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Abstract In this paper, a new class of memoryless non-quasi-Newton method for solving un-

constrained optimization problems is proposed, and the global convergence of this method with

inexact line search is proved. Furthermore, we propose a hybrid method that mixes both the

memoryless non-quasi-Newton method and the memoryless Perry-Shanno quasi-Newton method.

The global convergence of this hybrid memoryless method is proved under mild assumptions.

The initial results show that these new methods are efficient for the given test problems. Espe-

cially the memoryless non-quasi-Newton method requires little storage and computation, so it is

able to efficiently solve large scale optimization problems.
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1. Introduction

The problem we consider is unconstrained optimization calculation:

min f(x), x ∈ Rn, (1.1)

where f : Rn → R, f ∈ C2.

It is known that the memoryless quasi-Newton methods have been successfully used for

solving problem (1.1). The memoryless quasi-Newton methods were originated with the work

of Perry[1] and Shanno([2,3]) in the 1970s, and have been developed and studied then by many

authors: Perry[1], Powell[4], and Dai[9] et al.. However, it still remains unanswered for the

general objective functions[2,5,6]. At the same time Huang(1970) proposed a class of update

formulas, where the updated matrix need not satisfy quasi-Newton equation, only need the

generated search directions are conjugacy when the method is used for the convex quadratic

functions. This implies that the method possesses property of quadratic termination. In 1991,

Yuan[7] proposed a quasi Newton method. Zhao and Duan[8] established a non-quasi-Newton
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equation and proposed a pseudo-Newton method in 1996. Chen and Jiao[10] proposed a new

non-quasi-Newton method in 1997. In this paper we derive a new class of memoryless formula

from non-quasi-Newton equation, in which the update matrices are symmetric positive definite,

and prove that the method with inexact line search converges globally. Numerical experiments

indicate that it is able to efficently solve larger scale optimization problems.

2. Derivation of memoryless non-quasi-Newton method

Suppose that the objective function f(x) ∈ C2, g(x) = ∇f(x), gk = g(xk), fk = f(xk),

γk = gk+1 − gk and δk = xk+1 − xk, when ‖δk‖ is sufficiently small (‖ · ‖ denotes its Euclidean

norm). Hesse matrix Gk for xk possesses the property:

Rk ≈
1

2
δT
k Gkδk, (2.1)

where Rk = fk+1 − fk − gkTδk. Specially, the above formula equality holds true strictly for

quadratic functions. Consider Hestenes-Stiefel conjugate gradient method iteration formula:

xk+1 = xk + λkdk, (2.2)

d1 = −g1,

dk+1 = −gk+1 +
γT

k gk+1

γT
k dk

dk, k ≥ 2, (2.3)

where λk is a search steplength. Notice that (2.3) can be written as the following form,

dk+1 = −(I −
dkγT

k

γT
k dk

)gk+1,

where I is a unit matrix. Since δk = xk+1 − xk = λkdk, we have

dkγT
k

γT
k dk

=
δkγT

k

γT
k δk

,

dk+1 = −(I −
δkγT

k

γT
k δk

)gk+1. (2.4)

Denote Hk+1 = I −
δkγT

k

γT

k
δk

. Then

dk+1 = −Hk+1gk+1.

To make Hk+1 inherit the positive definiteness of Hk, we update Hk+1 by adding an update

term. For convenience, the updated matrix is still denoted by Hk+1. Hence

Hk+1 = I −
γkδT

k + δkγT
k

δT
k γk

+
‖γk‖

2

(δT
k γk)2

δkδT
k +

δkδT
k

2Rk

. (2.5)

We denote the inverse of Hk+1 by Bk+1 = Hk+1
−1. Then

Bk+1 = I −
δkδT

k

‖δk‖2
+

2Rk

(δT
k γk)2

γkγT
k . (2.6)

We require Bk+1 to satisfy the non-quasi-Newton equation[8]

δT
k Bk+1δk = 2Rk. (2.7)
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In order to decrease the iterative error, multiplying Hk+1 by a coefficient tk, we obtain

Hk+1 = tk(I −
γkδT

k + δkγT
k

δT
k γk

+
‖γk‖

2

(δT
k γk)2

δkδT
k ) +

δkδT
k

2Rk

,

where tk =
δT

k
γk

‖γk‖2 . Then

Hk+1 =
δT
k γk

‖γk‖2
I +

δkδT
k

δk
Tγk

−
γkδT

k + δkγT
k

‖γk‖2
+

δkδT
k

2Rk

(2.8)

and

Bk+1 =
‖γk‖

2

γT
k δk

I −
‖γk‖

2

‖δk‖2γT
k δk

δkδT
k +

2Rk

(δT
k γk)2

γkγT
k . (2.9)

In fact, (2.9) satisfies non-quasi-Newton equation(2.7).

We call (2.8) and (2.9) the memoryless non-quasi-Newton update formulas. For quadratic

functions, (2.8) and (2.9) are the Perry-Shanno memoryless quasi-Newton formulas. For non-

quadratic functions, (2.8), (2.9) are not the same as the Perry-Shanno memoryless quasi-Newton

formulas.

The following theorem shows the Bk is a positive definite matrix in update Formula (2.9).

Theorem 2.1 If Rk > 0 and δT
k γk > 0 for all k ≥ 1, then Bk+1 is a positive definite matrix.

Proof For all z ∈ Rn, z 6= 0, we have

zT ‖γk‖
2

γT
k δk

(I −
δkδT

k

‖δk‖2
)z =

‖γk‖
2

γT
k δk

(‖z‖2 −
(zTδk)2

‖δk‖2
) ≥ 0,

zT(
2Rk

(δT
k γk)2

γkγT
k )z =

2Rk

(δT
k γk)2

(zTγk)2 ≥ 0,

and it is impossible that the equality in the above two inequalities holds simultaneously. There-

fore, zTBk+1z > 0; that is, Bk+1 is a positive definite matrix.

3. The global convergent of memoryless non-quasi-Newton method

We make the following assumptions:

H1 (i) f ∈ C2, and the level set D1 = {x ∈ Rn|f(x) ≤ f(x1)} is bounded, that is, there exists

L1 > 0 such that ‖x‖ ≤
1

2
L1, ∀x ∈ D1.

(ii) There exist positive numbers M > m > 0, for all x ∈ D1, u ∈ Rn, such that

m‖u‖2 ≤ uTG(x)u ≤ M‖u‖2, (3.1)

where G(x) is Hesse matrix of f(x).

Consider the following iteration

xk+1 = xk + λkdk, (3.2)

d1 = −g1, (3.3)
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dk+1 = −Hk+1gk+1 = −B−1
k+1gk+1

= (
δT
k gk+1

‖γk‖2
−

δT
k gk+1

δk
Tγk

−
δT
k gk+1

2Rk

)δk +
δT
k gk+1

‖γk‖2
γk −

δT
k γk

‖γk‖2
gk+1, k ≥ 2, (3.4)

where

Bk+1 =
‖γk‖

2

γT
k δk

I −
‖γk‖

2

‖δk‖2γT
k δk

δkδT
k +

2Rk

(δT
k γk)2

γkγT
k , (3.5)

Hk+1 = B−1
k+1 =

δT
k γk

‖γk‖2
I +

δkδT
k

δk
Tγk

−
γkδT

k + δkγT
k

‖γk‖2
+

δkδT
k

2Rk

. (3.6)

In this paper, we require the steplength λk to satisfy Wolfe linesearch, that is,

f(xk + λkdk) ≤ f(xk) + βλkgT
k dk, (3.7)

g(xk + λkdk)Tdk ≥ σgT
k dk, (3.8)

where β ∈ (0, 1
2 ), σ ∈ (β, 1). The sketch of the memoryless non-quasi-Newton method is as

follows:

Step 1. Choose starting point x1, d1 = −g1 = −▽ f(x1), ε > 0, k := 1.

Step 2. If ‖gk‖ ≤ ε, then stop; otherwise, determine a steplength λk by using Wolfe linesearch.

Set xk+1 := xk + λkdk.

Step 3. Determine δk = xk+1 − xk, gk+1 = ▽f(xk+1), γk = gk+1 − gk. If −gT
k dk ≤ ε, then

dk+1 = −gk+1, set k := k + 1, go to Step 2; otherwise, go to Step 4.

Step 4. Compute dk+1 by using (3.4), set k := k + 1, go to Step 2.

In the following, we will write the non-memoryless quasi-Newton method as Method A.

Lemma 3.1 Assume that Assumption H1 holds. Then Method A satisfies

m

M
≤

γT
k δk

2Rk

≤
M

m
, (3.9)

‖γk‖
2

γT
k δk

≤
M2

m
. (3.10)

Proof Since

γk =

∫ 1

0

G(xk + tδk)δkdt,

from which and Assumption H1, we have

‖γk‖ ≤ M‖δk‖,

m‖δk‖
2 ≤ γT

k δk = δT
k

∫ 1

0

G(xk + tδk)dtδk ≤ M‖δk‖
2,

m

2
‖δk‖

2 ≤ Rk =

∫ 1

0

∫ T

0

δT
k G(xk + αδk)δkdαdt ≤

M

2
‖δk‖

2,

‖γk‖
2

γT
k δk

≤
M‖γk‖‖δk‖

m‖δk‖2
≤

M2

m
.

Thus
m

M
≤

γT
k δk

2Rk

≤
M

m
.
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Theorem 3.2 If for any k ≥ 1, steplengthes λ1, λ2, . . . , λk are generated by Method A. Then

there exists a positive constant c1 > 0 such that

k
∏

j=1

λj ≥ ck
1 . (3.11)

Proof By (3.6), we have

tr(Hk+1) = (n − 2)
δT
k γk

‖γk‖2
+ (1 +

δT
k γk

2Rk

)
‖δk‖

2

δT
k γk

. (3.12)

Since (δT
k γk)2 ≤ ‖δk‖

2‖γk‖
2, we have

tr(Hk+1) ≤ (n − 1 +
M

m
)
‖δk‖

2

δT
k γk

= c2
‖δk‖

2

δT
k γk

, (3.13)

tr(Hk+1) ≥ (n − 1 +
m

M
)

δT
k γk

‖γk‖2
= c3

δT
k γk

‖γk‖2
, (3.14)

where c2 = n − 1 + M
m

, c3 = n − 1 + m
M

.

By δk = λkdk = λk(−Hkgk) and (3.8), we have

tr(Hk+1) ≤
c2λk

1 − σ

‖Hkgk‖
2

gT
k Hkgk

. (3.15)

Because Hk is a positive definite matrix, we have

‖Hkgk‖
2

gT
k Hkgk

≤ tr(Hk).

Since H1 = I, we deduce the relation

tr(Hk+1) ≤
c2λk

1 − σ
tr(Hk) ≤ . . . ≤ (

c2

1 − σ
)k(

k
∏

j=1

λj)tr(H1) = (
c2

1 − σ
)k(

k
∏

j=1

λj)n. (3.16)

By Lemma 3.1 and (3.14), we have

tr(Hk+1) ≥ c3
δT
k γk

‖γk‖2
≥

c3m

M2
. (3.17)

From (3.16) and (3.17), it follows that

c3m

M2
≤ (

c2

1 − σ
)k(

k
∏

j=1

λj)n.

By the above arguments we have

k
∏

j=1

λj ≥
c3m
M2

( c2

1−σ
)kn

≥ ck
1 ,

where c1 = 1−σ
c2

min {1, c3m
M2n

}.

Theorem 3.3 Assume that the Assumption H1 holds. Let {xk} be generated by Method A.

Then,

lim
k→+∞

inf ‖gk‖ = 0. (3.18)
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Proof The proof is by contradiction. Assume that the opposite of (3.18) holds, that is, there is

a positive constant µ > 0, such that ‖gk‖ ≥ µ, ∀k. Due to (3.5) and Lemma 3.1, we know

tr(Bk+1) = (n − 1 +
2Rk

δT
k γk

)
‖γk‖

2

δT
k γk

≤ (n − 1 +
M

m
)
M2

m
= c4, (3.19)

since Bk is a positive definite matrix, we have

‖gk‖
2

gT
k Hkgk

≤ tr(Bk).

Therefore,
µ2

gT
k Hkgk

≤
‖gk‖

2

gT
k Hkgk

≤ tr(Bk) ≤ c4,

gT
k Hkgk ≥

µ2

c4
= c5, (3.20)

k
∏

j=1

gT
j Hjgj ≥ ck

5 . (3.21)

Multiplying (3.11) with (3.21) and using the algebraic-geometric mean inequality, we have

(

∑k
j=1 λjg

T
j Hjgj

k
)k ≥

k
∏

j=1

λjg
T
j Hjgj ≥ (c1c5)

k = ck
6 . (3.22)

It implies
k

∑

j=1

λjg
T
j Hjgj ≥ kc6.

Let k → +∞. We have
+∞
∑

j=1

λjg
T
j Hjgj ≥ +∞.

By dj = −Hjgj and (3.7), we obtain

+∞ ≤

+∞
∑

j=1

λjg
T
j Hjgj =

+∞
∑

j=1

(−λjg
T
j dj) ≤

1

β

+∞
∑

j=1

(fj − fj+1),

which contradicts Assumption H1(i). Therefore,

lim
k→+∞

inf ‖gk‖ = 0.

4. Hybrid memoryless non-quasi-Newton method

In this section, we will derive a hybrid method for obtaining a globally convergent iteration

under the weaker condtions based on the memoryless non-quasi-Newton method in Section 3.

First, we let

K̄ = {k|
Rk

‖δk‖2
>

ε1‖gk‖
α

γT
k δk

}, α > 0, ε1 > 0.
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Denote the memoryless non-quasi-Newton formula by HNEW
k+1 and Perry-Shanno memoryless

quasi-Newton formula by HPS
k+1, i.e.,

HNEW
k+1 =

δT
k γk

‖γk‖2
I +

δkδT
k

δk
Tγk

−
γkδT

k + δkγT
k

‖γk‖2
+

δkδT
k

2Rk

,

HPS
k+1 =

δT
k γk

‖γk‖2
I + 2

δkδk
T

δT
k γk

−
1

‖γk‖2
(γkδT

k + δkγT
k ).

Let

Hk+1 =

{

HNEW
k+1 , if k ∈ K̄,

HPS
k+1, otherwise.

(4.1)

We make the following assumptions

H2 (i) f(x) ∈ C2, and is a convex function in D2, where the level set D2 = {x ∈ Rn|f(x) ≤

f(x1)} is bounded; that is, there exists a positive constant L2 > 0 such that ‖x‖ ≤ 1
2L2, ∀x ∈ D2.

(ii) g(x) satisfies Lipschitz condition: ∃L3 > 0, ‖g(x) − g(y)‖ ≤ L3‖x − y‖, ∀x, y ∈ D2.

Replace Hk+1 with (4.1) in Method A, then we obtain the hybrid memoryless non-quasi-

Newton method and name it as Method B.

Theorem 4.1 Assume that Assumption H2 holds. Let the sequence {xk} be generated by

Method B. Suppose ∃µ > 0, such that ‖gk‖ ≥ µ hold for all k. Then there exist M1, M2, M3 > 0,

such that

M1 ≤
γT

k δk

2Rk

≤ M2, (4.2)

‖γk‖
2

γT
k δk

≤ M3. (4.3)

Proof Let D∗
2 denote the convex closure of the level set D2, that is, D∗

2 is the smallest closed

convex set containing D2. Since D2 is bounded, D∗
2 is bounded, too. By the continuity of Hesse

matrix G(x), there exists M ′ > 0, such that ‖G(x)‖ ≤ M ′ for all x ∈ D∗
2 . Since HPS

k+1 is a positive

definite matrix, Method B is a descented method. The minimization sequence {xk} ⊂ D2, then

xk + θδk = (1 − θ)xk + θxk+1 ∈ D∗
2 for all 0 ≤ θ ≤ 1. Therefore,

Rk = fk+1 − fk − gT
k δk =

∫ 1

0

∫ θ

0

δT
k G(xk + θδk)dαdθ

≤

∫ 1

0

∫ θ

0

‖δk‖‖G(xk + θδk)δk‖dαdθ

≤
M ′

2
‖δk‖

2.

If k ∈ K̄, by (3.8), we know

γT
k δk > ε1

‖δk‖
2‖gk‖

α

Rk

≥
2ε1µ

α

M ′
. (4.4)

From (i) in Assumption H2, we have ‖δk‖
2 ≤ L2

2, then

‖δk‖
2

γT
k δk

≤
M ′L2

2

2ε1µα
. (4.5)
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Since

γT
k δk ≤ ‖γk‖‖δk‖ ≤ L3‖δk‖

2, (4.6)

and (4.5), (4.6), we have
2ε1µ

α

M ′L2
2

≤
γT

k δk

‖δk‖2
≤ L3. (4.7)

By (4.7) and the definition of K̄, we obtain

2Rk

‖δk‖2
≥

2ε1‖gk‖
α

γT
k δk

≥
2ε1µ

α

L2
2L3

. (4.8)

From (4.7) and (4.8), it implies that

4ε1µ
α

(M ′L2)2
≤

γT
k δk

2Rk

=
γT

k δk

‖δk‖2

‖δk‖
2

2Rk

≤
(L2L3)

2

2ε1µα
.

Let M1 = 4ε1µα

(M ′L2)2
, M2 = (L2L3)

2

2ε1µα , then (4.2) holds. By (4.5), we have

‖γk‖
2

γT
k δk

≤
M ′L2

3‖δk‖
2

2ε1µα
2

= M ′M2. (4.9)

If k /∈ K̄, then there exists G, such that
∫ 1

0 G(xk + tδk)dtδk = Gδk, t ∈ (0, 1); that is, γk =

gk+1−gk = Gδk. By Assumption H2(1̇) we know, G is a semi-positive definite matrix. Thus we let

zk = G
1

2 δk, where G
1

2 G
1

2 = G. By Assumption H2, there exist M ′ > 0, ‖G(xk)‖ ≤ M ′, ∀xk ∈ D2.

Then
γT

k γk

γT
k δk

=
δT
k G

2
δk

δT
k Gδk

=
zT

k Gzk

zT
k zk

≤ M ′.

We take M3 = max{M ′M2, M
′}, then (4.3) holds.

Theorem 4.2 If problem (1.1) satisfies Assumption H2, and the sequence {xk} is generated by

Method B, then we have

lim
k→+∞

inf ‖gk‖ = 0. (4.10)

Proof First we prove that ∃c7 > 0,
∏k

j=1 λj ≥ ck
7 , where λ1, λ2, . . . , λk are generated by Method

B. By (4.2) and (3.14), we know

tr(HNEW
k+1 ) ≥ (n − 1 + M1)

δT
k γk

‖γk‖2
≥

c′3m

M3
,

c′3 = n − 1 + M1. Since

tr(HPS
k+1) = (n − 2)

sT
k yk

‖yk‖2
+ 2

‖sk‖
2

sT
k yk

≥ n
γT

k δk

‖γk‖2
≥

n

M ′
,

let t1 = min{
c′
3
m

M3
, n

M ′
}. Then

tr(Hk+1) ≥ t1. (4.11)

Since Hk+1 is a positive definite matrix, by (3.15) and using the definition of HPS
k+1, we have

tr(HNEW
k+1 ) ≤

c2λk

1 − σ

‖Hkgk‖
2

gT
k Hkgk

≤
c2λk

1 − σ
tr(Hk),
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tr(HPS
k+1) ≤

nλk

1 − σ

‖Hkgk‖
2

gT
k Hkgk

≤
nλk

1 − σ
tr(Hk).

By c2 = n − 1 + n
M

≥ n, we have tr(Hk+1) ≤
c2λk

1−σ
tr(Hk). Thus

tr(Hk+1) ≤
c2λk

1 − σ
tr(Hk) ≤ . . . ≤ (

c2

1 − σ
)k(

k
∏

j=1

λj)tr(H1) = (
c2

1 − σ
)k(

k
∏

j=1

λj)n.

From (4.11), we have
k

∏

j=1

λj ≥
t1

n( c2

1−σ
)k

≥ (c7)
k,

where c7 = 1−σ
c2

min{1, t1
n
}.

Assume there exists µ > 0, such that ‖gk‖ ≥ µ. By (4.3) and (3.19), we have

tr(BNEW
k+1 ) ≤ c4, tr(BPS

k+1) = n
‖γk‖

2

δT
k γk

≤
n

M ′
,

where c4 = (n − 1 + M
m

)M2

m
. Set t2 = min{c4,

n
M ′

}. Then

tr(Bk+1) ≤ t2.

By a similar way to the proof of Theorem 3.3, we can obtain

lim
k→+∞

inf ‖gk‖ = 0.

5. Numerical experiments

In order to test the given methods in this paper, we performed some numerical experiments,

and compared DY conjugate gradient method[12] with both Wolfe linesearch and BFGS method.

All of the test functions are from [11].

Test function Function name

BADSCD powell badly scaled functing

FROTH freudenstein and roth

BOX box three-dimensional function

SING powell singular function

KOWOSB kowalik and osborne function

SINGX extended powell singular function

WOOD wood function

PENALTY I penalty function I

VARDIM variable dimensioned function

ROSEX extended rosenbrock function

TRID broyden tridiagonal function

Table 5.1 List of test problems
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Table 5.2 shows the number of iterations and Table 5.3 shows the CPU carry-out time (sec-

onds). All of the methods terminate with ‖g(xk)‖ ≤ 10−6. We take σ = 0.01, β = 0.1, ε = 10−6

in Wolfe linesearch. In Method B we take α as follows: if ‖gk‖ ≥ 1, then α = 0.01; if ‖gk‖ < 1,

then α = 1. “F” denotes the number of iterations over 5000 or the CPU carry-out time over 600

seconds.

Problem Dimension Method A Method B BFGS

Ite. Ite. Ite.

BADSCD 2 101 96 F

FROTH 2 11 11 8

BOX 3 58 16 15

SING 4 263 189 21

KOWOSB 4 378 174 15

SINGX 5000 169 /209 F

WOOD 1000/5000 188/263 188/266 F/F

PENALTY I 1000/5000 39/41 39/41 56/50

VARDIM 50/100/200/1000 11/13/14/16 11/13/14/16 13/10/F/17

ROSEX 50/100/1000/5000 19/20/19/18 19/20/19/18 42/42/21/F

TRID 100/200/1000/5000 34/38/35/35 34/38/35/35 74/83/78/75

Table 5.2 Test results

Problem Dimension Method A Method B DY

CPU(Sec.) CPU(Sec.) CPU(Sec.)

BADSCD 2 3 3 1

FROTH 2 2 2 65

BOX 3 3 2 3

SING 4 7 6 54

KOWOSB 4 5 5 7

SINGX 5000 512 581 F

WOOD 1000/5000 223/1112 217/1424 F/F

PENALTY I 1000/5000 57/259 45/227 30/112

VARDIM 50/100/200/1000 2/3/5/23 1/2/4/20 F/3/F/F

ROSEX 50/100/1000/5000 3/4/27/118 1/3/24/64 3/4/35/195

TRID 100/200/1000/5000 6/12/44/212 4/9/41/149 5/29/57/298

Table 5.3 Test results (CPU)

From the numerical results in Tables 5.2 and 5.3, we see that the non-quasi Newton method

and the hybrid non-memoryless method are sometimes more efficient. Especially the memoryless

non-quasi-Newton method requires little storage and computation. So it is able to efficiently

solve large scale optimization problems.



Derivation and global convergence for memoryless non-quasi-Newton method 433

References

[1] PERRY J M. A class of conjugate gradient algorithms with a two step variable metric memory [J]. Discussion
paper 269. Center for Mathematical Studies in Economic and Management Science,Northwestern University,

1977.

[2] SHANNO D F. On the convergence of a new conjugate gradient algorithm [J]. SIAM J. Numer. Anal., 1978,
15(6): 1247–1257.

[3] SHANNO D F. Conjugate gradient methods with inexact searches [J]. Math. Oper. Res., 1978, 3(3): 244–256.
[4] POWELL M J D. Restart procedures for the conjugate gradient method [J]. Math. Programming, 1977,

12(2): 241–254.

[5] TOINT PH L. Global convergence of the patitioned BFGS algorithms for convex partially separable opti-

mization [J]. Math. Programming, 1997, 77: 69–94.

[6] XI Shaolin. Nonliner Optimization Methods [M]. Beijing: Higher Education Press, 1992.
[7] YUAN Yaxiang. A modified BFGS algorithm for unconstrained optimization [J]. IMA J. Numer. Anal.,

1991, 11(3): 325–332.

[8] ZHAO Yunbin, DUAN Yurong. Derivation and Property of Pesudo-Newton-N Class. Derivation and Property
of Pesudo-Newton-N Class, Communication On Applied Mathematics and Computation, 1996,10(1), pp.82-

90.
[9] DAI Yuhong. Convergence properties of a memoryless quasi-Newton method [J]. J. Numer. Methods Comput.

Appl., 2000, 21(1): 28–32

[10] CHEN Lanping, JIAO Baocong. A Class of Non-Quasi-Newton methods and its convergence [J]. Comm Appl.
Computer, 1997, 11(2): 9–17.
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