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Abstract

In this paper, a new type algebra which is so-called Medium algebra is intro-
duced. The equational class M of all Medium algebras is characterized. And the
relationships between Medium algebras and other algebras are studied.

| . Introduction

Fuzzy mathematics which was initialed by Zadeh [ 4] in 1965, has been
rapidly developed with manyfold applications ranging from engineering and com-
puter science to medical diagnosis and social behavior, The basis of fuzzy ma-
thematics, however, had not been well established until Zhu and Xiao [3]
introduced the Medium logic in recent years. Medium algebra is the algebraic
abstract of MP system in Medium logic just as Boolean algebra abstracting the
two valued Propositional Calculus. The main purpose of this paper is to inves-
tigate the various properties of Medium algebras.

2 . Definitions and Basic Properties

Definition 2.1 A Medium algebra is an algebra (M, +,., =, ~,0,1) of type
(2,2,1,1,0,0) whose reduct <M, +, -, =, 0,1> is a De Morgan algebra and such
that for all x, ye M,

(1) x=% ’

(2) X=x+x

(3) Xx+X=x

(4) e YEXY+X y4x Yy

(5) ,@=;f+:\"l‘,\‘,\\

(6) vrx+tx=1. _ _

Obviously, the class M of all Medium algebras is an equa- ]l =0
tional class. .

Example 2.1 Let B=(B, + -, —,0,1) be a Boolean aigebra. ]
Define « ~” by setting x= 1 for all xe B. Then (B, +,-,—,~, ‘o T
0,1) is a Medium algebra. Figure 1.
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Example 2.2 Let M*M whose Hasse diagram is depicted in Figure 1. Define
« ~% by setting a =1, =1=a. Then(M, +, -, -, ~,0,1)>is a Medium algebra
which is called the standard Medium algebra.

Theorem 2.1 Let M =<XM, +,-, -, ~,0,1> be a Medium algebra. Then

(1) x=x

(2) Xy=xyvx+y
(3) X+ yp=xy+x+y
(4) xx=0=1

(5) ¥<Xx, i.e. x<0
(6) If x<y<< 0 or x>y> 0 then
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) Since ¥+x=1,we have x+x=1=1=0. Thus

—

=

implies x x<x x. Similarly, x x<(x implies x x<( .
=1=0. (5) xx<X implies ¥ xx= X+ x=x, Since xx=

A = — = ~Ar o~ o~
X

=X, we have x<(x. Therefore x<xx=1=0. (6) If x<y< 0, then
xy=x, we have x =Xy=x y+xy+xy. Since X X=0>y>x, xy>xy. Simi-
larly, x y>x y. Hence x=x 7. i.e.X<y. It is similar to prove the second
assertion.

Suppose S is a nonempty subset of a Medium algebra M, [S] denotes the
Medium algebra generated by S,i.e. [S] is the smallest Medium algebra that
contains S. Such [ 8] is characterized by the following theorem,

Theorem 2.2 Let S be a nonempty subset of a Medium algebra M, Then

[S1={ 5 aT|T,@SUS S /3, n>q) (1)
i=1
where AG B denotes that A4 is a finite nonempty subset of B,fz{f]xeS}, S=
{X|xeS).
Proof Let A equal to the right of (1). For any xeM, setting T,={x}, T,=

- —_ — o~ 3 . — =
{x}, T,= {x}, we have | =x+x+ x:Z 1TeA. Setting T,= {x, x, x}. We have

xxx-x;Lx+x 1=0=Xr1T e,

For any 7,,S.QSUSUSU3:, (i=1,ee,n, j=1,ee,m). It is easy to show that
/\/\/\M

S aT,+ 3 w84, (__JNTZ 78,64 and ZnT I—[Z T A. ZzTeA follows imme-

i1 J=1 i=1 j=1 i=1 i=1

diately by induction. Therefore A4 is a Medlum algebra. If M QS is a Medium

algebra, then M/QSU?LJS"U.?. Thus AC M’. That completes the proof.
Theorem 2.3 Let M=(M, +, ., —,~,0,1) be a Medium algebra, Then ¢

?
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is a congruence relation on (M, +,., —,'~,0,1) if and only if # is a congruence
relation on (M, +, -, ~,0,1).

Proof We only prove that (x, y)e€d implies (X, ¥) €@ for all x, yeM. Suppose .
(x, ) €6, we have (X, P)eb, (X.p)=(x+X,y+y)¢f. Since (X, ¥)¢f and (7,
V€6, (XX, Xy)eb and (¥, 7P €b. Tt follows that (X5, 7)€, (Fx,0)¢0 .

~ Ry~ AR P~ A~ I~ o~ Y P ~ v~ ~ PG A~ o~ —~

Thus (x y, ¥y x)ef. Therefore (x, y)=(x(y+y), y(x +X)ND=(Xy+X y, x y+y x)
€q .

3 . Coproducts of Medium Algei)ras
For a lattice L, the elements of L are the same as the
N’ -
elements of L but a<b in L if and only if a>b in L. The

map I,:L—L is defined by I,(a) = a for aeL. Note that a<lb L L
< L (a)>1,(b) for a,beL. If f,L,—~ 1L, is a homomorphism f ’
between lattices then 7 f,—»fz is defined by ﬁl,_l(a))z jll, ‘ILI I
Iz,(f(“)) for ae L, ., Obviously, 7is a lattice homomorphism L, / «»ZZ

"and the diagram commutes. i
‘ Note that if f :L,—~L,, f,: L,~» L, are lattice homomorphisms, then fz\o/f1 =
;;0 1 ‘

Lemma 3.1 If M is a Medium algebra, then M can be made into a Medium
algebra by defining L,(x) = LX), [(0 =1 (%) .

Proof Straightforward.

Theorem 3.1 Let f,: M;—~ M, be a homomorphism between Medium algebras.
Then Z: M,—»ﬁz is also a homomorphism. Moreover, if f,: M,—~M, is another
homomorphism between Medium aigebras then fz\o/fl=}";oz.

Proof Trivial.

Theorem 3.2 Let (M), ¢ be a family of Medium algebra, Me¢M and let (j,:
M —~>M) . be a coproduct of (M,) .. Then (Z: ﬁ,—»ﬁ)"sis a coproduct of

(M), - , '

Proof It follows from Lemma 3.1 that (M) .is a family of Medium algebras.
Suppose ( f,, M,—»L)"sbe a family of homomorphisms between Medium algebras.
By Theorem 3.1 (Z:M,»f)“sis also a family of homomorphisms between Medium
algebras, Since (j,:M,—~M)_is a coproduct of (M,) ., there exists a unique
homomorphism f:M—:lj such that foj, = Z for all seS. Thus };Z: f:?,z f,, for
all seS. Therefore (Z:‘M/,-*A\?) is a coproduct of (ﬁ,)“s.

4 . The Equational Class of Medium Algebras

The following example shows that the equational class of Medium algebras
M is a equational proper subclass of the equational class of De Morgan algeb-
ras DM .
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Example 4.1 M =<[0,1],V, N\, -, 0,1) is a De Morgan algebra, where v =
max, A =min, x=1-x, for all xe[0,1]. Then we can not make M into a Me-
dium algebra .

Proof Suppose there is a unary' operation ¥ ~” on [0, 1] such that M = ([0,
11V, A,-,~,0,1) is a Medium algebra. Then for xe[0,1], we have XKV X
= 1. Thus for x#0 or 1, we have x=1 and X= 1. i.e.x\/x=1. But if x=0.7
€[0,17; ¥=0.5¢[0,11 x\Vx=0.7\/0.3=0.7+#0.5=0.5\0.5 :y'\/}} contradicting
to x\/X=1 is a constant .

Kalman [ 2 ] has proved that the subdirectly irreducibles in DM are M, M,
and M, .,

The Hasse diagrams of M,, M, and M, are depicted in figure 2,3, and 4 res-
pectively.

ith 1 =1 witha=a,b=b

]
0

Figure 2, Figure 3. Figure 4,

Theorem 4.1 The subdirectly irreducibles in M are M, and M, .

Proof Obviously M, and M, are the subdirectly irreducibles.

To prove M, is not subdirectly irreducible we show that M, is not a member
of M. ’

Suppose M, is a Medium algebra, For ae M, we have a=a and a+a+a=1,
thus a+a=1, which implies a=b. On the other hand, a~=a+'¢T=‘a, so 1=0 =
aa=ab=0.Therefore 0= 1=0=1=1+1= 1, a contradiction. Hence M, is not a
Medium algebra, This completes the proof,

Corollary Let MeM Then M is a subdirect product of copies of M, and M,.

5 . Relations with other algebras

Theorem 5.1 Every Medium algebra is a Kleene algebra.

Proof Let M be a Medium algebra, obviously M is a De Morgan algebma .
For all x, ye M, xX< x and xx<_x+x=x implies xx< X x= 0 =y ply=y+y .
Therefore M is a Kleene algebra.

Theorem 5.2 Let M be a Medium algebra, Then M is a Boolean algebra
if and only if T =1.

Proof If T =1 then ;7:T=1 implies X-x+x=1 and xx=0 Thus X is
the complement of x. Therefore M is a Boolean alggbra.

—

Conversely, if M is a Boolean algebra, then T:T: 1 + T:l.
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Definition 5.1 Let L be a De Morgan algebra. ¢ (L) = {xeL|lx+x=1,xx=0)
is called the centre of L.

Theorem 5.3 Let M be a Medium algebra. then ¥ xeM K xeg (M) if and only
if x=7.

Proof If xeg (M), then x=x+ x(x+ ) =xx+txrrxx= xx= 0.

Conversely, if x= 5, then xN=;(§)’ =1 which implies x+x=1 and xx=(,there-
fore xew (M), -

Theorem 5.4 Let M be a Medium algebra such that 0 =0 . Then M”= {x¢
M|x=a0+b, a,beg(M)) is a Post algebra and ¢ (M?)=¢(M).

Proof Straightforward, .

Theorem 5.5 Let M=¢M, +, -, =, ~,0,1) be a Medium algebra, ﬁ:{}lxe
M}. Then (M, +,-,~, 0,1) is a Boolean algebra,

Proof For xeM, '6'=;x~<;<1=;(§)’eM implies that Eand 1 are the .lowest
and greatest element in M respectlvely. For x, yeM since 0<xy<x+ y, we

R X o T TS X

have X y>x+y. Thus, x+y X+y+xy=xy and xy X+y X y=x+y. which
~ & x a8

implies 4 ~” satisfies the De Morgan law on M. Also we have X+

N/\_,/\,
—~

M, xy= Xx= x+ye?\? , xzf)', ;+’;:1.Therefore (M, +, «, ~» '6',1> is

a Boolean algebra,
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(LB X ZHER)

i E

HEAER, REMMYREAEFRPISREANPT 2BESEHSIR THERESR
BEZIGEMEER “~7, 8T RBBMARL < F0FN7, Bk, $PAERE S HM
“HEEGETMRE. RAME, Boole RYMAN NT _HERHRMLEH. KRB P
N BEEHRBMR—— A RY. F 0T TP R B R0 % K% B RE A5 1,
T B84 P REBE 2 M3MEER. A GEHET PR MK, PA K% 5Kleen
¥, Post RY LU R Boole R [HMIX&. .

B g R —4 (2,2,1,1,0,0) BGAREM, +,-, —, ~,0,1). HP M, +, -,
~,0,1) 4% De Morgan R¥. fj— TEH“~"EHEUTAHE: Vx, yeM,

o~

(1) xX=x.

(2) X=x+x.

(3) Xx+x=x.

(4) x¥y=X3+Xy+%xy
(5) XV=Xy+xy+xy.
(6) x+x+x=1

MK A T ] DUB A BN ZE A RS h BB TR B
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