D^{\lambda}g(z)}\} > 0$. So $D^{\lambda}g(z)$ is starlike function, namely, $D^{\lambda}f(z)$ is close-to-convex function in disk $|z| < r_1$.

Corollary 4.1 Let $\alpha > 0$, $f(z) \in Q_{k,0}(\alpha, \beta, \rho)$. Then f(z) is close-to-convex in disk $|z| < r_1$, where r_1 is the minimum positive root of (4.1).

5. Hadamard product

Lemma 5.1^[8] Let $\varphi(z)$ and h(z) be analytic in U and satisfy $\varphi(0) = h(0) = 0$, $\varphi'(0) \neq 0$, $h'(0) \neq 0$ and suppose for all complex numbers σ , τ satisfying $|\sigma| = |\tau| = 1$, there holds

$$\varphi(z) * \frac{1 + \tau \sigma z}{1 - \sigma z} h(z) \neq 0 \ (0 < |z| < 1).$$

Let F(z) be analytic in U and satisfy $\operatorname{Re} F(z) > 0$ (0 < |z| < 1). Then

$$\operatorname{Re}\left\{\frac{\varphi(z)*(F(z)h(z))}{\varphi(z)*h(z)}\right\} > 0, \quad 0 < |z| < 1$$

Theorem 5.1 Let σ , τ satisfy $|\sigma| = |\tau| = 1$, $\alpha \ge 0$, $f(z) \in Q_{k,\lambda}(\alpha,\beta,\rho)$, $\varphi(z) = z + \sum_{n=k}^{\infty} a_{k+1} z^{k+1}$ be analytic in U and

$$\varphi(z) * \frac{1 + \tau \sigma z}{1 - \sigma z} z \neq 0, \quad 0 < |z| < 1.$$

Then

$$f(z) * \varphi(z) \in Q_{k,\lambda}(\alpha,\beta,\rho)$$

Proof (i) Firstly, we prove that $g * \varphi(z) \in V_{k,\lambda}(\alpha,\beta)$. Let

$$F(z) = (1 - \alpha)\frac{D^{\lambda}g(z)}{z} + \alpha(D^{\lambda}g(z))' - \beta, \quad h(z) = z.$$

Then F(z) is analytic in U and $\operatorname{Re} F(z) > 0$ and $\varphi * h(z) = z$. Since

$$\varphi(z) * (F(z)h(z)) = \varphi * [(1 - \alpha)D^{\lambda}g(z) + \alpha z (D^{\lambda}g(z))' - \beta z]$$

= $(1 - \alpha)\varphi * D^{\lambda}g(z) + \alpha\varphi * z (D^{\lambda}g(z))' - \beta z$
= $(1 - \alpha)D^{\lambda}(\varphi * g)(z) + \alpha z (D^{\lambda}(\varphi * g))'(z) - \beta z,$ (5.1)

by Lemma 5.1, we get

$$\operatorname{Re}\left\{\frac{\varphi(z)*(F(z)h(z))}{\varphi(z)*h(z)}\right\} = \operatorname{Re}\left\{(1-\alpha)\frac{D^{\lambda}(\varphi*g)(z)}{z} + \alpha(D^{\lambda}(\varphi*g))'(z)\right\} - \beta > 0, \quad (5.2)$$

that is,

$$\operatorname{Re}\left\{(1-\alpha)\frac{D^{\lambda}(\varphi\ast g)(z)}{z} + \alpha(D^{\lambda}(\varphi\ast g))'(z)\right\} > \beta, \ z \in U$$

So $g * \varphi(z) \in V_{k,\lambda}(\alpha,\beta)$.

(ii) Next we prove that $f * \varphi(z) \in Q_{k,\lambda}(\alpha, \beta, \rho)$. Let $f(z) \in Q_{k,\lambda}(\alpha, \beta, \rho), p(z) = \frac{z(D^{\lambda}f(z))'}{D^{\lambda}g(z)} - \rho$ and h(z) = z. Then p(z) is analytic in U and $\operatorname{Re}p(z) > 0$ $(z \in U)$ and $\varphi * h(z) = z$. Since

$$\varphi * D^{\lambda}g(z) \cdot p(z) = \varphi * z(D^{\lambda}f(z))' - \rho\varphi * D^{\lambda}g(z), \qquad (5.3)$$

noticing that

$$\varphi * D^{\lambda}g(z) = D^{\lambda}(\varphi * g)(z); \quad \varphi * z(D^{\lambda}f(z))' = z(D^{\lambda}(\varphi * f))'(z)$$

by (5.3), we get

$$\operatorname{Re}p(z) = \operatorname{Re}\left\{\frac{z(D^{\lambda}(\varphi * f))'(z)}{D^{\lambda}(\varphi * g)(z)}\right\} > \rho.$$

From (i), $\varphi * g(z) \in V_{k,\lambda}(\alpha,\beta)$. So $f * \varphi(z) \in Q_{k,\lambda}(\alpha,\beta,\rho)$. This completes the proof of Theorem 5.1.

Remark 5.1 Setting $\lambda = 0, \alpha = 0, \beta = \frac{1}{2}$ and $\rho = 0$ in Theorem 5.1, respectively, we get the corresponding product properties of functions in $Q_{1,0}(0, \frac{1}{2}, 0)$.

References

- [1] RUSCHEWEYH S. New criteria for univalent functions [J]. Proc. Amer. Math. Soc., 1975, 49: 109–115.
- [2] ZHU Qingxin. On a extension of the class of close-to-convex functions [J]. J. Math. Res. Exposition, 1984, 4(4): 107–108. (in Chinese)
- [3] LI Shuhai. A class of analytic functions linearly homeomorphic to close-to-convex functions [J]. Heilongjiang Daxue Ziran Kexue Xuebao, 2000, 17(3): 6–10. (in Chinese)
- [4] CARLSON B C, SHAFFER D B. Starlike and prestarlike hypergeometric functions [J]. SIAM J. Math. Anal., 1984, 15(4): 737–745.
- [5] POMMERENKE C. Univalent Functions [M]. Vandenhoeck & Ruprecht, Göttingen, 1975.
- [6] MACGREGOR T H. Functions whose derivative has a positive real part [J]. Trans. Amer. Math. Soc., 1962, 104: 532–537.
- [7] BERNARDI S D. New distortion theorems for functions of positive real part and applications to the partial sums of univalent convex functions [J]. Proc. Amer. Math. Soc., 1974, 45: 113–118.
- [8] RUSCHEWEYH S, SHEIL-SMALL T. Hadamard products of Schlicht functions and the Pólya-Schoenberg conjecture [J]. Comment. Math. Helv., 1973, 48: 119–135.
- [9] NOOR K I. On quasiconvex functions and related topics [J]. Internat. J. Math. Math. Sci., 1987, 10(2): 241–258.
- [10] SRIVASTAVA H M, XU Neng, YANG Dinggong. Inclusion relations and convolution properties of a certain class of analytic functions associated with the Ruscheweyh derivatives [J]. J. Math. Anal. Appl., 2007, 331(1): 686–700.