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Abstract We proved that there exists a family of complete oriented minimal surfaces in R
3 with

finite total curvature −4nπ, each of which has 0 genus and two ends, and both of the ends have

winding order n, where n ∈ N, and discussed the symmetric property for special parameters.
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1. Introduction

It is generally admitted that the investigations about minimal surfaces started with Lagrange

in 1760. Since then, great progress has been made in the classical theory of minimal surfaces in

R
3. Before Costa’s surface occurs, the plane, the catenoid and the helicoid were the only known

embedded minimal surfaces, the others were immersed.

Chern-Osserman [1] proved a fundamental classical result to complete minimal surfaces of

finite total curvature, which states that such a surface M is conformally equivalent to compact

Riemann surface M̄ punctured in a finite number of points. Furthermore, the punctured points

coincide with the ends of M . Embedded minimal surfaces have many remarkable properties,

such as, each end is itself intersection-free, and the limiting tangent planes (specifically the plane

orthogonal to the limiting value of the Gauss map at the end) are parallel with each other, so

that the the Gauss map at the ends have at most two directions. Since 1980s, great progress

has been made in minimal surfaces with embedded ends. Using the elliptic functions, Costa

[5] exhibited an example of a complete minimal immersion of a torus minus three points in R3,

and proved these three ends are embedded. Later, Hoffman [9] and Meeks [4] proved that the

whole Costa’s surface is in fact embedded, and constructed a large family of embedded minimal

surfaces which similar to Costa’s surface, and the limiting surface of the family is planar and

catenoid types. Xiao [10] proved that there exist preduo-embedded minimal surfaces with k ends

in R3 for any k 6= 3, 4, 5.
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In 1982, Chen-Gackstatter [8] constructed surfaces which have one Enneper type end and are

of genus one and genus two, whose end’s winding order are both 3. In 1994, Sato [2] constructed

a family of complete minimal surfaces with genus jk and a Enneper type end with winding order

2k + 1, for all j, k ∈ N. Lopez [6] gave the classification of complete oriented minimal surfaces

with total curvature greater than −12π, which included a family of genus zero examples with

two ends whose winding order are both two.

The aim of this paper is to construct a family of complete immersion minimal surfaces with

higher winding order. Moreover, we present computer-generated images. Actually we have the

following result.

Therorem 5 There exists a family of complete oriented minimal surfaces in R3 with finite total

curvature −4nπ, each of which has 0 genus and two ends, and both of the ends have winding

order n, where n ∈ N.

We denote Mn as the surfaces described in the Theorem 5.

In Section 2, we summarize some basic results about the minimal surface theory. In Section

3, we construct one of Lopez’s examples, and discuss its symmetric property. In Section 4, we

present the Weierstrass data for the case 1 ≤ n ≤ 5, then proved Theorem 5. Finally we discuss

the symmetric property of Mn for special parameters.

At the end of this section, we present some computer-generated images of the examples

described in Theorem 5, viewing from different directions. These images were produced by

Zhanchang Zhang at Dalian University of Technology, using Java3D.

Figure 1 Surface M1 (Catenoid) Figure 2 Another form of Surface M2

2. Basic facts

We begin by stating Weierstrass Representation Theorem (say WR-Theorem briefly).

Therorem 1 ([3]) Let M be a Riemann surface, η a holomorphic one-form on M and g : M →

C ∪ {∞} a meromorphic function. Consider the vector valued one-form

α = (α1, α2, α3) =
(1

2
(1 − g2)η,

i

2
(1 + g2)η, gη

)

. (1)
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Then

X(p) = Re

∫ p

p0

α (2)

is a conformal minimal immersion which is well-defined on M and regular, provided that

(a) No component of α in (1) has a real period on M ;

(b) The poles of g coincide with zeros of η and the order of a pole of g if precisely half of

the order of a zero of η.

Conversely, every regular conformal minimal immersion X : M → R3 can be expressed (up

to translation) in the form (2) for some meromorphic function g and holomorphic one-form η.

Moreover, g is the stereographic projection to C ∪ {∞} of the Gauss map N : M → S2 of X .

Remark 1 {g, η} is called the Weierstrass data.

(a) (b)

Figure 3 (a) Half of the surface M2; (b) Surface M4 (not symmetric)

(c) (d)

Figure 4 Surface M2

With WR-Theorem, the first fundamental form and Gaussian curvature of minimal immersion

can be easily presented by

ds2 =
1

4
|f |2(1 + |g|2)2|dz|2 (3)

K = −
[ 4|g′|

|f |(1 + |g|2)2

]2

. (4)

Therorem 2 ([7]) Let X : M → R3 be a complete conformal minimal immersion with finite

total curvature. Then:
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(a) M is conformal diffeomorphic to Mk\{p1, . . . , pr} where Mk is a closed Riemann surface

of genus k and p1, . . . , pr are points in Mk, r > 1;

(b) X is proper;

(c) The Gauss map N : M → S2, which is meromorphic on M , extends to a meromorphic

function on Mk; the holomorphic one-form η extends to a meromorphic one-form on Mk.

(d) If the Weierstrass data g covers S2(1) m times, then the total curvature is
∫

M

KdA = −4mπ (5)

and satisfies
∫

M

KdA 6 −4π(k + r − 1) (6)

where k and r are integers defined in Statement (a).

Suppose that X : M → R3 is a complete regular conformal minimal immersion with finite

total curvature where M = Mk\{p1, . . . , pr}. Assume that X does not factor through another

minimal immersion as a covering space.

Let Dj be a punctured neighborhood of pj ∈ Mk, for each j = 1, . . . , r. We will refer to

X(Dj) = Ej as an end of M , and denote by YR,j , the intersection of Ej with the sphere of radius

R with center at the origin. Let XR,j be the radial projection of YR,j onto S2(1), i.e.,

XR,j =
1

R
YR,j . (7)

The winding order I of end and the relations between I and the total curvature are stated

in the following theorem:

Therorem 3 ([3]) Let XR,j be defined as in (7). Then

(a) XR,j converges smoothly as R → ∞ to a great circle, covered an integral number of

times;

(b) Let Ij be the multiplicity of the great circle limR→∞ XR,j , which was called winding

order of the jth end. Then
∫

M

KdA = 2π
(

2(1 − k) − r −

r
∑

j=1

Ij

)

= 2π
(

χ(M) −

r
∑

j=1

Ij

)

(8)

where χ(M) represents the Euler characteristic of M .

3. Construction of M2

In [6], Lopez present the following results.

Therorem 4 ([6]) Let g, η be the Weierstrass data of M2, and bg(p) is the branch number

of g at p. Suppose that I1 = I2 = 2, bg(∞) = bg(0) = 1. Then, up to change of parameter in

C ∪ {∞}, homothety and rigid motion in R3, M2 has the following Weierstrass data:

g(z) = Bz2, η =
1

z3
dz



Construction of minimal surfaces with special type ends 1001

where B ∈ R\{0}.

In this section, we will construct M2 precisely. We denote X : M → R3 be such a minimal

immersion, where M = C\{0}, and g, η is the Weierstrass data of X .

Based on WR-Theorem, we denote

αk = φkdz, k = 1, 2, 3. (9)

Then

α2
1 + α2

2 + α2
3 = 0, i.e., locally φ2

1 + φ2
2 + φ2

3 = 0 (10)

and α1, α2, α3 have not real period. Hence, in the generalized complex plane,

Re sz=0(αk) = −Re sz=∞(αk), k = 1, 2, 3, (11)

and both of them are real numbers. Suppose that φk has the following form

φk =

∞
∑

j=−∞

ckjz
j, k = 1, 2, 3. (12)

where ckj ∈ C are constant numbers.

(e) (f)

Figure 5 Surface M3

(g) (h)

Figure 6 Surface M4

We assume αk, k = 1, 2, 3, have poles at p. Denote Ordpαk, k = 1, 2, 3, to be the pole’s order

of αk at p. Meeks and Jorge [3] proved the following result:
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Lemma 1 ([3]) Let pj be the point corresponding to an end of M . Denote by Ij the winding

order of the end. Then

Ij + 1 = max{Ordpj
αk, k = 1, 2, 3}. (13)

Assume I1 = I2 = 2. From (13) we have ckj = 0, for all j > 1 and j < −3, and exist non-zero

numbers in {ck1} and in {ck,−3}. So we can represent φk as follows

φk = akz + bk + ckz−1 + dkz−2 + ekz−3 (14)

where exist non-zero numbers in {ak} and in {ek}.

In general, the period problems played an important role in construction of minimal surfaces.

From (11) we know that αk has no real period if and only if Re sz=0(αk) ∈ R, k = 1, 2, 3.

Lemma 2 αk has no real period if and only if every ck ∈ R, for k = 1, 2, 3.

Since z2, z, 1, . . . , z−6 are liner independent, it follows from (9) that

a2
1 + a2

2 + a2
3 = 0,

a1b1 + a2b2 + a3b3 = 0,

2a1c1 + b2
1 + 2a2c2 + b2

2 + 2a3c3 + b2
3 = 0,

a1d1 + b1c1 + a2d2 + b2c2 + a3d3 + b3c3 = 0,

2a1e1 + 2b1d1 + c2
1 + 2a2e2 + 2b2d2 + c2

2 + 2a3e3 + 2b3d3 + c2
3 = 0,

b1e1 + c1d1 + b2e2 + c2d2 + b3e3 + c3d3 = 0,

2c1e1 + d2
1 + 2c2e2 + d2

2 + 2c3e3 + d2
3 = 0,

d1e1 + d2e2 + d3e3 = 0,

e2
1 + e2

2 + e2
3 = 0.

(15)

Form (8), the total curvature of X is

C(M) = 2π(χ(M) − (I1 + I2)) = −8π

and from (5), g(z) covers S2(1) two times. So we can set

g(z) = g1z
2 + g2z + g3 (16)

where g1 6= 0.

If α1 ≡ iα2, then from (10) we have α3 = 0 and the resulting minimal surface is a plane. We

suppose that α1 6= iα2. From (1), we have

η(z) = α1 − iα2, g(z) =
α3

α1 − iα2
. (17)

From (16) and (17), we have

g1z
2 + g2z + g3 =

p3(z)

p1(z) − ip2(z)
, (18)
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where pk(z) = akz4 + bkz3 + ckz2 + dkz + ek, k = 1, 2, 3. It follows from (18) that

a2 = −ia1,

b2 = −ib1,

g1(c1 − ic2) = a3,

g2(c1 − ic2) + g1(d1 − id2) = b3,

g3(c1 − ic2) + g2(d1 − id2) + g1(e1 − ie2) = c3,

g3(d1 − id2) + g2(e1 − ie2) = d3,

g3(e1 − ie2) = e3.

(19)

By (15) and (19), we have

a3 = 0. (20)

According to Lemma 2, we have c1, c2 ∈ R, and from (19), we have

c1 = c2 = 0. (21)

By (15), (19) and (20), we have

b3 = 0, d2 = −id1. (22)

From (19) and (20), a1 6= 0. For convenient, let a1 = 1. Now, (15) can be represented as

2(e1 − ie2) + c2
3 = 0,

b1(e1 − ie2) + c3d3 = 0,

2c3e3 + d2
3 = 0,

d1(e1 − ie2) + d3e3 = 0,

e2
1 + e2

2 + e2
3 = 0.

(23)

There are seven variables in (23), we want to express five of them by the other two ones. Let

c3, d3 be the uncertain ones. With the aid of computer, we can give a solution to (23), and all

of them are rational forms.

b1 =
2d3

c3
, d1 = −

d3
3

c3
3

, e1 =
−c6

3 + d4
3

4c4
3

, e2 = −
i(c6

3 + d4
3)

4c4
3

, e3 = −
d2
3

2c3
. (24)

From (17), the Weierstrass data of X can be represented by

g(z) = −
2z2

c3
−

2d3z

c2
3

+
d2
3

c3
3

, η(z) = −
c2
3

2z3
dz. (25)

Since g(z) and η(z) have poles at 0 and ∞, we can easily conclude that X is complete. As

we know, X is regular if and only if {αk, k = 1, 2, 3} have no real periods on M . From Lemma

2, we know that X is regular if and only if c3 ∈ R, which has no relations with d3.

Now, with different choice of c3 ∈ R, c3 6= 0, and d3 ∈ C, we have a family of complete

oriented minimal immersion X = (x1, x2, x3) : C\{∞} → R3, where

xk = Re

∫ p

p0

φk(z)dz, k = 1, 2, 3,
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and

φ1 = 2t + z −
t3

z2
+

t4 − s2

4z3
, iφ2 = 2t + z −

t3

z2
+

t4 + s2

4z3
, φ3 =

s

z
+

st

z2
−

st2

2z3
, (26)

where s = c3, t = d3/c3.

It is easy to verify that X has two ends, and the winding order of each end is 2. Therefore

we got M2.

Let z = u + iv, where u, v ∈ R. From (3) and (4), with direct calculation, we have

ds2 =
λ2

42(u2 + v2)3
(du2 + dv2), (27)

K =
45s2

−λ4
(u2 + v2)3(u2 + v2 + tu + t2/4), (28)

where λ = 4(u2 + v2)2 + 8tu(u2 + v2) + 8t2v2 − 4t3u + s2 + t4.

Observing Figure 2 carefully, we find that it looks like the catenoid. In fact, Figure 5 is

generated from Figure 2 via symmetrization, and we have the following result.

Proposition 1 Considering the surface M2. If d3 is a real or a purely imaginary number, then

M2 is symmetric with the symmetry plane x2 = c ∈ R, where c is a constant.

Proof Let z = u + iv. From (26), with direct calculation, we have

Case 1 d3 is a real number. It follows that

x1 =
(1

2
+

s2 − t4

8(u2 + v2)2

)

(u2 − v2) + u
(

2t +
t3

u2 + v2

)

+ C1,

x2 =
(

1 +
s2 + 4t4

4(u2 + v2)2

)

uv + v
(

2t −
t3

u2 + v2

)

+ C2,

x3 =
s

2
log(u2 + v2) +

st2(u2 − v2)

4(u2 + v2)2
−

stu

u2 + v2
+ C3,

where Ck ∈ R, k = 1, 2, 3, are constant numbers.

Case 2 d3 is a purely imaginary number. It follows that

x1 =
(1

2
+

s2 − t4

8(u2 + v2)2

)

(u2 − v2) + iv
(

2t −
t3

u2 + v2

)

+ C4,

x2 =
(

1 +
s2 + 4t4

4(u2 + v2)2

)

uv − iu
(

2t +
t3

u2 + v2

)

+ C5,

x3 =
s

2
log(u2 + v2) +

st2(u2 − v2)

4(u2 + v2)2
+

istv

u2 + v2
+ C6,

where Ci ∈ R, i = 4, 5, 6, are constant numbers. Clearly, in the first case, we have

x1(u + iv) = x1(u − iv),

x2(u + iv) + x2(u − iv) = 2C2,

x3(u + iv) = x3(u − iv)
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and in the second case, we have

x1(u + iv) = x1(−u + iv),

x2(u + iv) + x2(−u + iv) = 2C4,

x3(u + iv) = x3(−u + iv).

So the symmetry plane of M2 is x2 = C2 (or C4). This proved the proposition. 2

Obviously, M2 is symmetric (See Figures 4–6), and the ends of M2 is different from Enneper

type ones.

4. The Weierstrass data of Mn(n > 1)

With the same method of construction as M2, we can get the Weierstrass data of Mn easily,

1 ≤ n ≤ 5. We just list them below, where a ∈ R, a 6= 0, bk ∈ C for 1 ≤ k ≤ 4.

η g(z)

M1 −
a2

2z2
dz −

2

a
z

M2 −
a2

2z3
dz −

2

a
z2 −

2b1

a2
z +

b2
1

a3

M3 −
a2

2z4
dz −

2

a
z3 −

2b2

a2
z2 −

2b1

a2
z +

2b1b2

a3

M4 −
a2

2z5
dz −

2

a
z4 −

2b3

a2
z3 −

2b2

a2
z2 −

2b1

a2
z +

2b1b3 + b2
2

a3

M5 −
a2

2z6
dz −

2

a
z5 −

2b4

a2
z4 −

2b3

a2
z3 −

2b2

a2
z2 −

2b1

a2
z +

2b1b4 + 2b2b3

a3

Table 1 The Weierstrass data of Mn, n = 1, 2, 3, 4, 5

As we have seen, for Mn, the number of uncertain variables is n. In fact, much like in (19),

the number of equations is 2n + 1, but with 3n + 1 variables. As a sequence, we have

Proposition 2 Mn(n > 1) has the following Weierstrass data:


















η = −
a2

2zn+1
dz,

g(z) = −
2

a
zn −

n−1
∑

j=1

2bj

a2
zj +

1

a3

n−1
∑

j=1

bjbn−j

(29)

where a ∈ R, a 6= 0, and b1, b2, . . . , bn−1 ∈ C, and the total curvature of Mn is −4nπ.

Proof The information about the poles and zeros of g(z) and η is as follows:

z 0 ∞

g(z) 0n ∞n

η ∞n+1 0n−1

Table 2 The degree of poles and zeros of g(z) and η
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So we can take M = C\{0}.

From (1) and (29), with direct calculation, we get the following:

· · · zn−1 · · · z−1 · · · z−(n+1) · · ·

φ1 0 1 · · · 0 · · · −
a2

4

(

1 − (
1

a3

n−1
∑

j=1

bjbn−j)
2
)

0

φ2 0 −i · · · 0 · · · −
ia2

4

(

1 + (
1

a3

n−1
∑

j=1

bjbn−j)
2
)

0

φ3 0 0 · · · a · · · −
1

2a

n−1
∑

j=1

bjbn−j 0

Table 3 The related coefficients of φk, k = 1, 2, 3.

We want to apply Theorem 2 to obtain a minimal immersion

X = (x1, x2, x3) : M → R
3

where

xk = Re

∫ z

z0

φkdz, k = 1, 2, 3.

For this purpose, we must show that φkdz (k = 1, 2, 3) has no real periods on M . As we seen

in Table 3,

Re sz=0(φk) = −Re sz=∞(φk) ∈ R, k = 1, 2, 3.

It is equivalent to φkdz have no real periods on M . Obviously, at least one of

−
a2

4

(

1 − (
1

a3

n−1
∑

j=1

bjbn−j)
2
)

and −
ia2

4

(

1 + (
1

a3

n−1
∑

j=1

bjbn−j)
2
)

is non-zero number, so that

max{Ord0φkdz} = max{Ord∞φkdz} = n + 1, k = 1, 2, 3.

From Lemma 1 we know that the winding order of the two ends are both n.

Since g(z) and η have poles at 0 and ∞, we easily conclude that X is complete.

Now we know that X is Mn, and from (8), the total curvature of Mn is

C(Mn) = 2π(0 −
2

∑

i=1

n) = −4nπ.

This proved the proposition. 2

Now, summarize the above result, we have

Therorem 5 There exists a family of complete oriented minimal surfaces in R3 with finite total

curvature −4nπ, each of which has 0 genus and two ends, and both of the ends have winding

order n, where n ∈ N.
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Remark 2 Note that the form of φk, the coefficient of η can be reduced to 1, and with change

of parameters, the Weierstrass date of Mn can be represented by

η =
1

zn+1
dz, g(z) = azn +

n−1
∑

j=1

bjz
j −

1

2a

n−1
∑

j=1

bjbn−j (30)

where a ∈ R, a 6= 0, b1, b2, . . . , bn−1 ∈ C.

Similar to Proposition 1, we have the following

Proposition 3 Considering the Weierstrass data (30). If bk ∈ R, 1 6 k 6 n − 1, then Mn is

symmetric with the symmetry plane x2 = c ∈ R, where c is a constant.

Proof Let z = u + iv, fm(z) = zm, m ∈ Z, and u, v ∈ R. fm(z) have the following properties:

Re(fm(z)) =























2k≤m
∑

k=0

C2k
m (−1)kv2kum−2k, m > 0;

1

(u2 + v2)m

2k≤m
∑

k=0

C2k
m (−1)kv2kum−2k, m < 0.

Im(fm(z)) =























2k<m
∑

k=0

C2k+1
m (−1)kv2k+1um−2k−1, m > 0;

−1

(u2 + v2)m

2k<m
∑

k=0

C2k
m (−1)kv2kum−2k−1, m < 0.

It is easy to see that

Re(fm(u + iv)) = Re(fm(u − iv)), Re(fm(u + iv)) + Re(fm(u − iv)) = 0.

From (1) and (30), after direct calculation, we know that xk’s have the following form:

x1 =
n

∑

m=−n

r1mRe(fm(z)) + C1,

x2 =
n

∑

m=−n

r2mIm(fm(z)) + C2,

x3 =

−1
∑

m=−n

r3mRe(fm(z)) + log
√

u2 + v2 + C3,

where the coefficients of Re(fm(z)) and Im(fm(z)) are all real numbers, and Ck, k = 1, 2, 3, are

constant numbers. Using the properties of fm(z), we have

x1(u, v) = x1(u,−v), x2(u, v) + x2(u,−v) = 2C2, x3(u, v) = x3(u,−v).

Now we can see, the symmetry plane of Mn is x2 = C2. This proved the proposition. 2

Remark 3 In general, the image of Mn(n > 2) is not symmetric (See Figure 3 (a)).
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