Structure of Two-Groups Associative Rings*

Xu Zhongming

(Zhejiang Institute of Silk Techology)

Introduction. T. S. Ravisanker and U.S. Shukla [1] introduced the notion of a weak Γ_N -ring A, more general than a ring and a Γ -ring in the sense of Nobusawa, and obtained analogical characterizations of the Jacobson radical for weak Γ_N -rings. It is clear that every Γ -ring A is a weak Γ_N' -ring A for some abelian group Γ' (Theorem 3.1 in [2]). Therefore auther gives consideration to such a fact that A and Γ are equal in the weak Γ_N -ring, moreover there is influence each other between A and Γ . And then, we shall rename a weak Γ_N -ring A to a twogroups associative ring (A, Γ) . Auther obtained analogical characterizations of the Baer lower nil radical and of the Levitzki radical of the ring (A, Γ) in [3] and [4].

In this paper we shall begin the extension of the notions of modules for binary rings to two-groups associative ring, obtaining first some characterizations of primitive two-groups associative rings, and then the classical Chevalley-Jacobson density theorem of binary rings which will be extended to the two-groups associative rings. At the end, defining the Jacobson radical of a two-groups associative ring and getting the analogous results of corresponding part in rings theory.

We refer to [5] for all notions relevant to ring theory. For all other notions to the two-groups associative rings we refer to [3] and [4].

- Preliminaries. Let A and Γ be additive abelian groups, and for all a, b, $c \in A$ and all a, β , $\gamma \in \Gamma$, the following conditions are satisfied.
 - (1) $aab \in A$, $aa\beta \in \Gamma$;
 - (2) (a+b)ac = aac + bac, $a(a+\beta)b = aab + a\beta b$, aa(b+c) = aab + aac, $(a+\beta)ay = aay + \beta ay$, $a(a+b)\beta = aa\beta + ab\beta$, $aa(\beta+y) = aa\beta + aay$;
- (3) $(aab) \beta c \neq a(ab\beta) c = aa(b\beta c)$, $(aa\beta) by = a(a\beta b) = aa(\beta by)$. then we say that A and Γ form a two-groups associative ring, and denoted by ring (A, Γ) , or (A, Γ) . In [1], the ring (A, Γ) is called a weak Γ_N -ring A. Clearly, A is a Γ -ring and Γ an A-ring, and their right operator rings are

^{*} Received Sep. 17, 1987.

denoted by R and \Re respectively. If S, S' are subsets of A and \Re , \Re subsets of Γ , we provide:

- 1. An ordered pair $\langle a, a \rangle \epsilon(S, \mathfrak{G})$ iff $a \in S$, and $a \in \mathfrak{F}$ and we say that $\langle a, a \rangle$ is an element of the set (S, \mathfrak{G}) .
 - 2. $(S, \mathcal{G}) \subseteq (S', \mathcal{G}')$ iff $S \subseteq S'$ and $\mathcal{G} \subseteq \mathcal{G}'$.
 - 3. $(S, \mathfrak{G}) + (S', \mathfrak{G}') = \{ \langle a + a', a + a' \rangle \mid \langle a, a \rangle \in (S, \mathfrak{G}), \langle a', a' \rangle \in (S', \mathfrak{G}') \}.$
 - 4. $(S, G) \cap (S', G') = (S \cap S', G \cap G')$.
 - 5. $S \otimes S' = \{ \sum_{i \in \Lambda} s_i a_i s_i' | s_i \in S, a_i \in \emptyset, s_i' \in S', \Lambda \text{ is finite } \}$,

$$\mathfrak{G} S \mathfrak{G}' = \{ \sum_{j \in \Omega} a_j s_j a_j' | a_j \epsilon \mathfrak{G}, s_j \epsilon S, a_j' \epsilon \mathfrak{G}', \Omega \text{ is finite} \}.$$

etc.

Let I and \mathfrak{F} be abelian subgroups of A and Γ respectively. We called (I,\mathfrak{F}) is subring of a ring (A,Γ) in case $(I\mathfrak{F}I,\mathfrak{F}I\mathfrak{F})\subseteq (I,\mathfrak{F})$. A right (left) ideal of a ring (A,Γ) is a subring (I,\mathfrak{F}) of ring (A,Γ) such that $(I\Gamma A,\mathfrak{F}A\Gamma)$ $(I,\mathfrak{F})((A\Gamma I,\Gamma A\mathfrak{F})\subseteq (I,\mathfrak{F}))$. If (I,\mathfrak{F}) is both a right and a left ideal such that $(A\mathfrak{F}A,\Gamma I\Gamma)\subseteq (I,\mathfrak{F})$, then we say that (I,\mathfrak{F}) is an ideal, or a two-sided ideal of ring (A,Γ) .

Theorem |.| Let (f, φ) be a homomorphism from a ring (A, Γ) onto the ring (A', Γ') , then the kernel (K, \Re) of the homomorphism (f, φ) is an ideal of ring (A, Γ) , and difference ring $(A/K, \Gamma/\Re) \cong (A', \Gamma')$. Conversely, if (K, \Re) is an ideal of a ring (A, Γ) and if f and φ are natural homomorphisms of the additive group A onto the difference group A/K and of the additive group Γ onto the difference group Γ/\Re respectively, then (f, φ) is a homomorphism of the ring (A, Γ) onto the ring $(A/K, \Gamma/\Re)$ with kernel (K, \Re) . (see [3]).

Theorem 1.2 If (I_i, \mathfrak{F}_i) is an ideal of a ring (A, Γ) for i = 1, 2 and $(I_1, \mathfrak{F}_i) \supseteq (I_2, \mathfrak{F}_2)$ then

$$(A,\Gamma)/(I_1,\mathfrak{F}_1) \cong [(A,\Gamma)/(I_2,\mathfrak{F}_2)]/[(I_1,\mathfrak{F}_1)/(I_2,\mathfrak{F}_2)]. \text{ (see [3])}.$$

Theorem 1.3 Let (I, \mathfrak{F}) be an ideal of a ring (A, Γ) . If (S, \mathfrak{F}) is a subring of the ring (A, Γ) then $(I, \mathfrak{F}) \cap (S, \mathfrak{F})$ is an ideal of ring (S, \mathfrak{F}) and

$$(I + S, \mathfrak{F} + \mathfrak{G})/(I,\mathfrak{F}) \cong (S,\mathfrak{G})/(I,\mathfrak{F}) \cap (S,\mathfrak{G}).$$
 (see [3]).

Theorem 1.4 A ring (A, Γ) is isomorphic to a subdirect sum of the ring (A_i, Γ_i) , $i \in \Lambda$ if and only if the ring (A, Γ) contains a class of ideals (I_i, \mathfrak{F}_i) such that $\bigcap_{i \in \Lambda} (I_i, \mathfrak{F}_i) = (0,0)$ and $(A, \Gamma)/(I_i, \mathfrak{F}_i) \cong (A_i, \Gamma_i)$, $i \in \Lambda$. (see [3]).

2. Primitive (wo groups associative ring.

Let (A, Γ) be a two-groups associative ring, then an ordered pair (\mathfrak{M}, M) of additive groups \mathfrak{M} and M is said to be a right (A, Γ) -module if there are mappings $\mathfrak{M} \times A \rightarrow M$ and $M \times \Gamma \rightarrow \mathfrak{M}$ (sending (m', a) and (m, a) to m'a and ma respectively.

tively) such that:

(1)
$$\langle (m_1 + m_2)a, (m'_1 + m'_2)a \rangle = \langle m_1 a + m_2 a, m'_1 a + m'_2 a \rangle$$
$$\langle m(a + \beta), m'(a + b) \rangle = \langle ma + m\beta, m'a + m'b \rangle$$

(2)
$$((ma)b)y, ((m'a)\beta)c = \langle m(aby), m'(a\beta c) \rangle$$

for all $\langle m', m \rangle$, $\langle m'_1, m_2 \rangle$, $\langle m'_2, m_2 \rangle \in (\mathfrak{M}, M)$ and all $\langle a, a \rangle$, $\langle b, \beta \rangle$, $\langle c, y \rangle \in (A, \Gamma)$.

Henceforth the term module without modifier will always mean right module.

Clearly \mathfrak{M} is both the right module of the A-ring Γ and its right operator ring \mathfrak{R} , M is both the right module of the Γ -ring A and its right operator ring \mathfrak{R} , and denoted by \mathfrak{M}_{Γ} , $\mathfrak{M}_{\mathfrak{R}}$, M_A and M_R respectively (see [6]).

A submodule (\mathfrak{R}, N) of an (A, Γ) -module (\mathfrak{R}, M) is an ordered pair (\mathfrak{R}, N) of subgroups of (\mathfrak{R}, M) such that $(N\Gamma, \mathfrak{R}A) \subseteq (\mathfrak{R}, N)$. Clearly \mathfrak{R} and N is a submodule of $\mathfrak{R}_{\Gamma}(\mathfrak{R}_{\mathfrak{R}})$ and of $M_A(M_R)$ respectively. (\mathfrak{R}, M) is said to be an irreducible (A, Γ) -module if $(M\Gamma, \mathfrak{R}A) \neq (0,0)$ and if there is no proper submodule of (\mathfrak{R}, M) other than (0,0). Evidently $M\Gamma \neq (0)$ and $\mathfrak{R}A \neq (0)$ for the irreducible (A, Γ) -module (\mathfrak{R}, M) . Clearly we have

Lemma 2.1 (\mathfrak{M}, M) is an irreducible (A, Γ) -module if and only if $(m\Gamma, m'A) = (\mathfrak{M}, M)$ for each $(m', m) \in (\mathfrak{M} \setminus (0), M \setminus (0))$.

Proposition 2.1 If (\mathfrak{M}, M) is an (A, Γ) -module, then following statements are equivalent:

- (1) (A, Γ) -module (\mathfrak{M}, M) is irreducible,
- (2) \mathfrak{M}_r and M_A is both irreducible,
- (3) $\mathfrak{M}_{\mathfrak{g}}$ and M_R is both irreducible,
- (4) if $\langle m', m \rangle \in (\mathfrak{M} \setminus (0), M \setminus (0))$ then $(m\Gamma, m'A) = (\mathfrak{M}, M)$,
- (5) if $\langle m', m \rangle \in (\mathfrak{M} \setminus (0), M \setminus (0))$ then there is $\langle a, a \rangle \in (A, \Gamma)$ such that $(m'a\Gamma, maA) = (\mathfrak{M}, M)$,
 - (6) if $\langle m, m \rangle \in (\mathfrak{M} \setminus (0), M \setminus (0))$ then $(m, m, m, m) = (\mathfrak{M}, M)$.

Proof The equivalence of the above six statements is an immediate consequence of the above Lemma 2.1 and [6] Lemma 1.1.

The subset $\operatorname{Ann}(\mathfrak{M}, M) = \{\langle a, a \rangle \in (A, \Gamma) \mid (Ma, \mathfrak{M}a) = (0, 0)\}$ of ring (A, Γ) is called annihilator of the (A, Γ) -module (\mathfrak{M}, M) . It is easy to see that Ann (\mathfrak{M}, M) is an ideal of the ring (A, Γ) . We say that (\mathfrak{M}, M) is a faithful (A, Γ) -module if $\operatorname{Ann}(\mathfrak{M}, M) = (0, 0)$. A ring (A, Γ) is said to be primitive if it has a faithful irreducible (A, Γ) -module.

Proposition 2.2 Let (I, \mathfrak{F}) be an ideal in a ring (A, Γ) . If (\mathfrak{M}, M) is a $(A, \Gamma)/(I, \mathfrak{F})$ —module then (\mathfrak{M}, M) can be considered as an (A, Γ) -module and $(I, \mathfrak{F})\subseteq Ann(\mathfrak{M}, M)$. Conversely, if (\mathfrak{M}, M) is an (A, Γ) -module and $(I, \mathfrak{F})\subseteq Ann(\mathfrak{M}, M)$ then (\mathfrak{M}, M) can be regarded as an $(A, \Gamma)/(I, \mathfrak{F})$ -module.

The proof is established by the quite similar fashion to that for an ordinary

ring (cf. [5]) and so we omit it.

By Proposition 2.1 and 2.2 we have

Lemma 2.2 (A, Γ) -module (\mathfrak{M}, M) is faithful irreducible if and only if \mathfrak{M}_{Γ} and M_{A} are both faithful irreducible.

From Lemma 2.2 and [6] Lemma 1.3, we immediately have the following. **Proposition 2.3** Let (\mathfrak{M}, M) be an (A, Γ) -module, then the following statements are equivalent:

- (1) (\mathfrak{M}, M) is faithful irreduible.
- (2) \mathfrak{M}_r and M_A is both faithful irreducible,
- (3) $\mathfrak{M}_{\mathfrak{R}}$ and M_R is both faithful irreducible and, moreover $((0,0):(A,\Gamma))_r = (0,0)$ where $((0,0):(A,\Gamma))_r = \{\langle x,\xi\rangle\in(A,\Gamma) \mid (A\Gamma x,\Gamma A\xi) = (0,0)\}.$

Thus, we have

Theorem 2.1 Let (A, Γ) be a two-groups associatively ring then the following statements are equivalent:

- (1) ring (A, Γ) is primitive,
- (2) Γ -ring A and A-ring Γ is both primitive,
- (3) \Re and R is both primitive and, moreover $((0,0):(A,\Gamma))_r = (0,0)$ (as above).

If (I, \mathfrak{F}) is a right ideal of the ring (A, Γ) , we call (I, \mathfrak{F}) maximal in case $(I, \mathfrak{F}) \neq (A, \Gamma)$ and, for any right ideal (G, \mathfrak{F}) such that $(G, \mathfrak{F}) \trianglerighteq (I, \mathfrak{F})$ (i.e. $G \supsetneq I$ and $(\mathfrak{F} \supsetneq \mathfrak{F})$, we have $(G, \mathfrak{F}) = (A, \Gamma)$.

We call (I, \mathfrak{F}) regular in case there is $\langle e, \varepsilon \rangle \in (A, \Gamma)$ such that $\langle x - e\varepsilon x, \xi - \varepsilon e\xi \rangle \in (I, \mathfrak{F})$ for every $\langle x, \xi \rangle \in (A, \Gamma)$.

By the definition of regular right ideal of Γ -ring (see [1]), the right ideal (I, \Im) of a ring (A, Γ) is regular if and only if the right ideal I of the Γ -ring A and the right ideal \Im of the A-ring Γ are regular.

Proposition 2.4 If (A, Γ) -module (\mathfrak{M}, M) is irreducible then $\operatorname{Ann}(m', m) = \{\langle x, \xi \rangle \in (A, \Gamma) \mid \langle m\xi, m'x \rangle = \langle 0, 0 \rangle \}$ is a maximal regular right ideal of the ring (A, Γ) for each $\langle m', m \rangle \in (\mathfrak{M} \setminus (0), M \setminus (0))$. Conversely, if (I, \mathfrak{F}) is a maximal regular right ideal of ring (A, Γ) then there is an irreducible (A, Γ) -module (\mathfrak{M}, M) such that $(I, \mathfrak{F}) = \operatorname{Ann}(m', m)$ for some $\langle m', m \rangle \in (\mathfrak{M} \setminus (0), M \setminus (0))$.

Proof Since (\mathfrak{M}, M) is irreducible, we must have that $(m\Gamma, m'A) = (\mathfrak{M}, M)$ for every $(m', m) \in (\mathfrak{M} \setminus (0), M \setminus (0))$. Therefore there is $(e, \varepsilon) \in (A, \Gamma)$ such that $(x - e\varepsilon x, \xi - \varepsilon e\xi) \in Ann(m', m)$. Clearly, the right deal is regular and $Ann(m', m) \subseteq (A, \Gamma)$. Suppose $Ann(m', m) \subseteq (G, \mathfrak{G}) \subseteq (A, \Gamma)$ and (G, \mathfrak{G}) is a right ideal; then $(m'G\Gamma, m'G)$ is a nonzero submodule of (A, Γ) -module (\mathfrak{M}, M) and so m'G = M. Use the same method, we can get $m\mathfrak{G} = \mathfrak{M}$. Thorefore $(m\mathfrak{G}, m'G) = (\mathfrak{M}, M) = (M\Gamma, \mathfrak{M})$. It follows that for each $(x, \xi) \in (A, \Gamma)$, there exists a $(b, \beta) \in (A, \Gamma)$ such

that $\langle x-b, \xi-\beta \rangle \in \text{Ann}(m', m)$. Since $\text{Ann}(m', m) \leq (G, \mathfrak{G})$, $(A, \Gamma) = (G, \mathfrak{G})$ and Ann(m', m) is maximal.

Conversely, let (I, \mathfrak{F}) be a maximal regular right ideal then there exists $\langle e, \varepsilon \rangle \in (A, \Gamma)$ such that $\langle x - e\varepsilon x, \xi - \varepsilon e\xi \rangle \in (I, \mathfrak{F})$ for each $\langle x, \xi \rangle \in (A, \Gamma)$; define $\mathfrak{M} = \Gamma/\mathfrak{F}$ and M = A/I. For (\mathfrak{M}, M) consider the map

$$\langle (m+1)a, (m'+\Im)a \rangle = \langle \varepsilon ma + \Im, \varepsilon m'a + I \rangle$$

for all $\langle m' + \Im, m + I \rangle \in (\mathfrak{M}, M)$ and all $\langle a, a \rangle \in (A, \Gamma)$, and one can easily verify that (\mathfrak{M}, M) is an (A, Γ) -module. It follows that (A, Γ) -module is irreducible and $(I, \Im) = \operatorname{Ann}(\varepsilon + \Im, e + I)$ for $(\varepsilon + \Im, e + I) \in (\mathfrak{M}, M)$.

By proposition 2.4, we have immediately

Å

Theorem 2.2 The ring (A, Γ) is primitive if and only if there is a maximal regular right ideal (I, \Im) such that $((I, \Im): (A, \Gamma))_r = (0, 0)$ where $((I, \Im): (A, \Gamma))_r = \{\langle x, \xi \rangle \in (A, \Gamma) \mid (A\Gamma x, \Gamma A \xi) \subseteq (I, \Im) \}$.

3. The density Let (\mathfrak{M}, M) be an (A, Γ) -module. The additive abelian groups $\operatorname{Hom}(\mathfrak{M}, M)$ and $\operatorname{Hom}(M, \mathfrak{M})$ is a two-groups associative ring with usual homomorphic composition, and denoted by $(\operatorname{Hom}(\mathfrak{M}, M), \operatorname{Hom}(M, \mathfrak{M}))$. For each $\langle a, a \rangle \in (A, \Gamma)$ consider the map $\langle a_r, a_r \rangle : \langle ma_r, m'a_r \rangle = \langle ma_r, m'a \rangle$ for every $\langle m', m \rangle \in (\mathfrak{M}, M)$, and $(A_1, \Gamma_1) = \{\langle a_r, a_r \rangle \mid \langle a, a \rangle \in (A, \Gamma)\}$ is a two-groups associative ring and it is subring of the ring $(\operatorname{Hom}(\mathfrak{M}, M), \operatorname{Hom}(M, \mathfrak{M}))$.

The map $\langle a,a\rangle \mapsto \langle a_r,a_r\rangle$ is easily seen to be a homomorphism from ring (A,Γ) to ring $(\operatorname{Hom}(\mathfrak{M},M),\operatorname{Hom}(M,\mathfrak{M}))$, and ring (A_1,Γ_1) is the image of ring (A,Γ) . It follows that $(A_1,\Gamma_1)\cong (A,\Gamma)/\operatorname{Ann}(\mathfrak{M},M)$. Therefore we have

Lemma 3. If (A, Γ) -module (\mathfrak{M}, M) is faithful, then ring (A, Γ) is isomorphic to the subring (A_1, Γ_1) of the ring $(\text{Hom}(\mathfrak{M}, M), \text{Hom}(M, \mathfrak{M}))$.

For the remainder of this section we assume that (\mathfrak{M}, M) is a faithful irreducible (A, Γ) -module. By Lemma 3.1, any element of ring (A, Γ) can be considered as an element of ring $(\operatorname{Hom}(\mathfrak{M}, M), \operatorname{Hom}(M, \mathfrak{M}))$. By Theorem 2.1 and the classical theory, the right operator ring \mathfrak{R} and R are dense rings of linear transformations of \mathfrak{M} and M respectively. By Shur's lemma, the underlying division rings are given by

 $D_i = \{d_i \in \text{Hom}(\mathfrak{M}, \mathfrak{M}) \mid (m'd)aa = (m'aa)d_i \text{ for all } a \in A, a \in \Gamma \text{ and all } m' \in \mathfrak{M}\},$ and

 $D_2 = \{d_2 \in \text{Hom}(M, M) \mid (md_2) aa = (maa)d_2 \text{ for all } a \in A, a \in \Gamma \text{ and all } m \in M\}$. Lemma 3.2 $D_1 \cong D_2$ (as ring).

Proof Let $\langle m', m \rangle \in (\mathfrak{M} \setminus (0))$, $M \setminus (0)$). For each $d_i \in D_i$ (i = 1, 2) and each $\langle a, a \rangle \in (A, \Gamma)$ define the maps d_1' and d_2' as follows: $(m'a)d_1' = (m'd_1)$ and $(ma)d_2' = (md_2)a$. It is easy to show that mappings $d_1 \mapsto d_1'$ and $d_2 \mapsto d_2'$ are actually inverse ring isomorphisms.

We can now regard both \mathfrak{M} and M as vector spaces over D where D is a division ring, $D = D_1 = D_2$. Now we give the Chevalley-Jacobson dense theorem of the two-groups associative ring (A, Γ) .

Theorem 3.1 Let (\mathfrak{M}, M) be a faithful, irreducible (A, Γ) -module. If x_1 , x_2, \dots, x_m are *D*-linearly independent in \mathfrak{M} and suppose y_1, y_2, \dots, y_n are *D*-linearly independent in M, then there is $\langle a, a \rangle \in (A, \Gamma)$ such that $\langle y_j a, x_i a \rangle = \langle u_j, v_i \rangle$ for $i = 1, 2, \dots, m$ and $j = 1, 2, \dots, n$, where $\langle u_j, v_i \rangle \in (\mathfrak{M}, M)$ for $i = 1, 2, \dots, m$ and $j = 1, 2, \dots, n$. That is, ring (A, Γ) is a dense ring of linear transformations of (\mathfrak{M}, M) .

The proof is established by the quite similar fashion to that for an ordinary ring (cf. [5]) and so we omit it.

Let $D_{m,n}$ be the set of all rectangular matrices of type $m \times n$ over a division ring D then $(D_{m,n}, D_{n,m})$ is clearly a two-groups associative ring under the usual matrix addition and multiplication, and call (m,n)-matrix ring.

By Theorem 3.1, we have immediately

Theorem 3.2 Let ring (A, Γ) be primitive. Then for some division ring D either ring (A, Γ) isomorphic to (m, n)-matrix ring $(D_{m,n}, D_{n,m})$, or given any integer m and n there exists subring (S, \mathfrak{G}) of ring (A, Γ) which map homomorphically onto (m, n)-matrix ring $(D_{m,n}, D_{n,m})$.

By Theorem 2.1 and Theorem 3.2, we have immediately

Theorem 3.3 Let ring (A, Γ) be primitive. Then for some division ring D either $R \cong D_n$ and $\Re \cong D_m$, or given any integer m and n there exists subring R_n of R and \Re_m of \Re which maps homomorphically onto D_n and D_m respectively, where D_i is the ring of all $i \times i$ matrices over D.

4. The Jacobson radical An ideal (I, \mathfrak{F}) of a ring (A, Γ) is called primitive if ring $(A, \Gamma)/(I, \mathfrak{F})$ is primitive. Since a primitive ring (A, Γ) is necessarily $\neq (0,0)$, (I, \mathfrak{F}) is a proper ideal.

Definition 4.1 The Jacobson radical of ring (A, Γ) , written as $J(A, \Gamma)$, is the intersection of all primitive ideals of ring (A, Γ) . If a ring (A, Γ) has no primitive ideals we put $J(A, \Gamma) = (A, \Gamma)$. A ring (A, Γ) is said to be semi-simple if $J(A, \Gamma) = (0, 0)$. A ring (A, Γ) is said to be radical ring if $J(A, \Gamma) = (A, \Gamma)$.

Proposition 4.1 Let (I, \mathfrak{F}) be an ideal of a ring (A, Γ) . Then the (I, \mathfrak{F}) is primitive if and only if $(I, \mathfrak{F}) = \operatorname{Ann}(\mathfrak{M}, M)$, where (\mathfrak{M}, M) is some irreduccible (A, Γ) -module.

Proof Let (I, \mathfrak{F}) be a primitive ideal of ring (A, Γ) , then the ring $(A, \Gamma)/(I, \mathfrak{F}) = (\overline{A}, \overline{\Gamma})$ is primitive. Therefore there exists a faithful, irreducible $(\overline{A}, \overline{\Gamma})$ -module (\mathfrak{M}, M) . By Proposition 2.2, (\mathfrak{M}, M) is a irreducible (A, Γ) -module and $(I, \mathfrak{F}) \subseteq \operatorname{Ann}(\mathfrak{M}, M)$ under the action of $(ma, m'a) = (m\overline{a}, m'\overline{a})$. If $(a, a) \in \operatorname{Ann}(\mathfrak{M}, M)$

M) then $(Ma, \mathfrak{M}a) = (0,0)$, and $(M\bar{a}, \mathfrak{M}\bar{a}) = (0,0)$. Since $(\overline{A}, \overline{\Gamma})$ -module (\mathfrak{M}, M) is faithful, we have $\langle \bar{a}, \bar{a} \rangle = \langle \overline{0}, \overline{0} \rangle$. Thus $\langle a, a \rangle \in (I, \mathfrak{F})$. It follows that $(I, \mathfrak{F}) = \operatorname{Ann}(\mathfrak{M}, M)$.

Conversely, let $(I, \mathfrak{F}) = \operatorname{Ann}(\mathfrak{M}, M)$ where (\mathfrak{M}, M) is a irreducible (A, Γ) -module, then (\mathfrak{M}, M) is a faithful irreducible module of the ring $(A, \Gamma)/(I, \mathfrak{F})$. I, follows that the ideal (I, \mathfrak{F}) is primitive.

The proofs of following three theorems are minor modification of the proofs of the corresponding theorems ring theory (cf. [5]), and we omit it.

Theorem 4.1 If a ring (A, Γ) has no irreducible (A, Γ) -modules then $J(A, \Gamma)=(A, \Gamma)$; If a ring (A, Γ) has irreducible (A, Γ) -modules then $J(A, \Gamma)=\bigcap_{a\in\Omega} A$ nn (\mathfrak{M}_a, M_a) where Ω is the set of all irreducible (A, Γ) -modules.

Theorom 4.2 The ring $(A, \Gamma)/J(A, \Gamma)$ is semi-simple.

Theorom 4.3 A ring (A, Γ) is semi-simple if and only if it is a subdirect sum of primitive ring $(A_{\alpha}, \Gamma_{\alpha})$, $\alpha \in \Omega$.

By Proposition 2.4, we have

Theorem 4.4 $J(A, \Gamma) = \bigcap_{a \in \Omega} (I_a, \mathfrak{F}_a)$ where Ω is the set of all maximal regular right ideals of the ring (A, Γ) .

When ring $(A, \Gamma)^*$ is regarded as the Γ -ring A, let $\mathfrak B$ be the free abelian group generated by $Mx\Gamma$ where M is an irreducible module of the Γ -ring A. Then $\mathfrak B = \{\sum_i n_i(m_i, a_i) \in \mathfrak B \mid \sum_i n_i m_i a_i a = 0 \text{ for all } a \in A\}$ is a subgroup of $\mathfrak B$. Let $\mathfrak M = \mathfrak B / \mathfrak B$, the factor group, and denote the coset $(m, a) + \mathfrak B$ by (m, a). It can be verified easily that $(m, a) + (m, \beta) = (m, a + \beta)$ and $(m_1, a) + (m_2, a) = (m_1 + m_2, a)$ for all $a, \beta \in \Gamma$ and all $m, m_1 m_2 \in M$. We define mappings $\mathfrak M \times A \to M$ and $M \times \Gamma \to \mathfrak M$ (sending ((m, a), a) and (m, a) to maa and ma respectively). It can be verified easily that $(\mathfrak M, M)$ is an (A, Γ) -module and it irreducible, moreover $Ann(\mathfrak M, M) = (Ann(M), Ann(\mathfrak M))$ where $Ann(\mathfrak M) = \{a \in \Gamma \mid \mathfrak M Aa = (0)\}$ and $Ann(M) = \{a \in A \mid M \Gamma a = (0)\}$. Therefore, by symmetry we have

Proposition 4.2 Let (A, Γ) be a two-groups associative ring. If the Γ -ring A (A-ring $\Gamma)$ has an irreducible module $M(\mathfrak{M})$ then there exists an irreducible (A, Γ) -module (\mathfrak{M}, M) such that

$$Ann(\mathfrak{M}, M) = (Ann(M), Ann(\mathfrak{M})).$$

The Jacobson radical of a Γ -ring A, written as J(A), is the set of all elements of A which annihilate all the irreducible module of the Γ -ring A (see [1] or [8]). Hence, by Proposition 4.2 we have

Theorem 4.5 $J(A, \Gamma) = (J(A), J(\Gamma))$ for the ring (A, Γ) .

This theorem shows that if we regard the weak Γ_{N-ring} A as the Γ -ring

A and the A-ring Γ then $(J(A), J(\Gamma))$ is an ideal of the ring (A, Γ) , moreover J(A) is a weak Γ'_N -ring where $\Gamma' = J(\Gamma)$.

The left Jaobson radical can be defined similarly and it is naturally asked if the right Jacobson radical coincides with the left one for ring (A, Γ) .

From Theorem 4.5 and Kyuno's result in [7], we have

Theorem 4.6 The right Jacobson radical and the left one coincide on a two-groups associative ring.

For following other notions and notations to the Γ -ring we refer to [7]. Use Theorem 4.5 and Theorem 3.1 in [8], we have

Theorem 4.7 $J(A, \Gamma) = (J(R)^*, J(\Re)^*)$.

From Theorem 4.5 and Theorem 3 in [7], we have

Theorem 4.8 Let $J(A, \Gamma)$ is Jacobson radical of a ring (A, Γ) , then

- $(1) J_1(A, \Gamma) = (J_1(A), J_1(\Gamma)),$
- (2) $J_1(A, \Gamma) = (J_1(L)^+, J_1(\mathcal{L})^+).$

Use Theorem 4.5 and Theorem 3.7 in [1], we have

Theorem 4.9 Let A be an ordinary associative ring and its Jacobson radical $J^*(A)$. Then A can be considered as a two-groups associative ring (A, A). Moreover $J(A, A) = (J^*(A), J^*(A))$.

By Theorem 4.5 and Proposition 2.8 in [1], we have

Theorem 4.10 If (I,\mathfrak{F}) is an ideal of ring (A,Γ) then $J(I,\mathfrak{F})=(I,\mathfrak{F})\cap J(A,\Gamma)$.

References

- [1] T.S. Ravisanker and U.S. Shukla, Pacific J. Math., 80 (1979), No.2, 539-559.
- [2] W. E. Coppage and J. Luh, J. Math. Soc. Japan, 23(1971) 1,41-52.
- [3] Xu Zhongming, J. of Zhejiang Institute of Silk Technology, 3(1986), No.1, 60-66. (in Chinese.)
- [4] Xu Zhongming, J. of Hangzhou Univ., 3(1986), (in Chinese).
- [5] Liu Shaoxue, Rings and Algebras, Publishing house of science (1983). (in Chinese.)
- [6] Xu Zhongming, J. Math. Res. and Exp., 3(1983), 21-26, (in Chinese.)
- [7] S. Kyuno, Tsukuba J. Math., 3 (1979) No.1, 31-35.
- [8] S. Kyuno, Tohoku Math. Journ., 29(1977), 217—225.