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1. Introduction

Let G = (V, E) be a graph with vertex set V = {v1, v2, . . . , vn} and edge set E. All graphs

considered here are simple and undirected. Let d(vi) denote the vertex degree of vi. Let A(G) be

the (0,1)-adjacency matrix of G. The matrix L(G) = D(G)−A(G) is called the Laplacian matrix

of G, where D(G) is the n× n diagonal matrix with {d1, d2, . . . , dn} as diagonal entries (and all

other entries 0). The polynomial PA(G)(λ) = det(λI −A(G)) and PL(G)(µ) = det(µI −L(G)) are

defined as the characteristic polynomials of the graph G with respect to the adjacency matrix

and the Laplacian matrix, respectively, where I is the identity matrix, which can be written as

PA(G)(λ) = λn +a1λ
n−1+ · · ·+an and PL(G(µ) = µn +q1µ

n−1+ · · ·+qn, respectively. Since both

matrices A(G) and L(G) are real and symmetric, their eigenvalues are all real numbers. Assume

that λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G) and µ1(G) ≥ µ2(G) ≥ · · · ≥ µn(G)(= 0) are the adjacency

eigenvalues and Laplacian eigenvalues of graph G, respectively. The adjacency spectrum of graph

G consists of the adjacency eigenvalues (together with their multiplicities), and the Laplacian

spectrum of graph G consists of the Laplacian eigenvalues (together with their multiplicities).

Two graphs are cospectral if they share the same spectrum. A graph G is said to be deter-

mined by its spectrum (DS for short) if for any graph H , PA(H)(λ) = PA(G)(λ)(or PL(H)(µ) =

PL(G)(µ)) implies that H is isomorphic to G.

Up to now, only few graphs with very special structures have been proved to be determined

by their spectra. So, “which graphs are determined by their spectrum?” [3] seems to be a difficult
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problem in the theory of graph spectrum.

Some known results can be found in [2, 4–8, 10–13].

In this paper, some more special graphs will be discussed. If a graph G is obtained from

Kn by deleting one, two, three or four edges, then G must be isomorphic to one of Gij (i =

1, 2, 3, 4; j = 0, 1, . . . , 10) as shown in Figure 1.

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

&%
'$

r re

&%
'$rr rrr

e1 e2

e3

e4

Kn − {e1, e2, e3, e4}

G410

r rr��@@
e1e2

r rr re1

e2

rr r r@@��
e1 e2 e3

rr rr r@@��
e1 e2

e3

rr r@@��
e1 e2

e3

r rr re1

e2

e3

r rr rr re1

e2

e3

rr
r

r
r@@��

@@��e1

e2

e3
e4

rr r rr r@@��
e1 e2 e3

e4

rrr rr re1 e2

e3 e4

r rr r rr r
e1

e2 e3

e4

r rr re1

e2

e3

e4

rr rrr @@��
e1 e2

e3

e4

r rr
r
@@��

e1 e2

e3

e4 r rrrre1

e2 e3

e4
rr rrr r

e1

e2

e3

e4 r rr rr rr r
e1

e2

e3

e4

Kn − e

G10

︸ ︷︷ ︸

Kn − {e1, e2}

G20 G21

︸ ︷︷ ︸

Kn − {e1, e2, e3}

G30 G31 G32

︸ ︷︷ ︸

Kn − {e1, e2, e3}

G33 G34

︸ ︷︷ ︸

Kn − {e1, e2, e3, e4}

G40 G41 G42 G43

︸ ︷︷ ︸

Kn − {e1, e2, e3, e4}

G44 G45 G46 G47 G48 G49

Figure 1 Gij (i = 1, 2, 3, 4; j = 0, 1, . . . , 10)

Let G be a collection consisting of G where G is the graph obtained from the complete graph Kn by

deleting one, two, three or four edges, that is, G = {G10, G20, G21, G30, G31, G32, G33, G34, G40, G41,

G42, G43, G44, G45, G46, G47, G48, G49, G410}. The number of deleted edges is i in Kn. In this

paper, we prove that for any graph G ∈ G, G is determined by its adjacency spectrum and

Laplacian spectrum, respectively. That is

Theorem 1.1 If graph Gi is obtained from Kn (n ≥ i + 2) by deleting i (i = 1, 2, 3, 4) edges,

then Gi is determined by its adjacency spectrum.

Theorem 1.2 If graph Gi is obtained from Kn (n ≥ i + 2) by deleting i (i = 1, 2, 3, 4) edges,

then Gi is determined by its Laplacian spectrum.
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2. Some lemmas

In the section, we will present some lemmas which are required in the proof of the main

results.

Lemma 2.1 ([1]) The coefficients of the characteristic polynomial of a graph G satisfy:

(1) a1 = 0;

(2) −a2 is the number of edges of G;

(3) −a3 is twice the number of triangles in G.

Lemma 2.2 ([3, 9]) Let G be a graph. For the adjacency matrix and the Laplacian matrix, the

following can be obtained from the spectrum.

(i) The number of vertices.

(ii) The number of edges.

(iii) Whether G is regular.

(iv) Whether G is regular with any fixed girth.

For the adjacency matrix the following follows from the spectrum.

(v) The number of closed walk of any length.

(vi) Whether G is bipartite.

For the Laplacian matrix the following follows from the spectrum.

(vii) The number of spanning trees.

(viii) The number of components.

(ix) The sum of the squares of degrees of vertices.

Lemma 2.3 ([9, p. 657]) Let G be a graph with e edges, xi vertices of degree i, and y 4-cycles.

Then

|w4(G)| = 2e + 4
∑

i

(
i

2

)

xi + 8y, (1)

where |w4(G)| is the total number of closed 4-walks in G.

Lemma 2.4 Let G be a graph with n vertices and
(
n
2

)
− i edges, i = 1, 2, 3, 4. If n ≥ 3, 4, 5, 6

for i = 1, 2, 3, 4, respectively, then G has only one connected component.

Proof Without loss of generality, we take i = 4. Assume that G have l (l > 1) connected

components, that is G = Gn1
∪ Gn2

∪ · · · ∪ Gnl
, where |V (Gni

)| = ni, i = 1, 2, . . . , l and

n1 + n2 + · · · + nl = n.

n(n − 1)

2
− 4 = |E(G)| = |E(Gn1

)| + |E(Gn2
)| + · · · + |E(Gnl

)|

≤
n1(n1 − 1)

2
+

n2(n2 − 1)

2
+ · · · +

nl(nl − 1)

2
,

namely,
l∑

i=1

n2
i + 2

∑

1≤i<j≤l

ninj − 8 = n2 − 8 ≤
l∑

i=1

n2
i ,
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we get
∑

1≤i<j≤l

ninj ≤ 4.

Since n ≥ 6, this is a contradiction.

Lemma 2.5 ([1, p. 41]) If G is the complement of G, and G has n vertices, then

κ(G) = n−2PL(G)(n), (2)

where κ(G) is the number of spanning trees of the graph G.

3. Proofs of Theorems 1.1 and 1.2

It is well known that the complete graph Kn are determined by their adjacency spectrum

and Laplacian spectrum. Now we are ready to prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1 Let Gi ∈ G. Suppose a graph H is cospectral with Gi with respect to

the adjacency spectrum. We consider the following cases.

Case 1 i=1. Consider the complete graph Kn by deleting one edge. By Lemma 2.2, H is a

graph with n vertices and
(
n
2

)
−1 edges. By Lemma 2.4, H has only one connected component,

then H ∼= G ∼= G10.

Case 2 i=2. Similarly to Case 1, we have H ∼= G20 or H ∼= G21. In view of the fact that
(
n
3

)
− 2(n − 2) + 1 triangles are contained in G20 and

(
n
3

)
− 2(n − 2) triangles are contained in

G21, by Lemma 2.1(3) or Lemma 2.2(v), G is determined by its adjacency spectrum.

Case 3 i=3. Similarly to Case 1, the H must be isomorphic to one of G3j (j = 0, 1, 2, 3, 4).

There are
(
n
3

)
−3(n−2)+3,

(
n
3

)
−3(n−2)+1,

(
n
3

)
−3(n−2)+2,

(
n
3

)
−3(n−2)+2 and

(
n
3

)
−3(n−2)

triangles contained in G30, G31, G32, G33 and G34, respectively. Obviously, G32 and G33 have

equal triangles. Moreover, there are 2e+4(3
(
n−3

2

)
+(n− 3)

(
n−1

2

)
)+8(3

(
n
4

)
− 6

(
n−2

2

)
+3(n− 3)),

2e + 4(2
(
n−3

2

)
+ 2

(
n−2

2

)
+ (n− 4)

(
n−1

2

)
) + 8(3

(
n
4

)
− 6

(
n−2

2

)
+ 2(n− 3) + 1) closed 4-walks in G32

and G33, respectively. If G32 and G33 are cospectral, by Lemma 2.2(v), we have

2e + 4

(

3

(
n − 3

2

)

+ (n − 3)

(
n − 1

2

))

+ 8

(

3

(
n

4

)

− 6

(
n − 2

2

)

+ 3(n − 3)

)

= 2e + 4

(

2

(
n − 3

2

)

+ 2

(
n − 2

2

)

+ (n − 4)

(
n − 1

2

))

+ 8

(

3

(
n

4

)

− 6

(
n − 2

2

)

+ 2(n − 3) + 1

)

.

Solving this equation, we get n=3, a contradiction.

Case 4 i=4. Similarly to Case 1, the H must be isomorphic to one of G4j (j = 0, 1, 2, . . . , 10).

In view of G40 − G410, there are
(
n
3

)
− 4(n − 2) + 6,

(
n
3

)
− 4(n − 2) + 3,

(
n
3

)
− 4(n − 2) + 2,

(
n
3

)
− 4(n− 2) + 1 ,

(
n
3

)
− 4(n− 2) + 4,

(
n
3

)
− 4(n− 2) + 2,

(
n
3

)
− 4(n− 2) + 4,

(
n
3

)
− 4(n− 2) + 3,

(
n
3

)
−4(n−2)+2,

(
n
3

)
−4(n−2) and

(
n
3

)
−4(n−2)+4 triangles contained in G40−G410, respectively.

Obviously, G41 and G47 have equal triangles, G44, G46 and G410 have equal triangles, G42, G45

and G48 have equal triangles. If they are cospectral, we consider the following subcases.
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Subcase 1 By Lemma 2.3, we calculate |w4(G41)| and |w4(G47)|. We have

|w4(G41)| = 2e + 4
((

n−4
2

)
+ 5

(
n−2

2

)
+ (n − 6)

(
n−1

2

))
+ 8

(
3
(
n
4

)
− 8

(
n−2

2

)
+ 3(n − 3) + 6

)
and

|w4(G47)| = 2e + 4
(
3
(
n−3

2

)
+ 2

(
n−2

2

)
+ (n − 5)

(
n−1

2

))
+ 8

(
3
(
n
4

)
− 8

(
n−2

2

)
+ 3(n − 3) + 4

)
.

By Lemma 2.2(v), we have |w4(G41)| = |w4(G47)|, that is

2e + 4
((

n−4
2

)
+ 5

(
n−2

2

)
+ (n − 6)

(
n−1

2

))
+ 8

(
3
(
n
4

)
− 8

(
n−2

2

)
+ 3(n − 3) + 6

)

= 2e + 4
(
3
(
n−3

2

)
+ 2

(
n−2

2

)
+ (n − 5)

(
n−1

2

))
+ 8

(
3
(
n
4

)
− 8

(
n−2

2

)
+ 3(n − 3) + 4

)
.

This equation has no solution.

Subcase 2 Similarly to Subcase 1, by Lemma 2.3, we calculate |w4(G44)|, |w4(G46)| and

|w4(G410)|. We have

|w4(G44)| = 2e + 4
(
4
(
n−3

2

)
+ (n − 4)

(
n−1

2

))
+ 8

(
3
(
n
4

)
− 8

(
n−2

2

)
+ 4(n − 3) + 1

)
,

|w4(G46)| = 2e + 4
(
2
(
n−3

2

)
+

(
n−2

2

)
+

(
n−4

2

)
+ (n − 4)

(
n−1

2

))
+ 8

(
3
(
n
4

)
− 8

(
n−2

2

)
+ 5(n − 3)

)

and

|w4(G410)| = 2e+4
((

n−4
2

)
+

(
n−3

2

)
+ 3

(
n−2

2

)
+ (n − 5)

(
n−1

2

))
+8

(
3
(
n
4

)
− 8

(
n−2

2

)
+ 4(n − 3) + 2

)
.

By Lemma 2.2(v), we have

2e + 4(4
(
n−3

2

)
+ (n − 4)

(
n−1

2

)
) + 8(3

(
n
4

)
− 8

(
n−2

2

)
+ 4(n − 3) + 1)

= 2e + 4(2
(
n−3

2

)
+

(
n−2

2

)
+

(
n−4

2

)
+ (n − 4)

(
n−1

2

)
) + 8(3

(
n
4

)
− 8

(
n−2

2

)
+ 5(n − 3)), (3)

and

2e + 4(2
(
n−3

2

)
+

(
n−2

2

)
+

(
n−4

2

)
+ (n − 4)

(
n−1

2

)
) + 8(3

(
n
4

)
− 8

(
n−2

2

)
+ 5(n − 3))

= 2e + 4(
(
n−4

2

)
+

(
n−3

2

)
+ 3

(
n−2

2

)
+ (n − 5)

(
n−1

2

)
) + 8(3

(
n
4

)
− 8

(
n−2

2

)
+ 4(n − 3) + 2), (4)

and

2e + 4(
(
n−4

2

)
+

(
n−3

2

)
+ 3

(
n−2

2

)
+ (n − 5)

(
n−1

2

)
) + 8(3

(
n
4

)
− 8

(
n−2

2

)
+ 4(n − 3) + 2)

= 2e + 4(4
(
n−3

2

)
+ (n − 4)

(
n−1

2

)
) + 8(3

(
n
4

)
− 8

(
n−2

2

)
+ 4(n − 3) + 1). (5)

Solving the equation (3), we get n=3, a contradiction with n ≥ 6. Solving the equation (4), we

get n=4, a contradiction with n ≥ 6. The equation (5) has no solution.

Subcase 3 Similarly to Subcase 1, by Lemma 2.3, we calculate |w4(G42)|, |w4(G45)| and

|w4(G48)|. We have

|w4(G42)| = 2e + 4(2
(
n−3

2

)
+ 4

(
n−2

2

)
+ (n − 6)

(
n−1

2

)
) + 8(3

(
n
4

)
− 8

(
n−2

2

)
+ 2(n − 3) + 8),

|w4(G45)| = 2e + 4(3
(
n−3

2

)
+ 2

(
n−2

2

)
+ (n − 5)

(
n−1

2

)
) + 8(3

(
n
4

)
− 8

(
n−2

2

)
+ 3(n − 3) + 6) and

|w4(G48)| = 2e + 4(2
(
n−3

2

)
+ 4

(
n−2

2

)
+ (n − 6)

(
n−1

2

)
) + 8(3

(
n
4

)
− 8

(
n−2

2

)
+ 2(n − 3) + 7).

By Lemma 2.2(v), we have

2e + 4(2
(
n−3

2

)
+ 4

(
n−2

2

)
+ (n − 6)

(
n−1

2

)
) + 8(3

(
n
4

)
− 8

(
n−2

2

)
+ 2(n − 3) + 8)

= 2e + 4(3
(
n−3

2

)
+ 2

(
n−2

2

)
+ (n − 5)

(
n−1

2

)
) + 8(3

(
n
4

)
− 8

(
n−2

2

)
+ 3(n − 3) + 6), (6)

2e + 4(3
(
n−3

2

)
+ 2

(
n−2

2

)
+ (n − 5)

(
n−1

2

)
) + 8(3

(
n
4

)
− 8

(
n−2

2

)
+ 3(n − 3) + 6)

= 2e + 4(2
(
n−3

2

)
+ 4

(
n−2

2

)
+ (n − 6)

(
n−1

2

)
) + 8(3

(
n
4

)
− 8

(
n−2

2

)
+ 2(n − 3) + 7), (7)

2e + 4(2
(
n−3

2

)
+ 4

(
n−2

2

)
+ (n − 6)

(
n−1

2

)
) + 8(3

(
n
4

)
− 8

(
n−2

2

)
+ 2(n − 3) + 7)

= 2e + 4(2
(
n−3

2

)
+ 4

(
n−2

2

)
+ (n − 6)

(
n−1

2

)
) + 8(3

(
n
4

)
− 8

(
n−2

2

)
+ 2(n − 3) + 8). (8)

Solving the equation (6), we get n=4, a contradiction with n ≥ 6. Solving the equation (7), we

get n=3, a contradiction with n ≥ 6. The equation (8) has no solution.

In what follows, we prove Theorem 1.2. To this end, we need the following Lemmas.
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Lemma 3.1 Let d2(G) =
∑n

i=1 d2
i (G). Then

d2(G30) = (n − 4)(n − 1)2 + 3(n − 2)2 + (n − 4)2 = n3 − 2n2 − 11n + 24;

d2(G31) = (n − 5)(n − 1)2 + 4(n − 2)2 + (n − 3)2 = n3 − 2n2 − 11n + 20;

d2(G32) = (n − 3)(n − 1)2 + 3(n − 3)2 = n3 − 2n2 − 11n + 24;

d2(G33) = (n − 4)(n − 1)2 + 2(n − 2)2 + 2(n − 3)2 = n3 − 2n2 − 11n + 22;

d2(G34) = (n − 6)(n − 1)2 + 6(n − 2)2 = n3 − 2n2 − 11n + 18.

d2(G40) = (n − 5)(n − 1)2 + 4(n − 2)2 + (n − 5)2 = n3 − 2n2 − 15n + 36.

d2(G41) = (n − 6)(n − 1)2 + 5(n − 2)2 + (n − 4)2 = n3 − 2n2 − 15n + 30.

d2(G42) = (n − 6)(n − 1)2 + 4(n − 2)2 + 2(n − 3)2 = n3 − 2n2 − 15n + 28.

d2(G43) = (n − 7)(n − 1)2 + 6(n − 2)2 + (n − 3)2 = n3 − 2n2 − 15n + 26.

d2(G44) = (n − 4)(n − 1)2 + 4(n − 3)2 = n3 − 2n2 − 15n + 32.

d2(G45) = (n − 5)(n − 1)2 + 2(n − 2)2 + 3(n − 3)2 = n3 − 2n2 − 15n + 30.

d2(G46) = (n − 4)(n − 1)2 + (n − 2)2 + 2(n − 3)2 + (n − 4)2 = n3 − 2n2 − 15n + 34.

d2(G47) = (n − 5)(n − 1)2 + 2(n − 2)2 + 3(n − 3)2 = n3 − 2n2 − 15n + 30.

d2(G48) = (n − 6)(n − 1)2 + 4(n − 2)2 + 2(n − 3)2 = n3 − 2n2 − 15n + 28.

d2(G49) = (n − 8)(n − 1)2 + 8(n − 2)2 = n3 − 2n2 − 15n + 24.

d2(G410) = (n − 5)(n − 1)2 + 3(n − 2)2 + (n − 3)2 + (n − 4)2 = n3 − 2n2 − 15n + 32.

Proof By simple calculation, we can obtain the results. 2

Lemma 3.2 Let G is a graph. If κ(G) is the number of spanning trees of the graph G, then

κ(G30) = nn−5(n − 1)2(n − 4);

κ(G32) = nn−5((n − 2)3 − 3n + 8);

κ(G41) = nn−8(n6 − 8n5 + 21n4 − 22n3 + 8n2);

κ(G42) = nn−8(n6 − 8n5 + 22n4 − 24n3 + 9n2);

κ(G44) = nn−6(n4 − 8n3 + 20n2 − 16n);

κ(G45) = nn−7(n5 − 8n4 + 21n3 − 18n2);

κ(G47) = nn−7(n5 − 8n4 + 21n3 − 20n2 + 5n);

κ(G48) = nn−8(n6 − 8n5 + 22n4 − 23n3 + 5n2 + 2n);

κ(G410) = nn−7(n5 − 8n4 + 20n3 − 18n2 + 5n).

Proof Without loss of generality, we calculate only κ(G30). Since

G30 = K1,3 ∪ (n − 4)K1,

it follows

PL(G30)
(µ) = µn−3(µ − 1)2(µ − 4).

By Lemma 2.5, we have

κ(G30) = n−2PL(G30)
(n) = nn−5(n − 1)2(n − 4).

Similarly to the calculation of κ(G30), we can get other κ(Gij) in the Lemma. 2

Proof of Theorem 1.2 Let Gi ∈ G. Suppose a graph H is cospectral with Gi with respect to
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the Laplacian spectrum. We consider the following cases.

Case 1 i = 1. Considering the complete graph Kn by deleting one edge leads to the conclusion

obviously.

Case 2 i = 2. Consider the complete graph Kn by deleting two edges. By Lemma 2.2, H

is a graph with n vertices and
(
n
2

)
-2 edges. By Lemma 2.2(viii), H has only one connected

component, then H ∼= G20 or H ∼= G21. We prove G20 and G21 are not Laplacian cospectral.

Suppose that G20 and G21 are Laplacian cospectral. By Lemma 2.2(ix), graphs G20 and G21

have the same sum of the squares of degrees of vertices. We have the following equation

2(n − 2)2 + (n − 3)2 + (n − 1)2 = 4(n − 2)2,

which has no solution, a contradiction.

Case 3 i = 3. Similarly to Case 2, consider the complete graph Kn by deleting three edges.

The H must be isomorphic to one of G3j (j = 0, 1, 2, 3, 4). By Lemma 3.1, we know that only

graphs G30 and G32 have the same sum of the squares of degrees of vertices. If G30 and G32 are

cospectral with respect to the Laplacian spectrum, then by Lemma 2.2(vii) G30 and G32 have

the same number of apanning trees, but by Lemma 3.2 we know that κ(G30) 6= κ(G32) for any

n. So G30 and G32 are not cospectral with respect to the Laplacian spectrum.

Case 4 i = 4. Similarly to Case 2, consider the complete graph Kn by deleting four edges. The

H must be isomorphic to one of G4j (j = 0, 1, 2, . . . , 10). By Lemma 3.1, we have 3 subcases as

follows.

Subcase 1 The graphs G41, G45 and G47 have the same sum of the squares of degrees of

vertices. But by Lemma 3.2, we have κ(G41) 6= κ(G45) 6= κ(G47) for n ≥ 3. So G41, G45 and

G47 are not cospectral with respect to the Laplacian spectrum.

Subcase 2 Only the graphs G42 and G48 have the same sum of the squares of degrees of vertices.

But by Lemma 3.2, we have κ(G42) 6= κ(G48) for any n. So G42 and G48 are not cospectral with

respect to the Laplacian spectrum.

Subcase 3 Only the graphs G44 and G410 have the same sum of the squares of degrees of

vertices. But by Lemma 3.2, we have κ(G44) 6= κ(G410) for any n. So G44 and G410 are not

cospectral with respect to the Laplacian spectrum.

References

[1] BIGGS N. Algebraic Graph Theory (II) [M]. Cambridge University Press, 1993.
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[7] LEPOVIĆ M, GUTMAN I. No starlike trees are cospectral [J]. Discrete Math., 2002, 242(1-3): 291–295.
[8] NOY M. Graphs determined by polynomial invariants [J]. Theoret. Comput. Sci., 2003, 307(2): 365–384.

[9] OMIDI G R, TAJBAKHSH K. Starlike trees are determined by their Laplacian spectrum [J]. Linear Algebra
Appl., 2007, 422(2-3): 654–658.

[10] SCHWENK A J. Almost All Trees are Cospectral [M]. Academic Press, New York, 1973.

[11] SHEN Xiaoling, HOU Yaoping, ZHANG Yuanping. Graph Zn and some graphs related to Zn are determined
by their spectrum [J]. Linear Algebra Appl., 2005, 404: 58–68.

[12] SMITH J H. Some Properties of the Spectrum of Graph [M]. New York-London-Paris, 1970.
[13] WANG Wei, XU Chengxian. On the spectral characterization of T-shape trees [J]. Linear Algebra Appl.,

2006, 414(2-3): 492–501.


