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Abstract: A ∈ B(H) is called Drazin invertible if A has finite ascent and descent. Let
σD(A) = {λ ∈ C : A − λI is not Drazin invertible } be the Drazin spectrum. This paper

shows that if MC =

(

A C

0 B

)

is a 2 × 2 upper triangular operator matrix acting on the

Hilbert space H ⊕ K, then the passage from σD(A) ∪ σD(B) to σD(MC) is accomplished by
removing certain open subsets of σD(A) ∩ σD(B) from the former, that is, there is equality

σD(A) ∪ σD(B) = σD(MC) ∪ G,

where G is the union of certain holes in σD(MC) which happen to be subsets of σD(A)∩σD(B).
Weyl’s theorem and Browder’s theorem are liable to fail for 2× 2 operator matrices. By using
Drazin spectrum, it also explores how Weyl’s theorem, Browder’s theorem, a-Weyl’s theorem
and a-Browder’s theorem survive for 2 × 2 upper triangular operator matrices on the Hilbert
space.
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1. Introduction

Let H and K be infinite dimensional Hilbert spaces, let B(H, K) denote the set of bounded

linear operators from H to K, and abbreviate B(H, H) to B(H). If A ∈ B(H), write σ(A) for the

spectrum of A and σa(A) for the approximate point spectrum of A, ρ(A) = C\σ(A). If A ∈ B(H),

we use N(A) for the null space of A and R(A) for the range of A. For A ∈ B(H), if R(A) is closed

and dimN(A) < ∞, we call A upper semi-Fredholm operator, and if dimH/R(A) < ∞, then

A is called lower semi-Fredholm operator. Let Φ+(H) (Φ−(H)) be the set of all upper (lower)

semi-Fredholm operators. A is called Fredholm operator if dimN(A) < ∞ and dimH/R(A) < ∞.

Let A be semi-Fredholm and let n(A) = dimN(A) and d(A) = dimH/R(A), then we define the

index of A by ind(A) = n(A) − d(A). An operator A is called Weyl if it is a Fredholm operator

of index zero, and is called Browder if it is Fredholm “ of finite ascent and descent”. We write

α(A) and β(A) for the ascent and the descent for A ∈ B(H) respectively. The essential spectrum
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σe(A), the Weyl spectrum σw(A) and the Browder spectrum σb(A) of A are defined respectively

by: σe(A) = {λ ∈ C : A − λI is not Fredholm}, σw(A) = {λ ∈ C : A − λI is not Weyl} and

σb(A) = {λ ∈ C : A − λI is not Browder}.

Following [1, Difinition 4.1] we say that A ∈ B(H) is Drazin invertible (with a finite index)

if there exist B, U ∈ B(H) such that U is nilpotent and

AB = BA, BAB = B, ABA = A + U.

Recall that the concept of Drazin invertibility was originally introduced by Drazin in [2] where el-

ements of an associative semigroup satisfying an equivalent relation were called pseudo-invertible.

It is well known that A is Drazin invertible if and only if it has finite ascent and descent, which

is also equivalent to the fact that A = A1 ⊕ A2, where A1 is invertible and A2 nipotent (see [3,

Proposition A] and [4, Corollary 2.2]). It is also well known that A is Drazin invertible if and

only if A∗ is Drazin invertible, where A∗ is the conjugate of A. The Drazin spectrum of A is

defined by:

σD(A) = { λ ∈ C : A − λI is not Drazin invertible }.

If G is a compact subset of C, write int G for the interior points of G; iso G for the isolated

points of G; acc G for the accumulation points of G; and ∂ G for the topological boundary of

G. When A ∈ B(H) and B ∈ B(K) are given we denote by MC an operator acting on H ⊕ K

of the form MC =

(

A C
0 B

)

, where C ∈ B(K, H).

In Section 2, we will characterize the Drazin spectrum of MC . Our result is: For a given pair

(A, B) of operators, there is equality, for every C ∈ B(K, H), σD(A) ∪ σD(B) = σD(MC) ∪ G,

where G is the union of certain holes in σD(MC) which happen to be subsets of σD(A)∩ σD(B).

In Section 3, we will use Drazin spectrum to study Weyl’s theorem. Our result is: If

σD(A) ∩ σD(B) has no interior points and if A is an isoloid operator for which Weyl’s theorem

holds, then for every C ∈ B(K, H), Weyl’s theorem holds for

(

A 0
0 B

)

=⇒ Weyl’s theorem

holds for

(

A C
0 B

)

.

2. Drazin Spectrum for 2 × 2 upper triangular operator matrices

Lemma 2.1 Suppose A ∈ B(H) and B ∈ B(K). If both A and B are Drazin invertible, then

for every C ∈ B(K, H), MC =

(

A C
0 B

)

is Drazin invertible. Hence for every C ∈ B(K, H),

σD(MC) ⊆ σD(A) ∪ σD(B).

Proof Suppose α(A) = β(A) = p and α(B) = β(B) = q. Let n = max{p, q}.

1) First we will prove that for any C ∈ B(K, H), α(MC) < ∞. If we have N(M2n+1
C ) =

N(M2n
C ), we get the result. So we only need to prove N(M 2n+1

C ) ⊆ N(M2n
C ).

If u0 ∈ N(M2n+1
C ) and u0 = (x0, y0), then:

0 = M2n+1
C (x0, y0) = (A2n+1x0+A2nCy0+A2n−1CBy0+· · ·+AnCBny0+· · ·+CB2ny0, B

2n+1y0).
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It follows that B2n+1y0 = 0 and

A2n+1x0 + A2nCy0 + A2n−1CBy0 + · · · + AnCBny0 + · · · + CB2ny0 = 0.

Then y0 ∈ N(B2n+1) = N(Bn) and hence

A2n+1x0 + A2nCy0 + A2n−1CBy0 + · · · + An+1CBn−1y0 = 0,

which means that An+1[Anx0 + An−1Cy0 + An−2CBy0 + · · · + CBn−1y0] = 0, and hence

Anx0 + An−1Cy0 + An−2CBy0 + · · · + CBn−1y0 ∈ N(An+1) = N(An).

Then A2nx0 + A2n−1Cy0 + A2n−2CBy0 + · · · + AnCBn−1y0 = 0.

Now we get that

(A2nx0 + A2n−1Cy0 + · · · + AnCBn−1y0 + An−1CBny0 + · · · + CB2n−1y0, B
2ny0) = 0,

that is, M2n
C u0 = 0 and hence u0 ∈ N(M2n

C ). Then N(M2n+1
C ) = N(M2n

C ), and hence MC has

finite ascent.

2) Secondly, we will prove that for any C ∈ B(K, H), MC has finite descent. We will prove

that R(M2n
C ) = R(M2n+1

C ), so we need to prove that R(M 2n
C ) ⊆ R(M2n+1

C ).

For any u0 ∈ R(M2n
C ), there exist x ∈ H and y ∈ K such that u0 = M2n

C (x, y), that is,

u0 = (A2nx + A2n−1Cy + A2n−1CBy + · · · + CB2n−1y, B2ny).

By R(B2n) = R(B2n+1), there exists y0 ∈ K such that B2ny = B2n+1y0, then y − By0 ∈

N(B2n) = N(Bn). Suppose y = By0 + y1, where y1 ∈ N(Bn). Then

u0 =(A2nx + A2n−1CBy0 + A2n−1Cy1 + · · · + AnCBny0+

AnCBn−1y1 + An−1CBn+1y0 + An−2CBn+2y0 + · · · + CB2ny0, B2n+1y0)

=([A2nx + A2n−1Cy1 + · · · + AnCBn−1y1 − A2nCy0] + A2nCy0+

A2n−1CBy0 + · · · + CB2ny0, B2n+1y0),

A2nx + A2n−1Cy1 + A2n−2CBy1 + · · · + AnCBn−1y1 − A2nCy0

= An(Anx + An−1Cy1 + An−2CBy1 + · · · + CBn−1y1 − AnCy0)

∈ R(An) = R(A2n+1).

Then there exists x0 ∈ H such that

A2nx + A2n−1Cy1 + A2n−2CBy1 + · · · + AnCBn−1y1 − A2nCy0 = A2n+1x0.

Thus

u0 =(A2n+1x0 + A2nCy0 + A2n−1CBy0 + · · · + CB2ny0, B
2n+1y0)

=M2n+1
C (x0, y0) ∈ R(M2n+1

C ).
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So R(M2n
C ) = R(M2n+1

C ) and hence MC has finite descent. The proof is completed. 2

Lemma 2.2 For a given pair (A, B) of operators, if MC is Drazin invertible for some C ∈

B(K, H), then:

(a) α(A) < ∞ and β(A∗) < ∞;

(b) β(B) < ∞ and α(B∗) < ∞.

Proof Without loss of generality, we suppose that 0 ∈ σ(MC). Suppose α(MC) = β(MC) =

n < ∞, then α(M∗

C) = β(M∗

C) = n. Since N(An) ⊕ {0} ⊆ N(Mn
C), we get α(A) < ∞. In

order to prove β(A∗) < ∞, we only need to prove that R(A∗n) = R(A∗n+1). So we only need

to prove that R(A∗n) ⊆ R(A∗n+1). For any u ∈ R(A∗n), let u = A∗nx, then M∗

C
n(x, 0) ∈

R(M∗

C
n) = R(M∗

C
n+1). Thus there exists (x0, y0) ∈ H ⊕ K such that (A∗nx, B∗n−1C∗x + + ·

· · +C∗A∗n−1x) = M∗

C
n+1(x0, y0) = (A∗n+1x0, B∗n+1y0 + B∗nC∗x0 + + · · · + C∗A∗nx0), then

u = A∗nx = A∗n+1x0 ∈ R(A∗n+1). Hence β(A∗) < ∞. By the same way, we can prove that

β(B) < ∞ and α(B∗) < ∞. 2

Lemma 2.3 For a given pair (A, B) of operators, if MC is Drazin invertible for some C ∈

B(K, H), then A is Drazin invertible if and only if B is Drazin invertible.

Proof Suppose that A is Drazin invertible. Then there exists ε > 0 such that A − λI and

MC − λI is invertible if 0 < |λ| < ε. Thus we get that B − λI is invertible if 0 < |λ| < ε.

[5, P332, Theorem 10.5] asserts that B is Drazin invertible because β(B) < ∞. Conversely, if

B is Drazin invertible, similarly, we know that A∗ is Drazin invertible and hence A is Drazin

invertible. 2

Remark 2.4 In Lemma 2.1, for every C ∈ B(K, H), we have σD(MC) ⊆ σD(A) ∪ σD(B).

Sometimes, this inclusion is proper for given A and B. For example, let A, B, C ∈ B(`2) be

defined by

A(x1, x2, x3, · · ·) = (0, x1, x2, x3, · · ·),

B(x1, x2, x3, · · ·) = (x2, x3, x4, · · ·),

C(x1, x2, x3, · · ·) = (x1, 0, 0, · · ·).

Then σ(A) = σ(B) = σD(A) = σD(B) = { λ ∈ C : |λ| ≤ 1 }. Since MC is a unitary operator,

then σD(MC) ⊆ { λ ∈ C : |λ| = 1 }. Thus σD(MC) is proper subset in σD(A) ∪ σD(B).

The following is our main theorem in this section. It says that the passage from σD(A) ∪

σD(B) to σD(MC) is accomplished by removing certain open subsets of σD(A)∩σD(B) from the

former.

Theorem 2.5 For a given pair (A, B) of operators there is equality, for every C ∈ B(K, H),

σD(A) ∪ σD(B) = σD(MC) ∪ G,

where G is the union of certain holes in σD(MC) which happen to be subsets of σD(A)∩ σD(B).
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Proof We first claim that, for every C ∈ B(K, H),

(σD(A) ∪ σD(B))\(σD(A) ∩ σD(B)) ⊆ σD(MC) ⊆ σD(A) ∪ σD(B). (1)

Indeed the second inclusion in (1) follows from Lemma 2.1. For the first inclusion, let λ ∈

(σD(A)∪σD(B))\(σD(A)∩σD(B)). Then λ ∈ σD(A)\σD(B) or λ ∈ σD(B)\σD(A). Lemma 2.3

asserts that λ ∈ σD(MC) for every C ∈ B(K, H).

Next we claim that, for every C ∈ B(K, H),

η(σD(MC)) = η(σD(A) ∪ σD(B)), (2)

where ηK denote the “ polynomially convex hull ” of the compact set K ⊆ C. Since σD(MC) ⊆

σD(A) ∪ σD(B) for every C ∈ B(K, H), we need to prove that ∂(σD(A) ∪ σD(B)) ⊆ ∂ σD(MC).

But since int σD(MC) ⊆ int (σD(A) ∪ σD(B)), it suffices to show that ∂(σD(A) ∪ σD(B)) ⊆

σD(MC).

Let ρ+
D(A) = { λ ∈ C : α(A − λI) < ∞ and β(A∗ − λI) < ∞ } and ρ−

D(B) = { λ ∈ C :

β(B − λI) < ∞ and α(B∗ − λI) < ∞ } and let σ+
D(A) = C\ρ+

D(A) and σ−

D(B) = C\ρ−

D(B).

Then there are inclusions

∂(σD(A) ∪ σD(B)) ⊆ ∂ σD(A) ∪ ∂σD(B) ⊆ σ+
D(A) ∪ σ−

D(B) ⊆ σD(MC), (3)

where the last inclusion follows from Lemma 2.2. For the second inclusion, if there exists λ0 ∈

(∂ σD(A) ∪ ∂ σD(B))\(σ+
D(A) ∪ σ−

D(B)), then there are two cases to consider.

Case 1. Suppose λ0 ∈ ∂ σD(A). Then for any neighborhood of λ0, there exists λ such that

A− λI is Drazin invertible. Thus for any neighborhood of λ0, there exists λ such that A− λI is

invertible. And hence for any neighborhood of λ0, there exists µ such that A∗ −µI is invertible.

Since β(A∗ − λ0I) < ∞, [5, P332, Theorem 10.5] tells us that A∗ − λ0I is Drazin invertible and

hence A − λ0I is Drazin invertible. It is in contradiction to the fact that λ0 ∈ σD(A).

Case 2. Suppose λ0 ∈ ∂ σD(B). Similarly as in case 1, we induce a contradiction.

Then the second inclusion is true. Consequently, (2) asserts that the passage from σD(MC)

to σD(A) ∪ σD(B) is the filling in certain holes in σD(MC). But since, by (1), (σD(A) ∪

σD(B))\σD(MC) is contained in σD(A) ∩ σD(B), it follows that the filling in certain holes in

σD(MC) should occur in σD(A) ∩ σD(B). The proof is completed. 2

Corollary 2.6 If σD(A) ∩ σD(B) has no interior points, then for every C ∈ B(K, H),

σD(MC) = σD(A) ∪ σD(B). (4)

In particular if either A ∈ B(H) or B ∈ B(K) is a Riesz operator, then (4) holds.

Corollary 2.7 If either A∗ or B is hyponormal, then for every C ∈ B(K, H), (4) holds.

Let ρ+
σD(A) = σ(A)\σ+

D(A) and ρ−σD(B) = σ(B)\σ−

D(B). From Theorem 2.5, we can see

that the holes in σD(MC) should lie in ρ+
σD(A) ∩ ρ−σD(B). Thus we have:
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Corollary 2.8 If ρ+
σD(A) ∩ ρ−σD(B) = ∅, then (4) holds for every C ∈ B(K, H).

Lemma 2.9 If σ(MC) = σ(A) ∪ σ(B) or σw(MC) = σw(A) ∪ σw(B), then (4) holds.

Proof Suppose that σw(MC) = σw(A) ∪ σw(B). If MC − λ0I is Drazin invertible, then there

exists ε > 0 such that MC −λI is invertible and B − λI is surjective if 0 < |λ− λ0| < ε. Since λ

is not in σw(MC) = σw(A)∪σw(B), it follows that B −λI are Weyl. Then B −λI are invertible

if 0 < |λ − λ0| < ε. Now we have proved that λ0 ∈ iso σ(B) ∪ ρ(B). [5, P332, Theorem 10.5]

tells us that B − λ0I is Drazin invertible and hence A− λ0I is Drazin invertible. Then λ0 is not

in σD(A) ∪ σD(B). If σ(MC) = σ(A) ∪ σ(B), by the same way, we can prove the result. 2

Corollary 2.10 If σw(A) ∩ σw(B) (or σ(A) ∩ σ(B)) has no interior points, then (4) holds for

every C ∈ B(K, H).

Proof By Lemma 2.9 and Corollary 8 in [6] and Corollary 7 in [7], we get the result. 2

3. Weyl’s theorem for 2 × 2 upper triangular operator matrices

H.Weyl[8] has shown that every hermitian operator A ∈ B(H) satisfies the equality

σ(A)\σw(A) = π00(A) (5)

where π00(A) = { λ ∈ iso σ(A) : 0 < dimN(A − λI) < ∞ }. Now we say Weyl’s theorem holds

for A ∈ B(H) if A satisfies the equality (5). If σw(A) = σb(A), we say that Browder’s theorem

holds for A. Clearly, Weyl’s theorem implies Browder’s theorem.

Let Φ−

+(H) be the class of all A ∈ Φ+(H) with ind(A) ≤ 0, and for any A ∈ B(H), and let

σea(A) = { λ ∈ C : A − λI is not in Φ−

+(H) }

and σab(A) = { λ ∈ C : A − λI is not an upper semi-Fredholm operator with finite ascent}.

We call σea(A) and σab(A) the essential approximate point spectrum and Browder essential

approximate point spectrum respectively.

Let πa
00(A) = { λ ∈ iso σa(A), 0 < dimN(A − λI) < ∞ }. Similarly, we say that a-Weyl’s

theorem holds for A if there is equality σa(A)\σea(A) = πa
00(A), and that a-Browder’s theorem

holds for A if there is equality σea(A) = σab(A).

Weyl’s theorem may or may not hold for a direct sum of operators for which Weyl’s theorem

holds. Thus Weyl’s theorem may fail for upper triangular operator matrices. So does a-Weyl’s

theorem. Weyl’s theorem for upper triangular operator matrices is more delicate in comparison

with the diagonal matrices. In this section, we consider this question: If Weyl’s (a-Weyl’s )

theorem holds for

(

A 0
0 B

)

, when does it hold for

(

A C
0 B

)

? We begin with

Theorem 3.1 If σD(A) ∩ σD(B) ( or σ(A) ∩ σ(B) ) has no interior points, then for every

C ∈ B(K, H),

(a) Browder’s theorem holds for

(

A 0
0 B

)

=⇒ Browder’s theorem holds for

(

A C
0 B

)

;
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(b) a-Browder’s theorem holds for

(

A 0
0 B

)

=⇒ a-Browder’s theorem holds for

(

A C
0 B

)

.

Proof (a) Suppose MC − λ0I is Weyl. Then there exists ε > 0 such that MC − λI is Weyl

and hence A−λI is upper semi-Fredholm operator and B−λI is lower semi-Fredholm operator,

and A − λI is Weyl if and only if B − λI is Weyl if |λ − λ0| < ε.

Case 1. Suppose that λ0 ∈ ∂σD(A) or λ0 is not in σD(A). Then in any neighborhood of λ0,

there exists λ such that A − λI is Drazin invertible and hence in any neighborhood of λ0, there

exists µ such that A − µI is invertible. Since A − λ0I is upper semi-Fredholm operator, by

perturbation theory of upper semi-Fredholm, it follows that A− λ0I is Browder. Then B − λ0I

is Weyl and hence

(

A 0
0 B

)

− λ0I is Weyl. Browder’s theorem holds for

(

A 0
0 B

)

, then
(

A 0
0 B

)

− λ0I is Browder. Thus A − λ0I and B − λ0I are Drazin invertible. Lemma 2.1

tells us that MC − λ0I is Drazin invertible. Since MC − λ0I is Weyl, we get that MC − λ0I is

Browder.

Case 2. Suppose that λ0 ∈ int σD(A). Since σD(A) ∩ σD(B) has no interior points, we know

that λ0 ∈ ∂σD(B) or λ0 is not in σD(B). The following proof is the same as the proof in Case 1.

Now we have proved that σw(MC) = σb(MC) for every C ∈ B(K, H), which means that

Browder’s theorem holds for MC for every C ∈ B(K, H).

(b) Suppose that MC − λ0I ∈ Φ−

+(H ⊕ K). Then A − λ0I ∈ Φ+(H).

Case 1. λ0 is not in σD(A) or λ0 ∈ ∂σD(A). Similarly to the proof in case 1 in (a), we know that

A − λ0I is Browder. By perturbation theory of semi-Fredholm operator, there exists ε > 0 such

that MC −λI ∈ Φ−

+(H ⊕K) with N(MC −λI) ⊆ ∩∞

n=1R[(MC −λI)n] and A−λI is invertible if

0 < |λ−λ0| < ε. Then B−λI ∈ Φ+(K) and hence

(

A 0
0 B

)

−λI ∈ Φ−

+(H ⊕K). a-Browder’s

theorem holds for

(

A 0
0 B

)

, then α(A − λI) < ∞ and α(B − λI) < ∞ hence α(MC − λI) <

∞. [9, Lemma 3.4] asserts that N(MC − λI) = N(MC − λI) ∩ ∩∞

n=1R[(MC − λI)n] = {0} if

0 < |λ − λ0| < ε. Now we have that λ0 ∈ iso σa(MC). Then MC has single valued extension

property in λ0. [10, Theorem 15] tells us that α(MC − λ0I) < ∞.

Case 2. If λ0 ∈ intσD(A), then λ0 is not in σD(B) or λ0 ∈ ∂σD(B). By perturbation theory of

upper semi-Fredholm, there exists ε > 0 such that MC − λI ∈ Φ+(H ⊕K) with N(MC − λI) ⊆
⋂

∞

n=1 R[(MC−λI)n], n(MC−λI) is constant, and A−λI ∈ Φ+(H) if 0 < |λ−λ0| < ε. There exists

λ1 ∈ C such that B−λ1I is invertible and 0 < |λ1−λ0| < ε. Then

(

A 0
0 B

)

−λ1I ∈ Φ−

+(H⊕K).

Similarly to the case 1 in (b), MC −λ1I is bounded below. Therefore MC −λI is bounded below

because n(MC − λI) is constant if 0 < |λ − λ0| < ε. It follows that α(MC − λ0I) < ∞.

Then σea(MC) = σab(MC), which means that a-Browder’s theorem holds for MC for every

C ∈ B(K, H). 2

We call A is isoloid if iso σ(A) ⊆ σp(A), where σp(A) is the set of all point spectrums. And
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we call A approximate isoloid (abbrev. a-isoloid) if iso σa(A) ⊆ σp(A). Clearly, a-isoloid implies

isoloid.

Remark 3.2 If σw(A)∩σw(B) had no interior points, then (a) in Theorem 3.1 is also true. But

Theorem 3.1 may fail for “ a-Weyl’s theorem ” even with the additional assumption that a-Weyl’s

theorem holds for A and B and both A and B are a-isoloid. To see this, let A, B, C ∈ B(`2)

are defined by

A(x1, x2, x3, · · ·) = (0, x1, 0, x2, 0, x3, · · ·),

B(x1, x2, x3, · · ·) = (0, x2, 0, x4, 0, x6, · · ·),

C(x1, x2, x3, · · ·) = (0, 0, 0, 0,
1

3
x3, 0,

1

5
x5, · · ·).

Then σa(A) = σea(A) = T, σD(A) = D, πa
00(A) = ∅ and σa(B) = σea(B) = {0, 1}, σD(B) =

πa
00(B) = ∅, which says that a-Weyl’s theorem holds for A and B, both A and B are a-isoloid,

and σD(A)∩σD(B) ( σw(A)∩σw(B) ) has no interior points. Also a straightforward calculation

shows that

σa

(

A 0
0 B

)

= σea

(

A 0
0 B

)

= T ∪ {0}, πa
00

(

A 0
0 B

)

= ∅,

σa(MC) = σea(MC) = T ∪ {0}, πa
00(MC) = {0}.

Then a-Weyl’s theorem holds for

(

A 0
0 B

)

, but fails for

(

A C
0 B

)

.

But for Weyl’s theorem, we have:

Theorem 3.3 If σD(A) ∩ σD(B) (or σw(A) ∩ σw(B)) has no interior points and if A is an

isoloid operator for which Weyl’s theorem holds, then for every C ∈ B(K, H),

Weyl’s theorem holds for

(

A 0
0 B

)

=⇒ Weyl’s theorem holds for

(

A C
0 B

)

.

Proof Theorem 3.1 gives that σ(MC)\σw(MC) ⊆ π00(MC). For the reverse inclusion, suppose

that λ0 ∈ π00(MC). Then there exists ε > 0 such that MC −λI is invertible and hence A−λI is

bounded below and B−λI is surjective if 0 < |λ−λ0| < ε. σD(A)∩σD(B) (or σw(A)∩σw(B)) has

no interior points, then σD(MC) = σD(A)∪σD(B). Since λ is not in σD(MC) = σD(A)∪σD(B),

it follows that A− λI and B −λI are Drazin invertible. Thus A− λI and B − λI are invertible,

which means that λ0 ∈ iso σ

(

A 0
0 B

)

. The following proof is same as the proof in Theorem

2.4 in [11]. 2

Remark 3.4 Theorem 3.3 in this paper is not compatible with Theorem 2.4 in [11]. For

example:

(a) Let A ∈ B(`2) be defined by

A(x1, x2, x3, · · ·) = (x2, x4, x6, · · ·),
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and let B = A − 2I . Then

(I) σD(A) = D, σD(B) = { λ ∈ C : |λ + 2| ≤ 1 }. Then σD(A) ∩ σD(B) has no interior

points;

(II) σe(A) = D, σ−

e (A) = T and σe(B) = { λ ∈ C : |λ + 2| ≤ 1 }, σ−

e (B) = { λ ∈ C :

|λ + 2| = 1 }, where σ−

e (A) = { λ ∈ C : A − λI is not lower semi-Fredholm operator }. Then

both SP (A) and SP (B) have pseudoholes;

(III) σ(A) = σw(A) = D and π00(A) = ∅, then A is isoloid and Weyl’s theorem holds for

A;

(IV) σ

(

A 0
0 B

)

= σw

(

A 0
0 B

)

= D and π00

(

A 0
0 B

)

= ∅, then Weyl’s theorem

holds for

(

A 0
0 B

)

.

By Theorem 3.3 in this note, Weyl’s theorem holds for MC for every C ∈ B(`2, `2). But

using Theorem 2.4 in [11], we do not know whether Weyl’s theorem holds for MC for every

C ∈ B(K, H).

(b) Let T1, T2, B ∈ B(`2) are defined by

T1(x1, x2, x3, · · ·) = (0, x1, 0, x2, 0, x3, 0, · · ·),

T2(x1, x2, x3, · · ·) = (x2, x4, x6, · · ·),

and

B(x1, x2, x3, · · ·) = (0, x1, x2, x3, · · ·).

Let A =

(

T1 0
0 T2

)

.

Then (I) σD(A) = D, σD(B) = D. Then σD(A) ∩ σD(B) has interior points;

(II) σe(A) = σSF+
(A) = σSF

−

(A) = D, σe(B) = σSF+
(B) = σSF

−

(B) = T , then both

SP (A) and SP (B) have no pseudoholes;

(III) σ(A) = σw(A) = D, π00(A) = ∅. Then A is isoloid and Weyl’s theorem holds for A;

(IV) σ

(

A 0
0 B

)

= σw

(

A 0
0 B

)

= D, π00

(

A 0
0 B

)

= ∅. Then Weyl’s theorem

holds for

(

A 0
0 B

)

.

Using Theorem 2.4 in [11], we know that for every C ∈ B(`2, `2 ⊕ `2), Weyl’s theorem holds

for MC . But using Theorem 3.3 in this paper, we do not know whether Weyl’s theorem holds

for MC for every C ∈ B(`2, `2 ⊕ `2).

For a-Weyl’s theorem, similarly to the prove of Theorem 3.3, we have that:

Theorem 3.5 If σD(A) ( or σ(A) ) has no interior points, and if A is an a-isoloid operator for

which a-Weyl’s theorem holds, then for every C ∈ B(K, H),

a-Weyl’s theorem holds for

(

A 0
0 B

)

=⇒ a-Weyl’s theorem holds for

(

A C
0 B

)

.
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Drazin ������������ Weyl ��������
1,2, ����� 1, � � 1

(1. !#"#$#%#&#%#'#%#%#(#)#*#&#%#+#,#-#./!#" 100871;

2. 0#1#2#3#$#%#&#%#4#5#6#'#%#%#(#.70#181#9 710062)

:<;
: A ∈ B(H) =<><?<@<A Drazin B<C<D<E<F<GIH A J<J<K<D<L<M<N<O<M<PIQ σD(A) = {λ ∈

C : A − λI RS? Drazin B<C<D } T<U Drazin V<W<PYX<Z<[]\_^<`<a Hilbert b<c<d<D<@<A
2 × 2 d<e<f<E<F<g<h MC =

(

A C
0 B

)

, i σD(A) ∪ σD(B) j σD(MC) D<k<l<m<n<i<o<p<F
W]q_r<s σD(A) ∩ σD(B) q_@<t<D<u<F<W<GYv<J<w<x<y

σD(A) ∪ σD(B) = σD(MC) ∪ G,

z q G > σD(MC) q_@<t<b<{<D<|<G}|<~<> σD(A)∩ σD(B) D<F<W<P 2× 2 E<F<g<h<R<@<t<��
Weyl t<�<GY�<Q Drazin V<GY�<�<�<�<^ 2 × 2 d<e<f<E<F<g<h<D Weyl t<�<G Browder t�<G a-Weyl t<�<N a-Browder t<�<P�<�<�

: Weyl t<�<� a-Weyl t<�<� Browder t<�<� a-Browder t<�<� Drazin V<P


