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Abstract: In this paper, a nonautonomous predator-prey dispersion model is studied,
where all parameters are time-dependent. The system, which is consisted of n-patches,
the prey species can disperse among n-patches, but the predator species is confined to
one patch and cannot disperse. It is proved the system is uniformly persistent under
any dispersion rates effect. Furthermore, sufficient conditions are established for global
stability of the system.
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1. Introduction

One of the most interesting questions in mathematical biology concerns the survival of
species in ecological models. Levinl! first established this kind of model for autonomous
Lotka- Volterra system, K. Kishimotol?) and Y. Takeuchil®l also studied this kind of models,
but all the coefficients in the system they studied are constants. Song and Chenl¥ extended
the autonomous Lotka-Volterra system to a two species nonautonomous dispersion Lotka-
Volterra system. In this paper, we consider a nonautonomous predator-prey dispersion
model. The system, which is consisted of n-patches, the prey species can disperse among
n-patches, but the predator species is confined to one patch and cannot disperse. Our
purpose is demonstrate that the dispersion rates have no effect on uniform persistence of
the solution of the system. Furthermore, we establish conditions under which the system
is globally asymptotically stable.

2. Model and background concept
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In this paper, we consider the following Lotka-Volterra population model

x; = 21(a1(t) — bi(t)z1 — c(t)y) + iDu(t)(z,- - z1),

1=2

5= 25(a3(6) - b(0)as) + 3 Di(O)mi = 23), (1= 28,03 #1)
7 = y(=d(2) + e(t)a1 — a(t)y),

(2.1)

where z; and y are population density of prey species x and predator species y in patch
1, and z; is density of prey species x in patch j. predator species y is confined to patch
1, while the prey species x can disperse among n-patches. D;;(t) (i, = 1,2,---,n) are
dispersion coeflicients of species x .

Now we let f! = inf{f(t) : t € R} and f™ = sup{f(t) : t € R}, for a continuous and
bounded function f(t).

In system (2.1), we always assume:

(Hy): ai(2), bi(t), Di(t) (3,5 = 1,2,---,n) e(t), d(t), e(t), g(t) are continuous and
strictly positive functions, which satisfy

: Ll o 00 4
mln{ai’biaDijacae :d’q}> 01 max{a;n’b:n,D:?,cm’dm,em’qm} < oo.

For ecological reasons, We always assume that

z e R}, =(0)>0. (2.2)

3. Uniform persistence

Definition The system (2.1) is said to be uniformly persistent if there exists a compact
region D C Int(R}!) such that every solution, Z(t) = (z1(t),z2(t), -, 2a(t),y(t)) of
system (2.1) with initial condition (2.2) eventually enters and remains in the region D.

Lemma 3.1 Let Z(t) = (21(t),z2(t),--,zn(t),y(t)) denote any positive solution of
system (2.1) with the initial conditions (2.2). Then there exists a Ty > 0 such that

zi(t) < My, (i=1,2,---,n), y(t) < My, fort > T, (3.1)

where

am am am emMi“
M! = max{-+ 2 ... Y M;= . 3.2
1 {bll,b” ’biz}’ 2 q’ ( )
{ m * { 1
* _ . ai —c™M} a a
We let m] —Imn{JT_l’B}%""’E?}'

Theorem 3.1 Suppose the system (2.1) satisfies
(Hz) ajd'/(c™e™) > My,
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(H3) emj > dm,
then system (2.1) is uniformly persistent.

Proof Suppose z(t) = (z1(t), z2(t), -, za(t), y(t)) is a solution of system (2.1) which
satisfies (2.2) .
According to the system (2.1) and Lemma 3.1 , if ¢ > T} , we can obtain

}.{1 Z 231((111 - CmMz - b’l":cl) + Z D,-l(t)(a:,- - 21),
n 1=2 (33)
%j 2 zj(a; - bj'z;) + X Dij(t)(zi —z5) (7 =23,-,n).

From (3.2) and (H3), we know a} — ¢™M; > 0 holds. Also from the Lemma 3.1, we obtain
that M, can be chosen close to M; enough to make a} — ¢™M; > 0 holds.

Let m] = nﬁn{a—i———bc;..—Mi, 1%5;,---,,;1,'%}. We choose m; as: 0 < m; < mj, Define
Vi(t) = min{z,(t),z2(t), - ,zn(t)}. Then calculating the lower right derivative of Vi(t)
along the positive solution of system (2.1), similar to the discussion of [4], we have
Vl(ml(t)’ 32(t)’ Y zn(t)) > m;.

From the system (2.1) and Lemma 3.1, we know that there exists T > T} such that

§(t) > y(t)[e'my — d™ — ¢"y(t)].

From (3.2) and (H3), the inequality e!m} — d™ > 0 holds, we know that m; can be close
to m} and M; can be close to M; sufficiently to make the inequality e'm; —d™ > 0 holds.
Suppose y(t) is not oscillatory about (e!m; — d™)/¢™ > 0,
then either
y(t) < (efmq — d™)/q™, for t> T, (3.4)

or
y(t) > (elmy — d™)/q™, for t > To. (3.5)

If (3.4) holds, then there exists a constant m,, 0 < my < M3 = (e!m; - d™)/¢™ , such
that y(t) < mz and e'm; — d™ — myq™ > 0; thus , let A = elm; — d™ — mag™, we obtain,
¥(t) > Ay(t) > 0. This implies y(t) strictly monotone increasing with speed A. Hence there
exists T3 > T3, such that y(¢t) > m,, fort > Ts.

If (3.5) holds, then y(t) > My > m,, fort > Ts.

Suppose now that y(t) is oscillatory about M3, let y(t*) (t* > T3) denote an arbitrary
local minimum of y(t), it is easy to see from system (2.1) that

_ dy(t)

0= L 2 y(e)-d + el - gmy(2"),

and this implies my < M3 < y(t*), for t* > T,. Since y(t*) is an arbitrary local minimum
of y(t), we conclude that 0 < my < M3 < y(t) eventually .
Finally we let

D = {(z1(t),z2(t), - - -, za(t), y(t)) : my < 2i(t) < My (i =1,2,---,n), ma < y(t) < My}
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Then D is a bounded compact region in R}*! which has positive distance from coordinate
hyperplanes let T = 75 , then from the proof above, we obtain that if ¢ > T, then
every positive solution of system(2.1) with the initial condition (2.2) eventually enters and
remains in the region D. The proof is complete.

4. Global Asymptotic Stability

In this section , we derive sufficient conditions which guarantee that any positive
solution of system (2.1) is globally asymptotically stable.

Theorem 4.1 In addition to (H;) — (H3), assume further that system (2.1) satisfies

(H4) : bll >e™

then any positive solution of system (2.1) is gIoba.Hy asymptotically stable.

Proof For two arbitrary nontrival positive solution: Z(t) = (21(t),z2(t), -+, za(t), y(t))
and U(t) = (u1(t), u2(t), -+, un(t), v(t)) of system (2.1), we have from uniform persistence
of system (2.1) that there exist positive constants m; and M;, (i = 1,2) such that for all
t > t* ( t* sufficient large ),

0<my <zi(t) <My, (i=1,2,---,n), 0 <my <y(t) < My,

0<m <u(t)< M, (:=1,2,---,n), 0 <my <v(t) < M.
We define

%.(t) = Inz;(t), 7(¢t) = Iny(t); @w(t) = lnu(t), ¥(¢) = nv(t) (:=1,2,---,n).
Consider the following Lyapunov functional

_ Z 1%:(8) — ()] + [5(2) — 9(0)]-

Now we calculate and estimate the upper right derivative of V5(t) along the solutions of
system (2.1), we have

n m

D) S - (8 - ¢ = 30 Td)fas(e) — (0)] - (&'~ ™u(t) — w(0)-
DUy ];f)le(t) - w0

j=2 1 =2

From the proof of Theorem 3.1 and assumption (H4), we can select M3 close to M3
sufficiently and get m; close to m] sufficiently too. So there exists a; > 0 such that

D*Va(t) < —al(i |2:(2) — wi(e)] + ly(2) — v(D)])- (4.1)

i=1
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Integrating both sides of (4.1) leads to

Va(t) + ax /:(zn: |2:(8) — ui(3)| + |y(s) — v(s)|)ds < Vo(t") < +oo for t > ¢t*

Which leads to E lz;(t) — ui(t)] + |y(t) — v(t)] € L}(¢*, +0). From the persistence hypoth-

esis of (2.1), the boundedness of the solutions of (2.1), we can obtain that [z;(t) —u;(t)](¢ =
1 2,--+,n),[y(t) —v(t)] and their derivatives remain bounded on [0, 00). As a consequence,

Iz,(t)—u‘(t)H-Iy(t)—v(t)l is uniformly continuous. By Barbalat’s Lemma [5, P4, Lemma
1 2 2], it follows that

n
T (3 124(5) = w(s)] + la(s) — (s)]) = 0.
i=1
Hence lim;_, oo |2,(t) — wi(t)] = 0, (¢ = 1,2,---,n),lim 00 |y(t) — v(t)] = 0. The proof is
complete,
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