Note on "Some New Results of P-Injective Rings" and "Regular Rings Are Very Regular"*

Zhang Jule

Xue Weimin

(Anhui Normal University, Wuhu)

(Fujian Normal University, Fuzhou)

In this note, we point out and correct some mistakes in [1] and [2] that are related to (von Neumann) regular rings.

Throughout R is an associative ring with identity and $E(R) = \{e \mid e = e^2 \in R\}$. Following[1], we call E(R) weakly closed in case for any e, $f \in E(R)$ there exists $g \in E(R)$ with Ref = Rg. It should be noted that the weakly closed-ness is left-right symmetric, since for any $r \in R$: Rr is a summand of R if and only if R is a summand of R In [1], the authors incorrectly claimed that E(R) is weakly closed for any ring R. Consequently, they induced the incorrect [1, Proposition 5] and [1, Theorem 6] (= [2 Theorem]). The next example gives an explanation.

Example I Let F be a field and $R = \begin{bmatrix} F & F \\ 0 & F \end{bmatrix}$. Choose idempotents $e = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ and $f = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. Then $Ref = R \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ is not a summand of R, and so E(R) is not weakly closed. Clearly $Ref \subseteq Re$, so the equality in [1, p.9], line -4] is incorrect. In general, we only have $Ref \bigoplus Re(1-f) \supseteq Re$. To show that [1, Proposition 5] is not correct, we take an idempotent $h = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$. Then $Re + Rh = \left\{ \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} | a, b \in F \right\}$ is not a summand of R.

Recall that R is a regular ring in case $r \in rRr$ for any $r \in R$. It is well-known that R is regular if and only if every principal left (right) ideal of R is a summand of R. Recently, Tjukavkin in [3, Example 3] has constructed a non-regular ring R such that each finitely generated right ideal of R can be generated by finitely many idempotents. This shows that [1, Theorem 6] and [2, Theorem] are not correct.

Using a result in [4], we observe the following

Lemma 2 Let R be a ring and e, $f \in E(R)$. The following two statements

^{*} Received Dec.8, 1989.

The second author is supported by a grant at Fujian Normal University.

are equivalent;

- (1) There exists $h \in E(R)$ such that Rf(1-e) = Rh.
- (2) There exists $g \in E(R)$ such that Rg = Re + Rf.

Proof One notes that $Re + Rf = Re \oplus Rf(1-e)$.

- $(1) \Rightarrow (2)$. We have he = 0, so it follows from [4, p. 102, Exercise 6(1)] that $e + h eh \in E(R)$ and R(e + h eh) = Re + Rh = Re + Rf(1 e) = Re + Rf.
- $(2) \Rightarrow (1)$. Since $Rg = Re + Rf = Re \oplus Rf(1-e)$ and Rg is a summand of R, so Rf(1-e) is also a summand of R.

The above lemma enables us to correct [1, Proposition 5] as follows.

Proposition 3 If E(R) is weakly closed then for any $e, f \in E(R)$ there exists $g \in E(R)$ such that Re + Rf = Rg.

It is easy to see that E(R) is weakly closed if R is a regular ring. Using the above result and the induction, we now correct [1, Theorem 6] and [2, Theorem].

Theorem 4 A ring R is regular if and only if each finitely generated left ideal of R can be generated by finitely many idempotents and E(R) is weakly closed.

Remark 5 (1) A ring R is called normal in case each idempotent of R lies in the center of R. For a normal ring R, E(R) is closed under multiplication and so E(R) is weakly closed;

- (2) As noted earlier, E(R) is weakly closed if R is regular;
- (3) According to Example 1, the above result can not be extended to semihereditary rings;
- (4) If $R = \pi R_i$ is an arbitrary product of rings, then E(R) is weakly closed if and only if each $E(R_i)$ is weakly closed.

Our concluding proposition gives a criterion for E(R) to be weakly closed. **Proposition 6** If R is a ring and e, f E(R), then Ref is a summand of R if and only if Ref is projective and any homomorphism from Ref to R can be extended to one from R to R.

Proof (\Rightarrow) . This direction is obvious.

 (\Leftarrow) . Since Ref is projective, there exists $g \in \operatorname{Hom}_R(Ref, R)$ with ef = g(ef)ef. By hypothesis, there exists $h \in \operatorname{Hom}_R(R, R)$ with $h|_{Ref} = g$. Let r = h(1), then

$$ef = g(ef) ef = h(ef) ef = efh(1) ef = efref$$

Hence $ref \in E(R)$, and Ref = Rref is a summand of R.

The second author wishes to thank his colleague, Chen Qinghua, for some helpful discussions,

References

- (1) Zhang Jule and Chen Jianlong, J. Anhui Normal Univ., No.2 (1989),6-11.
- (2) Page, S.S., Canad. Math. Bull., 25(1982), 118.
- (3) Tjukavkin, D.V., Comm. Algebra, 17(1989), 1193-1198.
- [4] Anderson, F.W. and Fuller, K.R., Rings and Categories of Modules, Springer-Verlag, New York, 1974.

关于"P一内射环的几个新结果"和 "正则环是非常正则的"两文的注记

章 聚乐

薛卫民

(安徽师范大学数学系)

(福建师范大学数学系)

要

本文指出并且修正了文献 "P一内射环的几个新结果"和 "正则环是非常正则的"的几个错误。