On Signed Edge Domination of Graphs

XU Bao－gen
（Department of Mathematics，East China Jiaotong University，Jiangxi 330013，China ）
（E－mail：Baogenxu＠163．com）

Abstract

Let $\gamma_{s}^{\prime}(\mathrm{G})$ and $\gamma_{l}^{\prime}(\mathrm{G})$ be the numbers of the signed edge and local signed edge domination of a graph G［2］，respectively．In this paper we prove mainly that $\gamma_{s}^{\prime}(G) \leq$ $\left\lfloor\frac{11}{6} n-1\right\rfloor$ and $\gamma_{l}^{\prime}(G) \leq 2 n-4$ hold for any graph G of order $n(n \geq 4)$ ，and pose several open problems and conjectures．

Key words：local signed edge domination function；local signed edge domination number； signed edge domination function；signed edge domination number．
MSC（2000）：05C22
CLC number：O157．5

1．Introduction

We use Bondy and Murty ${ }^{[1]}$ and $\mathrm{Xu}^{[2]}$ for terminology and notation not defined here and consider simple graphs only．

Let $G=(V, E)$ be a graph．If $e=u v \in E$ ，then $N_{G}[e]=\left\{u^{\prime} v^{\prime} \in E \mid u^{\prime}=u\right.$ or $\left.v^{\prime}=v\right\}$ is called the closed edge－neighbourhood of e in G ，and $N_{G}(e)=N_{G}[e] \backslash\{e\}$ is the open one．If $v \in V$ ，then $E_{G}(v)=\{u v \in E \mid u \in V\}$ ．For simplicity，sometimes，$N_{G}[e]$ and $E_{G}(v)$ are denoted by $N[e]$ and $E(v)$ ，respectively．In［2］we introduced the signed edge domination of graphs as follows：

Definition $1^{[2]}$ Let $G=(V, E)$ be a nonempty graph．A function $f: E \rightarrow\{+1-1\}$ is called the signed edge domination function（SEDF ）of G if $\sum_{e^{\prime} \in N[e]} f\left(e^{\prime}\right) \geq 1$ for every $e \in E(G)$ ．The signed edge domination number of G is defined as $\gamma_{s}^{\prime}(G)=\min \left\{\sum_{e \in E} f(e) \mid f\right.$ is an SEDF of $\left.G\right\}$ ．

And define $\gamma_{s}^{\prime}\left(\bar{K}_{n}\right)=0$ for all totally disconnected graphs \bar{K}_{n} ．
Next we introduce a new concept of edge domination in graphs：
Definition 2 Let $G=(V, E)$ be a graph without isolated vertices．A function $f: E \rightarrow\{+1-1\}$ is called the local signed edge domination function（LSEDF）of G if $\sum_{e \in E(v)} f(e) \geq 1$ for every $v \in V(G)$ ．The local signed edge domination number of G is defined as $\gamma_{l}^{\prime}(G)=\min \left\{\sum_{e \in E} f(e) \mid f\right.$ is an LSEDF of $G\}$ ．Obviously，$\left|\gamma_{l}^{\prime}(G)\right| \leq|E(G)|$ ．It seems natural to define $\gamma_{l}^{\prime}\left(\bar{K}_{n}\right)=0$ for all totally disconnected graphs \bar{K}_{n} ．

Clearly，$\gamma_{l}^{\prime}\left(G_{1} \cup G_{2}\right)=\gamma_{l}^{\prime}\left(G_{1}\right)+\gamma_{l}^{\prime}\left(G_{2}\right)$ and $\gamma_{s}^{\prime}\left(G_{1} \cup G_{2}\right)=\gamma_{s}^{\prime}\left(G_{1}\right)+\gamma_{s}^{\prime}\left(G_{2}\right)$ for any two disjoint graphs G_{1} and G_{2} ．In comparison with the above two definitions，we see that each
Received date：2004－09－20；Accepted date：2005－03－01
Foundation item：the National Natural Science Foundation of China（10661007）；the Natural Science Founda－ tion of Jiangxi Province（0311047）．

LSEDF of G is an SEDF of G, and hence we have
Lemma 1 For all graphs $G, \gamma_{s}^{\prime}(G) \leq \gamma_{l}^{\prime}(G)$.
By Definition 2, we have
Lemma 2 For all graphs $G, v \in V(G)$, then $\gamma_{l}^{\prime}(G) \leq \gamma_{l}^{\prime}(G-v)+d_{G}(v)$.
In recent years, some kinds of domination in graphs have been investigated. Most of those belong to the vertex domination of graphs, such as signed domination ${ }^{[3,4]}$, minus domination ${ }^{[5]}$, majority domination ${ }^{[6]}$, domination ${ }^{[7]}$, etc. A few of results have been obtained about the edge domination of graphs ${ }^{[2]}$. In this paper we discuss mainly the upper bounds for (local) signed domination numbers of graphs, and pose several open problems and conjectures.

A graph G is said to be a θ-graph if G is a connected graph with degree sequence $d=$ $(2,2, \cdots, 2,3,3)$. That is, a θ-graph consists of a cycle and a path such that two end-vertices of the path are on the cycle.

Lemma 3 Any θ-graph contains a cycle of even length (even cycle).
Proof It is obvious.
Lemma 4 For any graph G, if $\delta(G) \geq 3$, then G contains a θ-graph as subgraph, and hence G contains an even cycle.

Proof Without loss of generality, we may suppose that G is a connected graph. Let T be a spanning tree of G, and v a pendant-vertex of T. That is, $d_{T}(v)=1$. Since $\delta(G) \geq 3$, there exist at least two vertices u and w such that $u v, w v \in E(G) \backslash E(T)$. Define $H=T+\{u v, w v\}$. Then obviously, H contains a θ-graph as subgraph, which is the maximum 2-connected subgraph of H. In view of $H \subseteq G$ and Lemma 3, we have completed the proof of Lemma 4.

For a graph G, if there exist some subgraphs $G_{i}(i=1,2, \cdots, q)$ of G such that $E(G)=$ $U_{i=1}^{q} E\left(G_{i}\right)$ and $E\left(G_{i}\right) \cap E\left(G_{j}\right)=\phi(1 \leq i \neq j \leq q)$, then we say that G can be decomposed into $G_{1}, G_{2}, \cdots, G_{q}$.

Lemma 5 Any forest F can be decomposed into some paths $P_{m_{i}}\left(i=1,2, \cdots, q ; m_{i} \geq 2\right)$ such that all end-vertices of all these paths are pairwise distinct.

Proof We use the induction on $m=|E(F)|$.
It is trivial for $m=0$. Suppose that the lemma is true for all forests of size $k \leq m-1$. Now we consider a forest F of size $m(m \geq 1)$. In F we choose a path $P_{t}(t \geq 2)$ whose end-vertices are two pendant-vertices of F.

Let $F_{1}=F-E\left(P_{t}\right)$. Clearly, F_{1} is a forest of size at most $m-1$. By the induction hypothesis, F_{1} can be decomposed into some paths $P_{m_{i}}\left(i=1,2, \cdots, q ; m_{i} \geq 2\right)$ such that all end-vertices of all these paths are pairwise distinct. Thus, F can be decomposed into the paths $P_{m_{i}}(i=1,2, \cdots, q)$ and P_{t}, all end-vertices of the $q+1$ paths are pairwise distinct. So, the lemma is true for all forests F of size m. We have completed the proof of Lemma 5 .

For cycles $C_{n}(n \geq 3)$ and complete graphs $K_{n}(n \geq 1)$, we have
Lemma $\mathbf{6}^{[8]} \quad \gamma_{s}^{\prime}\left(C_{n}\right)=n-2\left\lfloor\frac{n}{3}\right\rfloor$ and $\gamma_{s}^{\prime}\left(K_{n}\right)=\left\lceil\frac{n-1}{2}\right\rceil$.

2. Main results

We first give an upper bound of $\gamma_{l}^{\prime}(G)$ for all graphs G.
Theorem 1 For any graph G of order $n(n \geq 4), \gamma_{l}^{\prime}(G) \leq 2 n-4$, and this bound is sharp.
Proof We use the induction on $m=|E(G)|$. The result is clearly true for $m \leq 3$ (note that $n \geq 4$).

Suppose that the theorem is true for all graphs of size $k(k \leq m-1)$. Now we consider a graph G with $|E(G)|=m$. By Lemma 2, we may suppose $\delta(G) \geq 1$.

Case 1. $\delta(G) \leq 2$
There exists a vertex $v \in V(G)$ such that $d_{G}(v)=\delta(G) \leq 2$. Note that $|E(G-v)| \leq m-1$. By the induction hypothesis, we have $\gamma_{l}^{\prime}(G-v) \leq 2(n-1)-4=2 n-6$. We see from Lemma 2 that $\gamma_{l}^{\prime}(G) \leq \gamma_{l}^{\prime}(G-v)+d_{G}(v) \leq 2 n-6+2=2 n-4$.

Case 2. $\delta(G) \geq 3$
We see from Lemma 4 that G contains an even cycle C. Let $H=G-E(C)$. By the induction hypothesis, H has an LSEDF f with $\sum_{e \in E(H)} f(e) \leq 2 n-4$. Extending f from H by signing +1 and -1 alternatively along C, we obtain an LSEDF for G, and hence $\gamma_{l}^{\prime}(G) \leq 2 n-4$.

Since $\gamma_{l}^{\prime}\left(K_{2, n-2}\right)=2 n-4(n \geq 4)$, the upper bound given in Theorem 1 is sharp. We have completed the proof of Theorem 1 .

For signed edge domination number, by Theorem 1 and Lemma 1, we have
Corollary 1 For all graphs G of order $n(n \geq 3), \gamma_{s}^{\prime}(G) \leq 2 n-4$.
For the lower bound of $\gamma_{l}^{\prime}(G)$, we have
Corollary 2 For all graphs G of order n, if $\delta(G) \geq 1$, then $\gamma_{l}^{\prime}(G) \geq\left\lceil\frac{n}{2}\right\rceil$.
Proof Let f be an LSEDF of G such that $\gamma_{l}^{\prime}(G)=\sum_{e \in E(G)} f(e)$. For every edge $e=u v \in E(G)$, $e \in E(u)$ and $e \in E(v)$. Thus, we have

$$
\gamma_{l}^{\prime}(G)=\sum_{e \in E(G)} f(e)=\frac{1}{2} \sum_{v \in V(G)} \sum_{e \in E(v)} f(e) \geq \frac{1}{2} \sum_{v \in V(G)} 1=\frac{n}{2} .
$$

Note that $\gamma_{l}^{\prime}(G)$ is an integer. The proof is complete.
We know from Definition 2 that the inequality $\gamma_{l}^{\prime}(G) \leq|E(G)|$ holds for all graphs G.
This equality holds for some graphs only.
Theorem 2 Let G be a graph, $D_{3}(G)=\left\{v \in V(G) \mid d_{G}(v) \geq 3\right\}$. Then $\gamma_{l}^{\prime}(G)=|E(G)|$ if and only if either $D_{3}(G)=\phi$ or $D_{3}(G)$ is an independent set of G.

Proof It is not difficult to check that the following four statements are equivalent:
(1) $\gamma_{l}^{\prime}(G)=|E(G)|$;
(2) For any LSEDF f of G satisfying $\gamma_{l}^{\prime}(G)=\sum_{e \in E(G)} f(e)$ and every edge $e \in E(G)$, $f(e)=1$;
(3) For any two vertices u and v of degree at least $3, u v \notin E(G)$;
(4) $D_{3}(G)=\phi$ or $D_{3}(G)$ is an independent set of G.

We have completed the proof of Theorem 2.
Next we give an upper bound of $\gamma_{s}^{\prime}(G)$ for general graphs G.
Theorem 3 For any graph G of order $n, \gamma_{s}^{\prime}(G) \leq\left\lfloor\frac{11}{6} n-1\right\rfloor$.
Proof Without loss of generality, we may suppose that G is a connected graph and $n \geq 4$.
When G contains a Hamilton cycle C_{n}, let $T=C_{n}$.
When G has no Hamilton cycle, we choose a spanning tree T of G such that $\left|\left\{v \in V(T) \mid d_{T}(v)=1\right\}\right|$ is as small as possible (taken over all spanning tree of G). It is easy to see that any two pendantvertices of T are not adjacent in G. (Otherwise, there exists a spanning tree T^{\prime} of G such that T^{\prime} contains less pendant-vertices than T, which contradicts the choice of T in G.)

Thus, $n-1 \leq|E(T)| \leq n$.
For every edge $e \in E(T)$, define $f(e)=+1$.
Let $A=\left\{v \in V(T) \mid d_{T}(v)=1\right\}$, note that $A=\phi$ when $T=C_{n}$.

$$
\left.T_{0}=T \backslash A, A_{0}=\left\{u \in V\left(T_{0}\right) \mid d_{T_{0}}(u)=1\right\} \quad \text { (it is possible that } A_{0}=\phi\right)
$$

For each vertex $u_{0} \in A_{0}$, we choose exactly one edge $e_{0} \in E\left(u_{0}\right) \backslash E(T)$ when $E\left(u_{0}\right) \backslash E(T) \neq \phi$, where $E\left(u_{0}\right)=\left\{u_{0} u \in E(G) \mid u \in V(G)\right\}$. Let M be the set of all edges chosen. Clearly, $|M| \leq$ $\left|A_{0}\right| \leq|A|$ and $A \cap A_{0}=\phi$, thus $|M| \leq\left\lfloor\frac{n}{2}\right\rfloor$.

For every edge $e \in M$, we define $f(e)=+1$.
It is easy to check the following statements:
For every nonpendant-edge e of $T, N_{G}[e]$ contains at least three edges of T. For any pendantedge e of $T, e=u v \in E(T)$ with $d_{T}(u)=1$, when $d_{G}(v) \geq 3 ; N_{G}[e]$ has at least three edges in $E(T) \cup M$, when $d_{G}(v)=2$ (note that $d_{G}(v) \neq 1$); $N_{G}[e]$ contains two edges of T. For every edge $e \in E(G) \backslash E(T)$, since any two vertices of A are not adjacent in $G, N_{G}[e]$ contains at least three edges of T.

Write $G_{0}=G-(E(T) \cup M)$.
If there exist even circuits in G_{0}, then we choose some pairwise edge-disjoint even circuits, denoted by $H_{i}(1 \leq i \leq t)$, so that the graph $G_{1}=G_{0}-\cup_{i=1}^{t} E\left(H_{i}\right)$ contains no even circuit. If there is no even circuits in G_{0}, then $G_{1}=G_{0}$.

For each even circuit H_{i}, we define f by signing +1 and -1 alternatively along $H_{i}(1 \leq i \leq t)$.
Since G_{1} does not contain any even circuit, any two odd cycles in G_{1} are vertex-disjoint. (Otherwise, there exists an even circuit in G_{1}, which is impossible.)

Let $C_{r_{i}}(1 \leq i \leq s)$ be all odd cycles of G_{1}, where $r_{i} \geq 3$ is odd for each i. Noting that $V\left(C_{r_{i}}\right) \cap V\left(C_{r_{j}}\right)=\phi(1 \leq i \neq j \leq s)$, we have $s \leq\left\lfloor\frac{n}{3}\right\rfloor$.

For every $C_{r_{i}}$, let M_{i} be a maximum matching of $C_{r_{i}}$, and define f as follows:

$$
f(e)= \begin{cases}-1, & \text { when } e \in M_{i} \\ +1, & \text { when } e \in E\left(C_{r_{i}}\right) \backslash M_{i}\end{cases}
$$

Clearly, $\sum_{e \in E\left(C_{r_{i}}\right)} f(e)=1$ for each $i(1 \leq i \leq s)$.
Let $F=G_{1}-\cup_{i=1}^{s} E\left(C_{r_{i}}\right)$. Obviously, F is a forest. By Lemma $5, F$ can be decomposed into some paths such that all end-vertices of these paths are pairwise distinct. These paths are written as $P_{m_{i}}\left(m_{i} \geq 2,1 \leq i \leq q\right)$, namely, $E(F)=\cup_{i=1}^{q} E\left(P_{m_{i}}\right)$ and $E\left(P_{m_{i}}\right) \cap E\left(P_{m_{j}}\right)=\phi(1 \leq$ $i \neq j \leq q)$.

For every path $P_{m_{i}}(1 \leq i \leq q), m_{i} \geq 2$, let N_{i} be a maximum matching of $P_{m_{i}}$. When $e \in N_{i}$, define $f(e)=-1$; when $e \in E\left(P_{m_{i}}\right) \backslash N_{i}$, define $f(e)=+1$. Note that $\left|N_{i}\right|=\left\lceil\frac{m_{i}}{2}\right\rceil \geq$ $\left|E\left(P_{m_{i}}\right) \backslash N_{i}\right|$, we have $-1 \leq \sum_{e \in E\left(P_{m_{i}}\right)} f(e) \leq 0, i=1,2, \cdots, q$.

We have completed the definition of f on $E(G)$.
Next we check that f is an SEDF of G.
(1) For any edge $e=u v \in E(G) \backslash E(T)$;

Since any two vertices of A are not adjacent in G, thus, $N_{G}[e]$ contains at least three edges of T. Note that u (also, v) is an end-vertex of at most one path defined before, thus $N_{G}[e]$ contains at most two pendant-edges of all paths $P_{m_{i}}(1 \leq i \leq q)$. So, we have $\sum_{e^{\prime} \in N[e]} f\left(e^{\prime}\right) \geq 1$.
(2) For any edge $e=u v \in E(T)$;

When e is not any pendant-edge of T, obviously, $N_{G}[e]$ contains at least three edges of T. Similarly to (1), we have $\sum_{e^{\prime} \in N[e]} f\left(e^{\prime}\right) \geq 1$.

When $e=u v$ is a pendant-edge of T, where $u \in A$ and $v \in A_{0}$. If $d_{G}(v) \geq 3$, then $N_{G}[e]$ contains at least three edges in $E(T) \cup M$. Similarly to (1), we have $\sum_{e^{\prime} \in N[e]} f\left(e^{\prime}\right) \geq 1$. If $d_{G}(v)=2$ (note that $\left.d_{G}(v) \neq 1\right), N_{G}[e]$ contains two edges of T, and v is not end-vertex of any path $P_{m_{i}}(1 \leq i \leq q)$. Thus $N_{G}[e]$ contains at most one pendant-edge in $\cup_{i=1}^{q} E\left(P_{m_{i}}\right)$, and we have $\sum_{e^{\prime} \in N[e]} f\left(e^{\prime}\right) \geq 1$.

So, f is an SEDF of G. Note $n-1 \leq|E(T)| \leq n$. When $T=C_{n}, A_{0}=\phi$ and hence $M=\phi ;$ when T is a spanning tree of $G,|M| \leq\left\lfloor\frac{n}{2}\right\rfloor$. These imply $|E(T)|+|M| \leq n-1+\left\lfloor\frac{n}{2}\right\rfloor$.

Note that $s \leq\left\lfloor\frac{n}{3}\right\rfloor$, we have

$$
\begin{aligned}
\sum_{e \in E(G)} f(e) & =|E(T)|+|M|+\sum_{i=1}^{t} \sum_{e \in E\left(H_{i}\right)} f(e)+\sum_{i=1}^{s} \sum_{e \in E\left(C_{r_{i}}\right)} f(e)+\sum_{i=1}^{q} \sum_{e \in E\left(P_{m_{i}}\right)} f(e) \\
& \leq n-1+\left\lfloor\frac{n}{2}\right\rfloor+0+s+0 \leq\left\lfloor\frac{11}{6} n-1\right\rfloor .
\end{aligned}
$$

Therefore, $\gamma_{s}^{\prime}(G) \leq \sum_{e \in E(G)} f(e) \leq\left\lfloor\frac{11}{6} n-1\right\rfloor$. We have completed the proof of Theorem 3 .
In particular, if G is a bipartite graph, then in the proof of Theorem $3, s=0$. So we have
Corollary 3 For any bipartite graph G of order $n, \gamma_{s}^{\prime}(G) \leq\left\lfloor\frac{3}{2} n-1\right\rfloor$.
If a graph G has a 2 -regular spanning subgraph H, then in the proof of Theorem 3, let $T=H$, and hence $M=\phi$. Analogously, we have $\gamma_{s}^{\prime}(G) \leq \sum_{e \in E(G)} f(e) \leq|E(H)|+s \leq n+\left\lfloor\frac{n}{3}\right\rfloor$, where $n=|V(G)|$. Namely, we have

Corollary 4 Let G be a graph of order n ．If G has a 2－regular spanning subgraph，then

$$
\gamma_{s}^{\prime}(G) \leq\left\lfloor\frac{4}{3} n\right\rfloor
$$

3．Some open problems and conjectures

We know from Lemma 1 that $\gamma_{s}^{\prime}(G) \leq \gamma_{L}^{\prime}(G)$ ．A natural problem is
Problem 1 Characterize the graphs which satisfy the equality $\gamma_{s}^{\prime}(G)=\gamma_{L}^{\prime}(G)$ ．
Although in［2］we have determined the exact value of $\psi(m)=\min \left\{\gamma_{s}^{\prime}(G) \mid G\right.$ is a graph of size $m\}$ for all positive integers m ，it seems more difficult to solve the following

Problem 2 $2^{[2]}$ Determine the exact value of $g(n)=\min \left\{\gamma_{s}^{\prime}(G) \mid G\right.$ is a graph of order $\left.n\right\}$ for every positive integer n ．

Conjecture 1 For any graph G of order $n(n \geq 1), \gamma_{s}^{\prime}(G) \leq n-1$ ．
If it is true，the super bound is the best possible for odd n ．For example，let G be the subdivision of the star $K_{1, \frac{n-1}{2}}$ ，then clearly，$\gamma_{s}^{\prime}(G)=|E(G)|=n-1$ ．（The subdivision of a graph G is the graph obtained from G by subdividing each edge of G exactly once．）

References：

［1］BONDY J A，MURTY V S R．Graph Theory with Applications［M］．Elsevier，Amsterdam， 1976.
［2］XU Bao－gen．On signed edge domination numbers of graphs［J］．Discrete Math．，2001，239：179－189．
［3］ZHANG Zhong－fu，XU Bao－gen，LI Yin－zhen．et al．A note on the lower bounds of signed domination number of a graph［J］．Discrete Math．，1999，195：295－298．
［4］COCKAYNE E J，MYNHART C M．On a generalization of signed domination functions of graphs［J］．Ars． Combin．，1996，43：235－245．
［5］XU Bao－gen，ZHOU Shang－chao．Characterization of connected graphs with maximum domination number ［J］．J．Math．Res．Exposition，2000，20（4）：523－528．
［6］XU Bao－gen．On minus domination and signed domination in graphs［J］．J．Math．Res．Exposition，2003， 23（4）：586－590．
［7］XU Bao－gen，COCKAYNE E J，HAYNES T W．et al．Extremal graphs for inequalities involving domination parameters［J］．Discrete Math．，2000，216：1－10．
［8］XU Bao－gen．On signed edge domination numbers of graphs［J］．J．East China Jiaotong Univ．，2003，2： 102－105．（in Chinese）

关于图符号的边控制

徐保根
（华东交通大学数学系，江西 南昌 330013 ）

摘要：设 $\gamma_{s}^{\prime}(G)$ 和 $\gamma_{l}^{\prime}(G)$ 分别表示图 G 的符号边和局部符号边控制数，本文主要证明了：对任何 n 阶图 $G(n \geq 4)$ ，均有 $\gamma_{s}^{\prime}(G) \leq\left\lfloor\frac{11}{6} n-1\right\rfloor$ 和 $\gamma_{l}^{\prime}(G) \leq 2 n-4$ 成立，并提出了若干问题和猜想．

关键词：局部符号边控制函数；局部符号边控制数；符号边控制函数；符号边控制数．

