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Structure of Two-Groups Associative Rings*

Xu Zhongming

(Zhejiang Institute of Silk Techology)

Introduction. T. S Ravisanker and U.S.Shukla [ 1 ] introduced the notion
of a weak I'y-ring A4, more general than a ring and a I'-ring in the sense of
Nobusawa, and obtained analogical characterizations of the Jacobson radical for
weak T'y-rings, It is clear that every I'-ring A4 is a weak TI'j-ring A4 for some
abelian group '’ (Theorem 3.1 in [ 2 ]). Therefore auther gives consideration to
such a fact that 4 and I' are equal ih the wéak I'y-ring, moreover there is
influence each other between 4 and I'. And then, we shall rename a weak
Iy-ring A4 to a twogroups associative ring (A4, I'). Auther obtained analogical
characterizations of the Baer lower nil radical and of the Levitzki radical of
the ring (A, ') in (371 and [ 41].

In this paper we shall begin the extension of the notions of modules for
binary rings to two-groups asssciative ring, obtaining first some characteriza-
tions of primitive two-groups associative rings, and then the classical Cheva-
lley-Jacobson density theorem of binary rings which will be extended to the
two-groups associative rings. At the end, defining the Jacobson radical of a
two-groups associative ring and getting the analogous results of corresponding
part in rings theofy.

We refer to [ 5] for all notions relevant to ring theory. For all other
notions to the two-groups associativé rings we refer to [ 3] and [ 4],

|, Preliminaries. Let- 4 and I' be additive abelian groups, and for all a,
b,ce¢A and all a, 8, yeI', the following conditions are satisfied.

(1) aabeA, aafel;
(2) (a+b)ac=aac +bac, ala+ p)b=aab+apb, aa(b+c)=aab+aac,
{a+ B)ay =aay + Bay, ala+b)p=aaf+abf, aa(Bf+y)=aaf+aay;
(3) (aab)Bc=alabB)c=aalbBc), (aaB)by=alaBb) =aa(fby).
then we say that 4 and I' form a two-groups associative ring, and denoted
by ring (A, T), or (4,T). In [ 11, the ring (A4, ) is called a weak I'y-ring
A. Clearly, A is a I''ring and I an A-ring, and their right operator rings are
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denoted by R and R respectively. If S, S’ are subsets of 4 and &, @  subsets
of ', we provide: :

1. An ordered pair {a, a)e(S,® ) iff aeS, and a¢@& and  we say that
(a,a) is an elemeni of the set (S @& ).

2. (S,8)C (S, ) iff SCS’ and BC G’ .

3. (5,8)+(S, ®)={Ka+a',a+a>| (a,a>e(S,8), <a',a')e(S', E")}.

4. (S,E)NS,@)=(8NS,ENG).

5. 888 ={Y s,a,s|se€S, a,¢@, sjeS’, A is finite } ,

feA

BS@ ={ Ya,s,a] Iaje(g, s,e8, aje@’, Q is finite} .
jeQ

etc.

Let I and  be abelian subgroups of A4 and I' respectively. We called (I,
J) is subring of a ring (A4, T) in case (I, JIX)CT U, ). A right (eft)
ideal of a ring (A4, T) is a subring (I, ) of ring (A4, T) such that (ITA, 3 AT)
T, I)((ATI, TAI)YCUI,¥)). If (I,¥) is both a right and a left ideal such
that (A3 A, TIT)CU,Y ), then we say that (I,%) is an ideal, or a two-sided
ideal of ring (A4, ).

Theorem |,|] Let (f,9) be a homomorphism from a ring (4, ') onto the
ring (A4, T’), then the kernel (K,%') of the homomorphism (f, ¢) is an ideal
of ring (A, I'), and difference ring (4/K, T’'/R)=(A’,T’). Conversely, if (K,
) is an ideal of a ring (A4, ) and if f and ¢ are natural homomorphisms of
the additive group 4 onto the difference group 4/K and of the additive group
I' onto the difference group I'/{ respectively, then (f, ¢) is a homomorphism
of the ring (A, T') onto the ring (A/K, I'/®% ) with kernel (K,% ). (see [ 3]).

Theorem [.2 If (/,,5,) is an ideal of a ring (A4, T) for i=1,2 and (I,
3,)DU,, J,) then ‘

(A, T) /U, ) =((A, T)/U,, ,))/(U,,3,)/,, I)). (see [3]).

Theorem |.3 Let (I,J) be an ideal of a ring (4, ). If (5, ) is a subring
of the ring (A4, T) then (I,¥3)N(S,& ) is an ideal of ring (S,®) and

T+8 F+6)/(I,3)=(S,8)/(1,I)N(S,8). (see [31).

Theorem |}.4 A ring (A, I') is isomo rphic to a Sl;bdirect sum of the ring
(A4,,T;), ieA if and only if the ring (A4, ') contains a class of ideals ([, 3,)
such that ()(J,, J,)=(0,0) and (4, )/, J§)=(4,,[}),icA. (see [3]).

ieA
2, Primitive (wo groups associative ring.
Let (A4, T) be a two-groups associative ring, then an ordered pair (I, M)
of additive groups M and M is said to be a right (A4, I')-module if there are ma -

ppings MxA—->M and MxT —+J; (sending (m’,a) and (m, a) to m’a and ma respec-
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tively) such that:

(1) {(m +mya, (m{+mjy)a)={ma+ma, ma+mya)
_(m(a+ﬁ), m'(a+b)y={ma+mpB, ma+nb)
(2) ((ma)b)y, ((ma)p)c={m(abp),m' (afc)>

for all {m’,m>, {m{, my, (mj,m,) (P, M) and all {a, a), <b, B>, {c,p>e(4,T).

Henceforth the term module withdut modifier will always mean right module.

Clearly q¢ is both the right module of the A-ring I' and its ri ht operator
ring ®#, M is both the right module of the I'-ring 4 and its right operator ring
%, and denoted by MW, IIIQ, M, and M, respectively (see [ 6 1).

A submodule (%, N) of an (A4, I')-module (N, M) is anordered pair (%, N)
of subgroups of (M, M) such that (NF;‘%A)Q(!)}, N). Clearly % and N is a
submodule of i}ar(ﬂlw) and of M ( MR) respectively . (I, M) is.said to be an
irreducible (A, I')-module if (M, MA)£(0,0) and if there is noproper submo-
dule of (@, M) othier than (0,0). Evidently MI'#(0) and "IRA;t( 0) for the irre-
ducible (4, I')-module (M, M) . Clearly we have _

Lemma 2. | ('ivz, M) is an irreducible (A, I')-module if and only if (mI,
m'A) = (. M) for each (m’, m) ¢ (M (0), M\ (0)).

Proposition 2.1 If (M, M) is an (4, T)-medule, then following statements
are equivalent:

(1) (4, T')-module (M, M) is irreducible,

(2) M. and M, is both irreducible,

(3) M, and M, is both irreducible,

(4) if <m/ymye (DN (0), M\ (0)) then (m[, m'4)=(M, M),

(5) if <(m’ym)e(M\_(0), M\ _(0)) then there is (a, a)e(A4, ') such that .
(m'aT', mad) = (N, M), | | ‘

(6) if <mj md>e(MN\(0), M\ (0)) then (m%, mR) = (P, M) .

Proof The equivalence of the above six statements is an immediate conse-
quence of the above Lemma 2.1 and [ 6 ] Lemma 1.1.

The subset Ann(M, M) = {<a,ade(4, T)|(Ma,Ma)=(0,0)} of ring (4, T)
is called annihilator of the (A4, I')-module (M, M). It is easy to see ‘that Ann
(M, M) is an ideal of the ring (A4, I'). We say that (I, M) is a faithful (A,
T)-module if Ann(:,M)=2(0,0). A ring (4, T) is said to be primitive if it
has a faithful irreglucibl,e (A, T)-module.

Proposltloh 2.2 Let (I,¥) be an ideal in a ring (4, ). If (P, M) is a
(4, T)/(I,J¥)-module then (3, M) can be considered as an (A, I')-module and
(I-,'&.)_C“Ann(wz, M). Conversely, if (o, M) is an (A, I')-module and (7, )C
Ann(p, M) then (g, M) can be regarded as an (A4, I')/(1,J ) -module. ‘

The proof is established by the quite similar fashion to that for an ordinary
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ring (c¢f. [ 5]) and so we omit it.

By Proposition 2.1 and 2.2 we have

Lemma 2.2 (A, I')-module (M, M) is . faithful irreducible if and only if
. and M, are both faithful irreducible. ‘

From Lemma 2.2 and [ 6] Lemma 1,3, we immediately have the following.

Proposition 2.3 Let (M, M) be an (A4, [')-module, then the following state-
ments are equivalent .

(1) (M, M) is faithful irreduible.

(2) M. and M, is both faithful irreducible,

(3) B, and M, is both faithful irreducible and, moreover ((0,0):(A, I'))r
=(0,0) where ((0,0):(4, ), ={Kx, ¢>e(4, T) | (ATx, TA¢L) =(0,0)}.

Thus, we have

Theorem 2.§ Let (A4, ') be a two-groups associativelv ring then the follo-
wing statements are equivalent:

(1) ring (A4, ') is primitive,

(2) T'-ring Aand A-ring ' is both primitive,
(3) % and R is both primitive and, moreover ((0,0):(A4, I')),=(0,0)(as
above). '

If (I,¥) is a right ideal of the ring (A4, '), we call (J, ) maximal in
case (I,J )+ (A4, T) and, for any right ideal (G,® ) such that (G,& )=, )
(i.e.G2f and G DOJ), we have (G,@)=(4,T).

We call (I,) regular in case there is {e,&>e(4, ') such that

(x-eex, f—¢cel)e(l,F) for every {x,&>e(A4,T).
By the definition of regular right ideal of I'ring (see [ 17]), the right ideal (7,
J ) of a ring (A4, I) is regular if and only if the right ideal I of the I'-ring A4
and the right ideal « of the A-ring I' are regular.

Proposition 2.4 1If (4, I')-module (M, M) is irreducible then  Ann{(m’,
my={x,{Ye(A4, ) |{mg, mx)=¢0,0)} is a maximal regular right ideal of the
ring (4, T) for each (m',m)e (M (0), M\ (0)). Conversely, if (I, ) is a maxi-
mal regular right ideal of ring (A4, I') then there is an irreducible (A4, I')-module
(U, M) such that (I,J) =Ann{m’, m) for some <{m’, m)e (M (0), M \_(0)).

Proof Since (M, M) is irreducible, we must have that (mI', mA) = (D, M)
for évery (‘m’, mye (M (0), M\ (0)). Therefore there is (e, e)e(4, I') such that
(x- eex, & —¢cesdeAnn(m’, m). Clearly, the right deal is regular and Ann{m’, m)
;(A, I'). Suppose Ann(m',m) < (G, ) (A4, T)and (G,@ ) is a right ideal; then
(m'GT’, m'G) is a nonzero submodule of (A4, I')-module (M, M) and so mM'G=M.
Use the same method, we can get m@ =M. Thorefore (m@, m’'G)=(m, M) = (MT,
MA). It follows that for each {x, ¢)e(A, '), there exists a (b, f)e(A, ') such
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that (x—b., ¢ - B)eAnn{m’, m)>. Since Ann(m’', m) (G, @ ), (4, T)=(G, & and
Ann{m’, m) is maximal.

Conversely, let (I, ) be a maximal regular right ideal then there exists
{e,e)e(A4, T') such that (x-esx, £ —se&de(I, ) for each (x, ¢)ye(4, I'); define
M=r/% and M =A/I. For (M, M) consider the map '

m+Da, (mM+J)a)=Cema+,ema+ 1)
for all {m"+&, m+IYe(M, M) and all {a,a)e(4, T'), and one can easily verify
that (I, M) is an (A, [')-module. It follecws that (4, I')-module is irreducible
and (J,¥ ) =Ann{e+X ,e+I) for e+, e+Ide(M, M).

By proposition 2.4, we have immediately

Theorem 2.2 The ring (A, I") is primitive if and only if there is a rriaximal
regular right ideal (I, ) such that ({(I,% ):(4, r)),=1(0,0) where (I, 3 ):(4,
), ={(x, é>e(A4, T) | (ATx, TAHTU,J)}.

8. The density Let (3¢, M) be an (4, ') -module. The additive abelian groups
Hom (M, M) and Hom (M, ) is a two-groups associative ring with usual homo-
morphic composition, and denocted by (Hom (M, M), Hom (M, D )). For each {a,
a)e(A, T') consider the map {a,,a,):(ma,,m’a,>={ma, m’a) for every {(m’, m) (M,
M), and (4,,I)) = a,,a,> [<a,ad €(A4,7)}is a two-groups associative ring and it
is subring of the ring (Hom(M, M), Hom (M, M )). 4

The map {(a, a) F*(a,,a) is easily seen to be a homomorphism from ring

(4, 1) to ring (Hom(M, M), Hom(M, M)), and ring (4,, ) is the image of ring

(4, ). It follows that (4,,I)=(4, T)/Ann(M, M). Therefore we have

Lémma 3.1 If (4, T)-module (M, M) is faithful, then ring (A, I') is isomor-
phic to the subring (4,,T}) of the ring (Hom (2, M), Hom (M, M ).

For the remainder of this section we assume that (M, M) is a faithful irre-
ducible (A4, I')-module, By Lemma 3.1, any element of ring (A, I') can be con-
sidered as an element of -ring (Hom (M, M), Hom(M, ;)). By Theorem 2.1 and
the classical theory, the right operator ring. % and R are dense rings of linear
transformations of M and M respectively. By Shur’s lemma, the underlying
division rings are given by

D, = {d,eHom (M, M) | (m'd)aa= (m'aa)d, for all aed, aeT and all m'ea},
and

D,= {d,cHom (M, M) | (md, )aa = (maa)d, for all acA, acT and all meM} .

Lemma 3.2 D,=D, (as ring). '

Proof Let (m', mye(P\(0); M\ (0)). For each di¢D, (i=1,2) and each (a,
a)e(A, ') define the maps d| and d} as follows: (m’a)d|= (m’d)) and (ma)d,
= (mdy)ae. It is easy to show that mappings d, |>d{ and d,|>d} are actually

inverse ring isomorphisms.,



We can now regard both M and M as vector spaces over D where D is a
division ring, D=D, =D,. Now we give the Chevalley-Jacobson dense theorem
of the two-groups associative ring (A, I').

Theorem 3.| Let (M, M) be a faithful, irreducible (A, ')-module. If x,,
X,,*,x, are D-linearly independent in ¢ and suppose y,, y,,*,», are D-line-
arly independent in M, then there is {a,a)e(4, T') such that (ya, x,a)>=Cu;,v;
for i=1,2,+,m and j=1.2.+,n, where (u,,v,7¢(M, M) for i=1,2,%+, m and |
j=1,2,%,n. That is, ring (A4, ') is a dense ring of linear transformations of
(M, M).

The proof is established by the quite similar fashion to that for an ordinary
ring (cf. [ 5]) and so we omit it,

Let D, , be the set of all rectangular matrices of type mXxn over a division
ring D then (D, ,,D, ) is clearly a two -groups associative ring under the
usual matrix addition and multiplication, and call (m,n)-matrix ring.

By Theorem 3.1, we have immediately

Theorem 3.2 Let ring (A4, T) be primitive. Then for some division ring

D either ring (A, ') isomorphic to (m, n)-matrix ring (D D ), or given any

myn? “n.m
integer m and n there exists subring (S,® ) of ring (A4, ') which map homomo-
rphically onto (m, n)-matrix ring (D, ,,D, ).

By Theorem 2.1 and Theorem 3.2, we have immediately

Theorem 3.3 Let ring (A4, ") be primitive. Then for some division ring
D either R=D, and R#=D,_, or given any integer m and n there exists subring
R, of R and %, of % which maps homomorphically onto D, and D, respectively,
where D, is the ringof all ixi matrices over D,

4 . The Jacobson radical An ideal (I, ) of a ring (4, ) is called primitive
if ring (A4, T)/(I,Y¥ ) is primitive. Since a primitive ring (A, I') is necessarily
+(0,0), (I,J) is a proper ideal.

Definition 4.] The Jacobson radical of ring (A, I'), written as J(4, ), is
- the intersection of all primitive ideals of ring (A4, ). If a ring (4, ) has no
primitive ideals we put J(A, T')=(A,T). A ring (A4, T) is said tobe semi-simple
if J(A,T)=(0,0). 4 ring (A, ')i5 said to beradical ring if J(4, ) =(A4,T).

Proposition 4.] Let (I, %) be anideal of a ring (A, I'). Then the (I,J)
is primitive if and only if-(J,%)=Ann(M,M), where (I, M) is some irreduc—
cible (A4, I')-module.

Proof Let (I,J) ba a primitive ideal of ring (A, I'), then the ring (A4, )/
(I1,3)= (A4,T) is primitive. Therefore there exists a faithful, irreducible (4,[)
-module (M, M). By Proposition 2.2, (|, M) is a irreducible (A4, I')-module and
(I,¥ )CAnn(W, M) under the action of (ma, m'a)={ma,ma). If {a,a)ecAnn(l,



(=

M) then (Ma, Ma) = (0,0), and (Ma,WMa)=(0,0). Since (4, T)-module (N, M)
is faithful, we have <a,a»=<0,0>. Thus <a,ade(I,J ). It follows that (I, )
=Ann(M, m).

Conversely, let (I,¥)=Ann(M, M) where (M, M)is a irreducible (A4, I')-
.module, then (M, M) is a faithful irreducible module of the ring (A, )/, %).
L follows that the ideal (I, ) is primitive.

The proofs of following three theorems are minor modification of the proofs
of the corresponding theorems ring theory (cf. [5]). and we omit it.

Theorom 4.| If a ring (4, ") has no irreducible (A4, I')-modules then J(A4,
IN=(A4,T); ¥ a ring (4, ') has irreducible (A4, I') -modules then J(A4,T) = Q]Ann

(M,, M,) where Q is the set of all irreducible (A4, I')-modules .

Theorom 4.2 The ring (4, ') /J(A, ) is semi-simple.

Theorom 4.3 A ring (A, ') is semisimple if and only if it is a subdirect
sum of primihtive ring (4,,T,), aeQ.

By Proposition 2.4, we have

Theorem 4.4 J(A, )= HQ)(I‘,, J,) where Q is the set of all maximal regu-

lar right ideals of the ring (A4, I").

When ring (4, I')*is regarded as the I'-ring 4, let & be the free abelian
group generated by MxI" where M isan irredl;cible module of the I'-ring A.
Then &F={Yn(m,,a,)e@|3 n,ma,a=0 for all aeAd} is a subgroup of @& . Let

i i

M= /§, the factor group, and denote the coset (m,a) +F by (m,a). It can
be verified easily that (m,a)+(m,B)=(m,a+ ) and (m ,al +(m,,al=0m, +tmy g
for all e, B¢l and all m,m m,eM. We define mappings Mx4A—M and M xI'—M
(sending ((m,a),a) and (m,a) to maa and ma respectively). It can be verified
easily that (M, M) is an (A, I')-module and it irreducible, moreover Ann(M, M;
= (Ann(M), Ann(M)) where Ann(M) = {ael|,MAa=(0)} and Ann(M) = {aeA|MTa
=(0)}. Therefore, by symmetry we have

Proposition 4.2 Let (A, I') be a two -groups associative ring. If the I'-ring
A (A-ring T') has anirreducible module M (M) thgn there exists an irreducible
(A, T)-module (M, M) such that

Ann(M, M) = (Ann(M), Ann(M)) .

The Jacobson radical of a I''ring A, written as J(A4), is the set of all ele.
ments of A which annihilate all the irreducible module of the I'-ring A (see [1]
or [81). Hence, by Proposition 4.2 we have . ' ‘

Theorem 4.5 J(A,T)=(J(A),J(I)) for the ring (4, I').

This theorem sb;"owi" that if we regard the weak Iy -ring 4 as the I'ring
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A and the A-ring T" then (J(A),J(I')) isan ideal of the ring (A4, '), moreover
J(A) is a weak [}-ring where I''=J(I").

The left Jaobson radical can be defined similarly and it is naturally asked
if the right Jacobson radical coincides with the left one for ring (4, T).

From Theorem 4.5 and Kyuno’s result in [ 7 ], we have

Theorem 4.6 The right Jacobson radical and the left one coincide on a
two-groups associative ring.

For following other notions and notations to the I'-ring we refer to {7 ].
Use Theorem 4.5 and Theorem 3.1 in [ 8 ], we have

Theorem 4.7 J(A, )= (J(R)*,J(R)H)*).

From Theorem 4,5 and Theorem 3 in [ 7], we have

Theorem 4.8 Let J(A,T') is Jacobson radical of a ring (4, I'), then

(1) J(4,T)=(A,J(T),

(2) J(A4, )= (L), J ().

Use Theorem 4.5 and Theoren 3.7 in [ 1], we have

Theorem 4.9 Let A4 be anordinary associative ring and its Jacobson radical
J*(A4). Then A can be considered as a two-groups associative ring (A4, 4). Mo-
reover J(A, A)=(J*(A),J*(A)). '

By Theorem 4.5 and Proposition 2.8 in [ 1], we have

Theorem 4,10 If (I, ) isan ideal of ring(A4, I') then J(Z,J Y=,
J(4, ),
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