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Abstract In the present paper a class of extended close-to-convex functions Qk,λ(α, β, ρ) defined

by making use of Ruscheweyh derivatives is introduced and studied. We provide integral rep-

resentations, distortion theorem, radius of close-to-convexity and Hadamard product properties

for this class.
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1. Introduction

Suppose that the parameters λ, α, β, ρ satisfy λ > −1, α ≥ 0, 0 ≤ β ≤ 1, 0 ≤ ρ < 1. Let

Hk (k = 1, 2, . . .) be the class of functions of the form

f(z) = z +
∞
∑

n=1

ak+nzk+n

which are analytic in the unit disk U = {z : |z| < 1}. Let Pk(β) denote the class of functions of

the form p(z) = 1 + pkzk + · · · which are analytic in U and satisfy Rep(z) > β. Let S∗
k(β) and

Kk(β) stand for β class starlike function and β class convex function in Hk, respectively.

A function f(z) ∈ Hk is said to be in the class Ck(β, ρ) if and only if there exists g(z) ∈ S∗
k(β)

such that

Re
zf ′(z)

g(z)
> ρ, z ∈ U.

From [9], we know that

f(z) ∈ Kk(β) ⇔ zf ′(z) ∈ S∗
k(β).

For fixed real number λ > −1, the operator Dλ is defined by

Dλf(z) =
z

(1 − z)λ+1
∗ f(z), f(z) ∈ Hk, (1.1)
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where the operation ∗ stands for Hadamard product. The operator Dλ is the Ruscheweyh

derivative introduced in [1,10] and is of the following properties:

Dλf(z) = z +
∞
∑

n=1

(λ + 1) · · · (λ + k + n − 1)

(k + n − 1)!
ak+nzk+n; (1.2)

z(Dλf(z))′ = (λ + 1)Dλ+1f(z) − λDλf(z). (1.3)

Next we introduce new functions class.

Definition 1.1 If a function f(z) ∈ Hk satisfies condition

Re
{

(1 − α)
Dλf(z)

z
+ α(Dλf(z))′

}

> β, z ∈ U, (1.4)

then we denote f(z) ∈ Vk,λ(α, β).

Definition 1.2 Suppose f(z) ∈ Hk. If there exists a function g(z) ∈ Vk,λ(α, β) such that

Re
z

(

Dλf(z)
)′

Dλg(z)
> ρ, z ∈ U, (1.5)

then we denote f(z) ∈ Qk,λ(α, β, ρ).

In [2], the functions class Q1,0(0, 1
2 , 0) was studied and distortion theorem, univalent radius

and rotation theorem were obtained, but Hadamard product has not been solved. We will study

the close-to-convex function class Qk,λ(α, β, ρ) introduced above which is a great extension of

[2].

As in [3], we introduce linear operator L(a, c) which is more general than Dλ. Let

φ(a, c; z) =

∞
∑

n=0

(a)n

(c)n

zn+1, z ∈ U, c 6= 0,−1,−2, . . .

L(a, c)f(z) = φ(a, c; z) ∗ f(z), f(z) ∈ Hk (1.6)

where (ζ)n = Γ(ζ+n)
Γ(ζ) . From [4], we know that L(a, c) is continuous mapping from Hk to Hk. It

is easy to see that

φ(2(1 − α), 1; z) =
z

(1 − z)2(1−α)
(1.7)

and for c > a > 0, we have

L(a, c)f(z) =

∫ 1

0

ua−1f(uz)dη(a, c − a)(u), (1.8)

where η is B distribution

dη(a, c − a)(u) =
ua−1(1 − u)c−a−1

B(a, c − a)
du. (1.9)

If a 6= 0,−1,−2, . . . , then L(c, a) is the inverse mapping of L(a, c), so L(a, c) is one-to-one

mapping from Hk to Hk. It is obvious that

L(a, c) = L(a, b)L(b, c) = L(b, c)L(a, b), b, c 6= −1,−2, . . . .

If g(z) = zf ′(z), then g(z) = L(2, 1)f(z), f(z) = L(1, 2)g(z).
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By (1.6) and (1.7), we have

L(λ + 1, 1)f(z) = Dλf(z). (1.10)

In view of the operator L(a, c) and (1.10), we may write (1.5) as:

Re
L(2, 1)L(λ + 1, 1)f(z)

L(λ + 1, 1)g(z)
> ρ, z ∈ U. (1.11)

In the present paper, we deduce integral representations of function in Qk,λ(α, β, ρ). Distor-

tion theorems, radius of close-to-convexity and Hadamard product properties are obtained for

functions belonging to this class. Then we solve the closeness of Hadamard product in [2].

2. Integral representations

If g(z) ∈ Vk,λ(α, β), then it is not difficult to verify that there exists p(z) = 1 + pkzk + · · · ∈

Pk(β) such that

g(z) ∈ Vk,λ(α, β) ⇔ zp(z) = L(
1

a
,
1

a
+ 1)L(λ + 1, 1)g(z) ⇔ L(1, λ + 1)g(z)

= L(
1

a
,
1

a
+ 1)(zp(z)).

In view of the Herglotz formula[5] of positive real part and the property of L(λ + 1, 1), we prove

the following result:

Theorem 2.1 If g(z) ∈ Vk,λ(α, β)(α > 0), then there exists left continuous probability measure

η(x) on X = {x : |x| = 1} such that

g(z) = L(1, λ + 1)
{ 1

αz
1

α
−1

∫ z

0

t
1

α
−1

[

∫

|x|=1

1 + (1 − 2β)tx

1 − tx
dη(x)

]

dt
}

, (2.1)

or there exists p(z) ∈ Pk(β) such that

g(z) = L(1, λ + 1)
{ 1

αz
1

α
−1

∫ z

0

t
1

α
−1p(t)dt

}

.

For fixed parameters λ, α, β, Vk,λ(α, β) and left continuous probability measure points {η(x)} on

X are one-to-one correspondence through the relation expressed by (2.1).

Theorem 2.2 A function f(z) ∈ Qk,λ(α, β, ρ)(α > 0) if and only if there exists left continuous

probability measures η(x), µ(x) on X = {x : |x| = 1} such that

f(z) =L(1, λ + 1)L(1, 2)
{[ 1

αz
1

α
−1

∫ z

0

t
1

α
−1

(

∫

|x|=1

1 + (1 − 2β)tx

1 − tx
dη(x)

)

dt
]

×

[

∫

|x|=1

1 + (1 − 2ρ)zx

1 − zx
dµ(x)

]}

, (2.2)

when λ = 0,

f(z) =L(1, 2)
{[ 1

αz
1

α
−1

∫ z

0

t
1

α
−1

(

∫

|x|=1

1 + (1 − 2β)tx

1 − tx
dη(x)

)

dt
]

×

[

∫

|x|=1

1 + (1 − 2ρ)zx

1 − zx
dµ(x)

]}

. (2.3)
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For fixed parameters λ, α, β, ρ, Qk,λ(α, β, ρ) and left continuous probability measure points

{(η(x), µ(x))} on X ×X are one-to-one correspondence through the relation expressed by (2.2).

Proof Let f(z) ∈ Qk,λ(α, β, ρ). Then there exists g(z) ∈ Vk,λ(α, β) such that

Re
z(L(λ + 1, 1)f(z))′

L(λ + 1, 1)g(z)
> ρ, z ∈ U.

By Theorem 2.1, we have

g(z) = L(1, λ + 1)
{ 1

αz
1

α
−1

∫ z

0

t
1

α
−1

[

∫

|x|=1

1 + (1 − 2β)tx

1 − tx
dη(x)

]

dt
}

, (2.4)

where η(x) is left continuous probability measure on X . By Herglots formula[5] for the functions

in P class, we get
z(L(λ + 1, 1)f(z))′

L(λ + 1, 1)g(z)
=

∫

|x|=1

1 + (1 − 2ρ)xz

1 − xz
dµ(x), (2.5)

where µ(x) is left continuous probability measure on X . From (2.4) and (2.5), we deduce that

L(2, 1)L(λ + 1, 1)f(z) =
{[ 1

αz
1

α
−1

∫ z

0

t
1

α
−1

(

∫

|x|=1

1 + (1 − 2β)tx

1 − tx
dη(x)

)

dt
]

×

[

∫

|x|=1

1 + (1 − 2ρ)zx

1 − zx
dµ(x)

]}

.

By using the property of L(λ + 1, 1), we get (2.2). Conversely it is true too. When λ = 0,

(2.2) reduce to (2.3). For fixed parameters λ, α, β, ρ, since {(η(x), µ(x))} and Pk(β) × Pk(ρ) are

one-to-one correspondence, Pk(β) × Pk(ρ) and Qk,λ(α, β, ρ) are one-to-one correspondence too,

so the last result is true. This completes the proof of Theorem 2.2. 2

3. Distortion theorems

Lemma 3.1[6] Let p(z) = 1 + pkzk + · · · ∈ Pk(0) (z ∈ U, k ≥ 1). Then for |z| = r < 1, we have

1 − rk

1 + rk
≤ Rep(z) ≤

1 + rk

1 − rk
.

The result is sharp.

If Rep(z) > β, then by setting q(z) = p(z) − β, we have Re(p(z) − β) > 0. Hence it is easy

to get from Lemma 3.1 and integral representation of positive real part functions[5] that

Lemma 3.2 Let q(z) = 1 + qkzk + · · · ∈ Pk(β) (z ∈ U, k ≥ 1). Then for |z| = r < 1, we have

1 − (1 − 2β)rk

1 + rk
≤ Req(z) ≤ |q(z)| ≤

1 + (1 − 2β)rk

1 − rk
.

The result is sharp.

Theorem 3.1 Let α > 0, f(z) ∈ Qk,λ(α, β, ρ). Then for |z| = r < 1, we have

1 − (1 − 2ρ)rk

rα(1 + rk)

∫ 1

0

t
1

α
−1 1 − (1 − 2β)(rt)k

1 + (rt)k
dt ≤ |(L(λ + 1, 1)f(z))′|

≤
1 + (1 − 2ρ)rk

rα(1 − rk)

∫ 1

0

t
1

α
−1 1 + (1 − 2β)(rt)k

1 − (rt)k
dt. (3.1)
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The result is sharp.

Proof Let f(z) ∈ Qk,λ(α, β, ρ). Then there exists g(z) ∈ Vk,λ(α, β) such that

Re
z(L(λ + 1, 1)f(z))′

L(λ + 1, 1)g(z)
> ρ, z ∈ U.

Set z(L(λ+1,1)f(z))′

L(λ+1,1)g(z) = q(z), z ∈ U . Then Req(z) > ρ. Firstly, we prove the distortion property of

|L(λ + 1, 1)g(z)|. By Lemma 3.2 and Since g(z) ∈ Vk,λ(α, β), there exists Rep(z) > β such that

|L(λ + 1, 1)g(z)| ≥ Re(L(λ + 1, 1)g(z)) = Re
{ 1

αz
1

α
−1

∫ 1

0

t
1

α
−1 1 − (1 − 2β)(rt)k

1 + (rt)k
dt

}

≥
1

α

∫ 1

0

t
1

α
−1 1 − (1 − 2β)(rt)k

1 + (rt)k
dt; (3.2)

|L(λ + 1, 1)g(z)| =
∣

∣

∣

1

αz
1

α
−1

∫ 1

0

t
1

α
−1p(t)dt

∣

∣

∣
≤

1

α

∫ 1

0

t
1

α
−1|p(zt)|dt

≤
1

α

∫ 1

0

t
1

α
−1 1 + (1 − 2β)(rt)k

1 − (rt)k
dt. (3.3)

Since z(L(λ + 1, 1)f(z))′ = L(2, 1)L(λ + 1, 1)f(z) = q(z)L(λ + 1, 1)g(z), z ∈ U . By (3.2), (3.3)

and Lemma 3.2, we have

1 − (1 − 2ρ)rk

α(1 + rk)

∫ 1

0

t
1

α
−1 1 − (1 − 2β)(rt)k

1 + (rt)k
dt ≤ |q(z)L(λ + 1, 1)g(z)|

≤
1 + (1 − 2ρ)rk

α(1 − rk)

∫ 1

0

t
1

α
−1 1 + (1 − 2β)(rt)k

1 − (rt)k
dt.

We get (3.1). Equality in (3.1) is obtained by function

f(z) = L(1, λ + 1)L(1, 2)
[ 1 + (1 − 2ρ)zk

α(1 − zk)z
1

α
−1

∫ z

0

t
1

α
−1 1 + (1 − 2β)tk

1 − tk
dt

]

(3.4)

at z = rei π

k .

4. Radius of close-to-convexity

Lemma 4.1[7] If q(z) = 1 + qkzk + · · · ∈ Pk(β) (z ∈ U, k ≥ 1), then for |z| = r < 1, we have
∣

∣

∣

zq′(z)

q(z)

∣

∣

∣
≤

2k(1 − 2β)rk

(1 − rk)[1 + (1 − 2β)rk]
.

The result is sharp.

Theorem 4.1 Let α > 0, f(z) ∈ Qk,λ(α, β, ρ). Then Dλf(z) is close-to-convex in disk |z| < r1,

where r1 is the minimum positive root of the following equation:

1 − 2[m + k(1 − m)]rk − (1 − 2m)r2k = 0 (4.1)

and

m =
1

α

∫ 1

0

t
1

α
−1 1 − (1 − 2β)tk

1 + tk
dt < 1. (4.2)

Proof Let f(z) ∈ Qk,λ(α, β, ρ). It suffices to prove that Dλg(z) is starlike function. Let F (z) =
Dλg(z)

z
. Then F (z) is analytic in U . By Theorem 2.1, Lemma 3.2 and since g(z) ∈ Vk,λ(α, β),



1100 LI S H, DAI J J and TANG H

there exists p(z) ∈ P (β) such that

Re
L(λ + 1, 1)g(z)

z
= Re

{ 1

αz
1

α

∫ 1

0

t
1

α
−1p(t)dt

}

> m =
1

α

∫ 1

0

t
1

α
−1 1 − (1 − 2β)tk

1 + tk
dt.

Noticing the definition of F (z) and by making use of Lemma 4.1, we have

Re
{z(Dλg(z))′

Dλg(z)

}

= 1 + Re
zF ′(z)

F (z)
≥ 1 −

∣

∣

∣

zF ′(z)

F (z)

∣

∣

∣
≥

1 − 2[m + k(1 − m)]rk − (1 − 2m)r2k

(1 − rk)[1 + (1 − 2m)rk]
.

Let ϕ(r) = 1 − 2[m + k(1 − m)]rk − (1 − 2m)r2k. Then ϕ(r) is continuous on [0, 1] and ϕ(0) =

1 > 0, ϕ(1) = −2k(1 − m) < 0. So (4.1) has minimum positive root in (0, 1) denoted by r1.

For |z| < r1, we have Re{ z(Dλg(z))′

Dλg(z) } > 0. So Dλg(z) is starlike function, namely, Dλf(z) is

close-to-convex function in disk |z| < r1.

Corollary 4.1 Let α > 0, f(z) ∈ Qk,0(α, β, ρ). Then f(z) is close-to-convex in disk |z| < r1,

where r1 is the minimum positive root of (4.1).

5. Hadamard product

Lemma 5.1[8] Let ϕ(z) and h(z) be analytic in U and satisfy ϕ(0) = h(0) = 0, ϕ′(0) 6= 0,

h′(0) 6= 0 and suppose for all complex numbers σ, τ satisfying |σ| = |τ | = 1, there holds

ϕ(z) ∗
1 + τσz

1 − σz
h(z) 6= 0 (0 < |z| < 1).

Let F (z) be analytic in U and satisfy ReF (z) > 0 (0 < |z| < 1). Then

Re
{ϕ(z) ∗ (F (z)h(z))

ϕ(z) ∗ h(z)

}

> 0, 0 < |z| < 1.

Theorem 5.1 Let σ, τ satisfy |σ| = |τ | = 1, α ≥ 0, f(z) ∈ Qk,λ(α, β, ρ), ϕ(z) = z +
∑∞

n=k ak+1z
k+1 be analytic in U and

ϕ(z) ∗
1 + τσz

1 − σz
z 6= 0, 0 < |z| < 1.

Then

f(z) ∗ ϕ(z) ∈ Qk,λ(α, β, ρ).

Proof (i) Firstly, we prove that g ∗ ϕ(z) ∈ Vk,λ(α, β). Let

F (z) = (1 − α)
Dλg(z)

z
+ α(Dλg(z))′ − β, h(z) = z.

Then F (z) is analytic in U and ReF (z) > 0 and ϕ ∗ h(z) = z. Since

ϕ(z) ∗ (F (z)h(z)) = ϕ ∗ [(1 − α)Dλg(z) + αz(Dλg(z))′ − βz]

= (1 − α)ϕ ∗ Dλg(z) + αϕ ∗ z(Dλg(z))′ − βz

= (1 − α)Dλ(ϕ ∗ g)(z) + αz(Dλ(ϕ ∗ g))′(z) − βz, (5.1)

by Lemma 5.1, we get

Re
{ϕ(z) ∗ (F (z)h(z))

ϕ(z) ∗ h(z)

}

= Re
{

(1 − α)
Dλ(ϕ ∗ g)(z)

z
+ α(Dλ(ϕ ∗ g))′(z)

}

− β > 0, (5.2)
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that is,

Re
{

(1 − α)
Dλ(ϕ ∗ g)(z)

z
+ α(Dλ(ϕ ∗ g))′(z)

}

> β, z ∈ U.

So g ∗ ϕ(z) ∈ Vk,λ(α, β).

(ii) Next we prove that f∗ϕ(z) ∈ Qk,λ(α, β, ρ). Let f(z) ∈ Qk,λ(α, β, ρ), p(z) = z(Dλf(z))′

Dλg(z)
−ρ

and h(z) = z. Then p(z) is analytic in U and Rep(z) > 0 (z ∈ U) and ϕ ∗ h(z) = z. Since

ϕ ∗ Dλg(z) · p(z) = ϕ ∗ z(Dλf(z))′ − ρϕ ∗ Dλg(z), (5.3)

noticing that

ϕ ∗ Dλg(z) = Dλ(ϕ ∗ g)(z); ϕ ∗ z(Dλf(z))′ = z(Dλ(ϕ ∗ f))′(z),

by (5.3), we get

Rep(z) = Re
{z(Dλ(ϕ ∗ f))′(z)

Dλ(ϕ ∗ g)(z)

}

> ρ.

From (i), ϕ ∗ g(z) ∈ Vk,λ(α, β). So f ∗ϕ(z) ∈ Qk,λ(α, β, ρ). This completes the proof of Theorem

5.1. 2

Remark 5.1 Setting λ = 0, α = 0, β = 1
2 and ρ = 0 in Theorem 5.1, respectively, we get the

corresponding product properties of functions in Q1,0(0, 1
2 , 0).
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