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Abstract: EI-Mikkawy M obtained that the symmetric Pascal matrix @), and the Vander-
monde matrix V;, are connected by the equation @, = T, V., where T,, is a stochastic matrix
in [1]. In this paper, a decomposition of the matrix T}, is given via the Stirling matrix of the
first kind, and a recurrence relation of the elements of the matrix 7}, is obtained, so an open
problem proposed by EI—Mikkawy[z] is solved. Some combinatorial identities are also given.
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1. Introduction

The lower triangular Pascal matrix P,, and the symmetric Pascal matrix @),, which derived
naturally from the Pascal triangle were studied by many authors in recent years. In [3-5], the
authors studied the generalized Pascal matrices and gave some combinatorial identities. The
Stirling matrix of the first kind s, and the Stirling matrix of the second kind S,, obtained
from the Stirling numbers of the first kind s(7,j) and of the second kind S(i,j) respectively
have been discussed recently!®. In [1], the author investigated a connection between the Pascal,
Vandermonde and Stirling matrices, and showed by using MAPLE that a stochastic matrix T,
links together these matrices. In [2], the author raised that to generate the elements of the matrix
T, for any arbitray n using only one or two recurrence relations is an open question. In this
paper, some relations between the Stirling matrix S,, and the Pascal matrix P, are obtained,
and a factorization of the matrix T, ! is given by the using the Stirling matrix of the second
kind. Furthermore, a decomposition of the matrix 75, is given via the Stirling matrix of the first
kind, and a recurrence relation of the elements of the matrix 7;, is obtained, so an open problem
proposed by EI-Mikkawy!?! is solved. As a consequence we obtain some combinatorial identities

related to the Stirling numbers.

2. Preliminary results

Let n, k be nonnegative integers and n > k, the Stirling numbers of the first kind s(n, k) and
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of the second kind S(n, k) can be defined as the coefficients in the following expansion of a variable
2 (2)n =D g s(n, k)zk and 2 = 31 S(n, k)(z)k, where (2) = z(z—1)(z—2) - (x—k+1)
for any integer k > 0, and (z)o = 1. s(k, k) = S(k,k) =1 for k > 0, and s(k,0) = S(k,0) = 0 for
k> 0.

It is known that the Stirling numbers have the following recurrence relations!”
s(n,k)=s(n—1,k—1)— (n—1)s(n—1,k), (1)

S(n,k)=8n—-1,k—1)+kS(n—1,k). (2)

The n x n Pascal matrix P, is defined by®? P, = [(;—j)]lgi,jgm where (;) =0,ifi < j.
It is known that P, ! = J,,P,J,, where J,, = diag(1,—1,---,(=1)""1).

The Stirling matrix of the first kind s, and the Stirling matrix of the second kind 5,, are
defined respectively by s, = [s(Z,7)]1<ij<n, Sn = [S(%, J)]1<i,j<n, Where s(i,7) = 0,5(i,5) =0
if i < j. It is easy to see that S,s, = I,,, S, ! = s,.

Lemma 19 S, = P, ([1]® S,_1); s, = (1] © s5,—1)P; "

Lemma 2[° Define V,, be the n x n Vandermonde matrix by V,,(i,j) = j°*,1 < 4,5 < n. Then
V= SpD, PY where D,, = diag(0!,1!,2!,---, (n — 1)!).

Lemma 3! Let Q,, = [(iJ;le)]lSi’jgn be the n x n symmetric Pascal matrix, then we have

following factorization

Denote T,, = P,D;'s,, = P,D; ([1] ® s,_1) P, !, then
T, =8,D, P, = Po([1] ® Sp—1)Dn P, Y,

and T, links the symmetric Pascal matrix ), and the Vandermonde matrix V,, by Q, = T, V,,.

3. Main results

Lemma 4" V, = ((1]® S,,_1)DnA,PT, where A,, is the n x n lower triangular matrix whose

n?

(i,7)— entry is (;J) if i > j and otherwise Is 0.
Lemma 5 AP, ' = ([1]®oP, ) =(1]®P,_1)" "
Proof

(AnP, )iy j) = Anliyi — )P (i — 1,5) + An(i, i) P, (i, )

=ty () e (5T
-0 ((20)- ()

— (-~ (125) = e )
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Lemma 6 T;' = ([1]® S,_1)D.([1] ® P, 1)).

Proof By Lemmas 3, 4 and 5, we have

S =VaQy! = (1@ Su-1) DnAn P ((Py) TPy
=([1]e& Sn—l)DnAnPn_l = ([1] ® Sn—1)Dn([1] ® Pill)'

Lemma 7 Foreachi,j=1,2,3,---,n,i > j, we have
S(i, §)j! = i(_1)i—k5(i k)k! =1 (3)
) = ) j_l

Proof For a fixed positive integer j, we prove the statement by induction on i. For i = j, the
statement holds since the right hand of (3) equals (—l)j*jS(j,j)j!(j::}) = 5(5,7)7!, it is exact
the left hand of (3). Suppose it holds for < i, and we want to prove it for ¢ + 1. Using the

recurrence relation (2) and the induction hypothesis, we obtain

S(i+1,5)5! = 518G, 5 = 1) + 55, 5))

i

k=j—1 k=j

_]Z lkSzk)k'( )—I—]Z 1)=*8(, (k_D

k=j—1 J—

that is S(i + 1,4)j! = j Spy_y (=158 (0, )N (23) + 5 She; (1) FS G, )R (BTY)
On the other hand,

it+1 i+1
> (=1)HTES (41, k)kv(];_D =) (=) &S, k) + S(i, k — ))k!(’jj)
k=j k=3
i+1 i+1
_ i+1-k g (; k—1 _qyitl—h g g — k-1
,;( 1) S(,k)k!k(j_1>+;( ) S(i,k 1)k:!(j_1>
_ i i+1—k i k—1 i+1_ i+1—k ik — k—1
_H( 1) S(i, k)k'k(]_1>+;( 1) S(i, k 1)k!<j_1>
I i i—k i k—1 : 1\i—t i t
= tsenk(f1) « 3 comiseones ()

k=j
:ji( 1)"kS(i, k ( D Z Z’“Szkk‘(kﬁ—j)(];_i)—i—

k=3 k=3

(=1)"9H18 3, 5 —1)5! + i(—l)i_kS(i, k)E!(k 4 1) ( . g )

k=j g1
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i

:jk ‘(—l)i_’“S(i,k)k!<I; B D+

=J

(S - 1 3G (e ) -ee(G00))

k=j g1

=3 3 (1) + UG - it 3D s k(5 )

1

oy (—1)“‘“5(@@/{( )szl st )<k'_;)'

k=3 J=
Therefore, S(i + 1,7)7! ZHl (—1)i*1=kS(Gi+1 k)k'(k 1). This completes the proof.
Using Lemma 7 and considering the matrix equality, we obtain the following results.

Theorem 1 Sn— I S JnPy andS P l=1, S Jy, where Sn—S diag(1,2!,---, n!).

Theorem 2 The matrix T,, ! has the following decomposition and properties
(a) T,'=Ju(lJ® g’n—l)Jm
(b) T, 5) = (=1)"778(i — 1,7 = 1)(j — 1)}
(c) T,M(i,5) = [T, (i - 1,7 = 1) =T, (i = 1,/)](j — 1).

Proof (a) Using Lemma 6 and Theorem 1, we have
Tt = (1)@ Su)Du(l1] & P4 = (1@ Sa-a)([1] @ )
1@ (Sn-1 Pity) = 1@ (Jn-1 Sn1 Jn1) = Jn([11® Sn-1)n

(b) From (a), we have

T710,5) = (Ja([1® Sue1)Jn) (i, §) = (—1)798( — 1,5 — 1)(j — 1))

(¢) From (b) and the recurrence relation (2), we obtain

[T, (=1, -1) =T, (i —1,/)]( —1)

(—1)"7S(i -2, -2)(G—2)! = (-1)" TS -2, - DG -G - 1)
DG =28 —2,5-2)+S(i—2,j -G -1 - 1)
DG —DIS(i— 1,5 — 1) =T, (4, 4).

3

[
(=
(=

EI-Mikkawy!?! pointed out that to generate the elements of the matrix T}, for any arbitray

n using only one or two recurrence relations is an open question. We are now in a position to
give a answer to this problem.

Theorem 3 The matrix T,, has the following decomposition and properties
(2) T =JuDy ([ @ 50-1)Jn;
(b) Tn(i,j) = (_1)1'*1'%.

(SO,
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(c) T, is a stochastic matrix;
(d) Tn(i,§) = 73 Toli = 1,5 = 1) + 53 Tu(i = 1)
Proof (a) From Theorem 2 (a), T,;! = J,([1]® S 1)Jn, o

T, = (Jn([l]@ g'n—l)Jn)_l = (Jn([l] D Sn—l)Dan)_l = Janl([l] @ Sn—l)Jm

(b) By (a), we have T (i,§) = (Ju Dy ([1] & sn-1)Ju)(6,5) = (—1)'~7 22
(c) Since >, _,(=1)*s(i, k) = (—1)%! , we have

zTu N N m_l.z -1

_ S 1)k tHlg( — G i—1) =
_(i—l)!;( 1) ( Lk)_(i—l)!( 1)( n=1.

Therefore, T), is a stochastic matrix.

(d) From (b) and recurrence relation (1), we have

, — 2
To(i = 1,j = 1)+ —=Tu(i — 1,5))

i .
:ii1[(—1)1'*7-5(1'—2,']'—2)@+(Z'_2)( l)z j—1 (1_2]—1)(2_12)!]
:ﬁ(_l)i_jﬁ[s(i—27j—2)—(i—2)s(i_2,j_1)]

i—jg 1
— (1) st~ L - D
= Tn(i,J)

4. Some combinatorial identities

By applying the two different representations: T, ! = S, D,,P, 1, and T,;! = J,,([1]® Sn_1
)Jn, the following results hold

JoD; N (1] @ sp1)Jn = PuD; sy, Dytsy = Py tdn D (1] @ spo1)dn; (5)
Qn=JuD; ([1]® 80-1)n Vi, Po=JuD; (1] @ 8p-1)JnSnDp. (6)

Considering the matrix equality (4), we have the following identities for the Stirling numbers
of the second kind

i

S(—1,7 =1 =)= (=1)"*S@ k) (k- 1)! (I; _ i) @
k=j
SG,5) G - D=3 (=1)"*SG — 1,k - 1)(k — 1)! (];: i) (8)

k=j
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Using (5) yields the following identities for the Stirling numbers of the first kind

isli=1j=1) = (i-1Y s(k.j)
(=1) (i —1)! _kz_:j<k—1) (k—1) )
s(,7) i (i—1\s(k—1,j—1)
i1 _kz_:j(_l) <k—1) = (10)
From (6) we obtain the following identities
<“;J_‘1 2> - (i%l),Z(_ni*ks(i_ 1,k — 1)1, (11)
T k=1
(;:D =G i!l), > (—1)7Fs(i — 1,k = 1)S(k, ). (12)
Tk

=J
In particular for j = 1,2, the identity (3) gives

i

> (=1 S, Rk =1, (13)
k=1
i(—l)i_kS(L BNk —1) =2 — 2. (14)

k=2

In particular for j = 1,2, 3, the identity (7) gives

%

> (=1)ES (L, k) (k= 1) =0, (15)
k=1
zl:(—l)i"“S(Lk)(k— Di(k—1) =1, (16)
k=2
i(—w—ksu, k)(k — 1)!W =271 2, (17)
k=3
In particular for j = 1,2, the identity (8) gives
zz:(—l)i’kS(i—Lk—l)(k— =1, (18)
k=1
i(—l)i_kS(i —LEk-D(k-DI(k—1)=2"1 -1 (19)

k=2

In particular for j = 2, the identity (9) gives

Lfi—1) s(k2) 1
Z(k—l)(k—l)!_i—l' (20)

k=2
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In particular for j = 2, the identity (10) gives

K3 .
o) — (i Sy (T L
s(i,2) = (i — 1)1y (~1) (k:—1) S (21)
k=2
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