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Abstract In this paper, a new class of memoryless non-quasi-Newton method for solving un-
constrained optimization problems is proposed, and the global convergence of this method with
inexact line search is proved. Furthermore, we propose a hybrid method that mixes both the
memoryless non-quasi-Newton method and the memoryless Perry-Shanno quasi-Newton method.
The global convergence of this hybrid memoryless method is proved under mild assumptions.
The initial results show that these new methods are efficient for the given test problems. Espe-
cially the memoryless non-quasi-Newton method requires little storage and computation, so it is
able to efficiently solve large scale optimization problems.
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1. Introduction

The problem we consider is unconstrained optimization calculation:
min f(z), =€ R", (1.1)

where f: R* — R, f € C?.

It is known that the memoryless quasi-Newton methods have been successfully used for
solving problem (1.1). The memoryless quasi-Newton methods were originated with the work
of Perryll and Shanno(?3) in the 1970s, and have been developed and studied then by many
authors: Perryl], Powell¥, and Dail® et al.. However, it still remains unanswered for the

25,61 At the same time Huang(1970) proposed a class of update

general objective functions!
formulas, where the updated matrix need not satisfy quasi-Newton equation, only need the
generated search directions are conjugacy when the method is used for the convex quadratic
functions. This implies that the method possesses property of quadratic termination. In 1991,

Yuan!” proposed a quasi Newton method. Zhao and Duan!® established a non-quasi-Newton
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equation and proposed a pseudo-Newton method in 1996. Chen and Jiaol'?! proposed a new
non-quasi-Newton method in 1997. In this paper we derive a new class of memoryless formula
from non-quasi-Newton equation, in which the update matrices are symmetric positive definite,
and prove that the method with inexact line search converges globally. Numerical experiments

indicate that it is able to efficently solve larger scale optimization problems.

2. Derivation of memoryless non-quasi-Newton method

Suppose that the objective function f(z) € C?%, g(z) = Vf(z), gr = g(zk), fr = f(zk),
Yk = gk+1 — gk and Oy = xp11 — X, when ||dg| is sufficiently small (|| - || denotes its Euclidean
norm). Hesse matrix Gy, for xj possesses the property:

Rk ~ %6kTGk6k, (21)

where Ry = fr+1 — fr — g Tor. Specially, the above formula equality holds true strictly for

quadratic functions. Consider Hestenes-Stiefel conjugate gradient method iteration formula:

Th+1 = Tk + A\edy, (2.2)
dl = —491,
Vo gt
A1 = —gr1 + E—di, k>2, (2.3)
Vi Ak
where )y, is a search steplength. Notice that (2.3) can be written as the following form,
deyp
diy1 = —(I — =) g1,
+ ( ’Ydek) +

where [ is a unit matrix. Since 0 = 41 — T = Apdi, we have

diyyE _ S
Yody  vEok

Sk
diy1=—( - T—;)9k+1' (2.4)
Vi Ok
Denote Hp 1 =1 — 6’%7’?. Then
Tr Ok
dg+1 = —Hpr19k+1-

To make Hyy; inherit the positive definiteness of Hy, we update Hgyq by adding an update

term. For convenience, the updated matrix is still denoted by Hy41. Hence

o + 0 | wll® o v, Gk0R
H =1- Oplp + —==. 2.5
We denote the inverse of Hyy1 by Biy1 = Hk+1_l. Then
S0 2R
Bojr=1— =2k 4 _ZF T (2.6)

lokll> (65 %)2
We require By to satisfy the non-quasi-Newton equation!®!

68 Bry101 = 2Ry (2.7)
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In order to decrease the iterative error, multiplying Hy41 by a coefficient ¢, we obtain

_ wop oy Il o ory |, kOR
Hiy1 = ti(I — T O T)? 0k0; ) + 2R,
T
where t;, = ﬁ,’;:”’;. Then
Hip = SE0 oy O bl + 0 | 0ud (28)
Ivll®™ 6 RAR 2R
and
[lve 1 [lve T, 2Rk T
Bri1 = I— O0r0, + YeVie - 2.9
R A AP M P P 29)

In fact, (2.9) satisfies non-quasi-Newton equation(2.7).

We call (2.8) and (2.9) the memoryless non-quasi-Newton update formulas. For quadratic
functions, (2.8) and (2.9) are the Perry-Shanno memoryless quasi-Newton formulas. For non-
quadratic functions, (2.8), (2.9) are not the same as the Perry-Shanno memoryless quasi-Newton
formulas.

The following theorem shows the By, is a positive definite matrix in update Formula (2.9).
Theorem 2.1 If R, > 0 and 6,3% > 0 for all k > 1, then By is a positive definite matrix.

Proof For all z € R,z # 0, we have

2 T 2 T 2
T”/WCH 7— OOy, )Z_ |‘77€H (||ZH2_ (Z 6/€) ) >0,

Vi Ok 1661277 70w 10k
2Ry 2Ry
2 )7 = g (2T )? 2 0,
(6F)2 (03 )2

and it is impossible that the equality in the above two inequalities holds simultaneously. There-
fore, 2T By 12 > 0; that is, By is a positive definite matrix.
3. The global convergent of memoryless non-quasi-Newton method

We make the following assumptions:

H1 (i) f € C?, and the level set D1 = {x € R"|f(z) < f(z1)} is bounded, that is, there exists
L; >0 such that |z| < %Ll, Vx € Ds.
(ii) There exist positive numbers M > m > 0, for all x € Dy,u € R", such that
mllull® < u' G (z)u < Mljull?, (3.1)

where G(z) is Hesse matrix of f(z).

Consider the following iteration
Th+1 = Tk + A\pdi, (3.2)

dl = —J1, (33)
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diy1 = —Hp119541 = _Bk_.&lngrl
Opgrt1  Opgrt1  Opgri O grt 8 Vi
= (= — ORIy g RO SRR e, k> 2, (3.4)
vell> o 2Ry [lyelI? e lI?
where
(oAl (oAl T
Biy1 = I—- KOE + e VEVE 3.5
o T Ot G (35
5T”yk 5k5T "yk(ST + 5k”y 5k5T
Hy=B ! =271 k _ Tk k k. (3.6)
i I [o7Y & 2Ry,
In this paper, we require the steplength A to satisfy Wolfe linesearch, that is,
F@k+ Medi) < fzk) + BAegp di, (3.7)
9(@r + Med) Tdi, > ogp dy, (3.8)

where 3 € (0,1),0 € (3,1). The sketch of the memoryless non-quasi-Newton method is as
follows:

Step 1. Choose starting point z1,dy = —g1 = — vV f(21),e > 0,k := 1.

Step 2. If ||gx|| < €, then stop; otherwise, determine a steplength \; by using Wolfe linesearch.
Set g1 1= xp + Apdy.

Step 3. Determine 8 = Tip41 — Tk, Gror1 = VI (Tkt1), Ve = Ght1 — g If —gp Td, < e, then
di+1 = —gk+1, set k := k + 1, go to Step 2; otherwise, go to Step 4.

Step 4. Compute di41 by using (3.4), set k:= k+ 1, go to Step 2.

In the following, we will write the non-memoryless quasi-Newton method as Method A.

Lemma 3.1 Assume that Assumption H1 holds. Then Method A satisfies
mo_ VLo, < M

— — 3.9

M~ 2R, — m’ (3.9)
lyell® _ M2

6k = (3.10)

Proof Since )
Tk = / Gz, + toy)0pde,
0

from which and Assumption H1, we have

[l < M0,

ml|Gel|2 < 4T, = 5T/ Gl + t0x)dt0s < M]|54]2,

%||5k”2 < Ry = / / 5;5G(33k + adk)dkdadt < 7”&@”27
0 0

2 2
el Mloelloel  M*
W mlaP S m

Thus
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Theorem 3.2 If for any k > 1, steplengthes A1, Ao, ..., A\ are generated by Method A. Then

there exists a positive constant c¢; > 0 such that

k
I1% = (3.11)
j=1
Proof By (3.6), we have
O Yk 3 i 1011
tr(Hiy1) = (n— 2) o + (14 £ : 3.12
(i) = (n = 2) phs + (1 S e s (312)
Since (35 7%)* < 10k 1%, we have
M. ||6]? |16k
tr(H <(n—-14— = 3.13
H(His) (=14 Tt s = et (313)
m. G Op Yk
tr(Hp1) > (n— 1+ — ) = g (3.14)
" M |2 (o731
WhereCQZTL—1+%,C3:TL—1+%.
By 5k = )\kdk = )\k(_Hkgk) and (38), we have
ek || Hig)?
tr(H, < T 3.15
rHin) < 1 -0 g Higk (3.15)
Because Hy, is a positive definite matrix, we have
H 2
HT’Cig’“H < tr(Hy).
(o)™ Hi. gy,
Since Hy = I, we deduce the relation
Co AL c c b
2 2 \k _ 2 Nk .
tr(Hy1) < 7 tr(Hy) << (1) (J];[l Aj)te(Hy) = (1) (Fl Aj)n. (3.16)
By Lemma 3.1 and (3.14), we have
STy c3m
tr(H, >3l > 2 3.17
Hllent) 2 oz 2 572 1
From (3.16) and (3.17), it follows that
k
c3m C2 k
e =) AT
j=1
By the above arguments we have
k c3m
A\ > 01\472 > ck,
31;[1 ’ (130)kn !
where ¢; = 1;—2‘7 min {1, {37~}

Theorem 3.3 Assume that the Assumption HI holds. Let {x} be generated by Method A.
Then,
kginoo inf ||gx|| = 0. (3.18)



428 JIAO B C, YU J J and CHEN L P

Proof The proof is by contradiction. Assume that the opposite of (3.18) holds, that is, there is
a positive constant > 0, such that ||gx|| > p, Vk. Due to (3.5) and Lemma 3.1, we know

2 M M?
[l (n—1+-2)22 — ¢y, (3.19)
k’}/k m m

tr(Bry1) = (n— 1+ —

IN

since By is a positive definite matrix, we have

llgr|? < tx(By)
9F Higr

Therefore,

2 2
pm gl

9FHigr — 93 Hegr

< tr(Byg) < cq,

2

i Higr > B =, (3.20)
Cq
k
[[9/Hig = . (3.21)
j=1

Multiplying (3.11) with (3.21) and using the algebraic-geometric mean inequality, we have

i Mg Hgi
(%)k > [T NoFHigy > (cres)* = b (3.22)
j=1
It implies
k
Z/\Jg;FHJgJ Z kCG.
j=1
Let £ — +o00. We have
“+o0
> Mg Hig; > +oc.
j=1
By d; = —Hjg; and (3.7), we obtain
+o0 +o00 1 +oo
+oo < Z)\jg;rngj = Z(—)\jg;-rdj) < B (f] - fj+1)7
j=1 Jj=1 J=1

which contradicts Assumption H1(i). Therefore,

lim inf [|g4[| = 0.
Jim inf {lge ] =0

4. Hybrid memoryless non-quasi-Newton method

In this section, we will derive a hybrid method for obtaining a globally convergent iteration
under the weaker condtions based on the memoryless non-quasi-Newton method in Section 3.

First, we let

- Ry, e1lgell®
K =1k >
T AR

}a>0,e; > 0.
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Denote the memoryless non-quasi-Newton formula by H ,?ffv and Perry-Shanno memoryless

quasi-Newton formula by H['S, i.e.,

HNEW _ % Vi 7 k0 B YOr + 0kyE k0L

SA PN R S |12 2Ry’
5T”yk 5k5kT 1
HPS = k2142 — (’}/k(gT + 5k”yT).
P 2 STy el g
Let
HNEW ifk e K,
Hyr = kt1o 1 (4.1)
H}:El, otherwise.

We make the following assumptions

H2 (i) f(z) € C?, and is a convex function in Ds, where the level set Dy = {z € R"|f(x) <
f(x1)} is bounded; that is, there exists a positive constant Ly > 0 such that ||z|| < 1Ls,Vz € Ds.
(ii) g(x) satisfies Lipschitz condition: 3L3 > 0, [|g(z) — g(y)|| < Ls||x — y||,Vz,y € Ds.
Replace Hyi1 with (4.1) in Method A, then we obtain the hybrid memoryless non-quasi-
Newton method and name it as Method B.

Theorem 4.1 Assume that Assumption Hy holds. Let the sequence {x} be generated by
Method B. Suppose 3p1 > 0, such that ||gx|| > p hold for all k. Then there exist My, My, M3 > 0,

such that .
V& d

k
M, < 2= < M. 4.2
1> 2Rk = 2 ( )
llvell
< Mj. 4.3
o, =0 (43)

Proof Let D} denote the convex closure of the level set Dy, that is, D3 is the smallest closed
convex set containing Dy. Since Dy is bounded, D3 is bounded, too. By the continuity of Hesse
matrix G(z), there exists M’ > 0, such that ||G(z)|| < M’ for all z € Dj. Since H} 7| is a positive
definite matrix, Method B is a descented method. The minimization sequence {zy} C Da, then
xp + 00, = (1 — @)xg, + a1 € D for all 0 < 6 < 1. Therefore,

1 0
Ry, = fryr — fr— 9i 0k = / / 51 Gy, + 00%)dadd
0 0

1 0
< [ [ 11 + 655 dads
0 JoO

M/
< |6k
< 2|| kll

If k € K, by (3.8), we know

K} 2 « 2 «
5 o 1Pl | 227

4.4

Ry - M ( )
From (i) in Assumption H2, we have [|d;||* < L3, then
ol|?  M'L3

6?3 s

Yo T 28’
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Since
Ve 6 < 1vellllokll < Lal|6k|, (4.6)

and (4.5), (4.6), we have
1% _ i O
MIL3  lox?

By (4.7) and the definition of K, we obtain

< Ls. (4.7)

2Rk > 251”ng > 281#

. 4.8
6P = e Tk ()
From (4.7) and (4.8), it implies that
derp® PSP _ (LaLs)?
(M/L2)2 — 2Ry H5k||2 2R, — 251#0‘
Let My = (et My = {3257 then (4.2) holds. By (4.5), we have
2 M/L2 2
nl? _ MERIGIE _ oy (4.9)

Yook T~ 2e1p8

If k ¢ K, then there exists G, such that fol Gz + t0r)dtsy = Gox,t € (0,1); that is, v, =
ght1—9r = Goy. By Assumption H2(1) we know, G is a semi-positive definite matrix. Thus we let
2z = G: 1, where G'G* = C. By Assumption H2, there exist M’ > 0, |G (x1)|| < M',Vx) € Da.
Then

”yg'yk _ 5,?625k _ zgazk <\

Yok 6F GOy e

We take M3 = max{M’Ms, M'}, then (4.3) holds.

Theorem 4.2 If problem (1.1) satisfies Assumption H2, and the sequence {z} is generated by
Method B, then we have
lim inf =0. 4.10
G inf gl (4.10)

Proof First we prove that dc; > 0, H?Zl Aj > ck, where A1, \a, ..., A\ are generated by Method

B. By (4.2) and (3.14), we know

5 !
tr(HNEWY) > (n — 1+ My) b2k > ST

Iell? = Mg
c3 =mn — 14 M. Since
T 2 T
wlHi) = (-2 |(\S;ky||k2 . |L%k;k - ||7§kﬁ|k2 - %’
let t; = mln{ o =, 15 }. Then
tr(Hgq1) > t1. (4.11)
Since Hy41 is a positive definite matrix, by (3.15) and using the definition of H} +17 we have

Mo ||H A
(YY) < S koD ey
1—O'ngkgk 1—0
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PS
tr(Hk-l-l) < 1_o gnggk

431

n\e || Hrgel? < A

k tl“(Hk).

“1-0

By ca =n— 1+ 47 > n, we have tr(Hp41) < ‘fj\g"tr(Hk). Thus

A
tr(Hip) < 7

From (4.11), we have

where ¢; = 1;—2" min{1, 2}

tr(Hy) < <

k
C

S () = (

<.

Assume there exists p > 0, such that ||gx|| > p. By (4.3) and (3.19), we have

tr(BRfY) < s, t(BiE) =n

Iyl _ n

55’}% - M,

where ¢4 = (n — 1+ %)%2 Set t = min{cy, 177 }. Then

tr(Bg+1) < ta.

By a similar way to the proof of Theorem 3.3, we can obtain

5. Numerical experiments

lim inf||gx|| = 0.
Jim inf {lge ] =0

In order to test the given methods in this paper, we performed some numerical experiments,
and compared DY conjugate gradient method!*? with both Wolfe linesearch and BFGS method.

All of the test functions are from [11].

Test function

Function name

BADSCD
FROTH
BOX
SING
KOWOSB
SINGX
WOOD
PENALTY I
VARDIM
ROSEX
TRID

powell badly scaled functing
freudenstein and roth

box three-dimensional function
powell singular function

kowalik and osborne function
extended powell singular function
wood function

penalty function I

variable dimensioned function
extended rosenbrock function

broyden tridiagonal function

Table 5.1 List of test problems
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Table 5.2 shows the number of iterations and Table 5.3 shows the CPU carry-out time (sec-
onds). All of the methods terminate with ||g(zx)|| < 107%. We take o = 0.01,8 = 0.1, = 1076
in Wolfe linesearch. In Method B we take « as follows: if ||gx|| > 1, then a = 0.01; if || gr|| < 1,

then o = 1. “F” denotes the number of iterations over 5000 or the CPU carry-out time over 600

seconds.
Problem Dimension Method A Method B BFGS
Tte. Ite. Ite.
BADSCD 2 101 96 F
FROTH 2 11 11 8
BOX 3 58 16 15
SING 4 263 189 21
KOWOSB 4 378 174 15
SINGX 5000 169 /209 F
WOOD 1000/5000 188/263 188/266 F/F
PENALTY I | 1000/5000 39/41 39/41 56/50
VARDIM 50,/100/200/1000 11/13/14/16 | 11/13/14/16 | 13/10/F/17
ROSEX 50/100/1000/5000 | 19/20/19/18 | 19/20/19/18 | 42/42/21/F
TRID 100/200/1000/5000 | 34/38/35/35 | 34/38/35/35 | 74/83/78/75
Table 5.2 Test results
Problem Dimension Method A Method B DY
CPU(Sec.) CPU(Sec.) | CPU(Sec.)

BADSCD 2 3 3 1
FROTH 2 2 2 65
BOX 3 3 2 3
SING 4 7 6 54
KOWOSB 4 5 5 7
SINGX 5000 512 581 F
WOOD 1000/5000 223/1112 217/1424 F/F
PENALTY I | 1000/5000 57/259 45/227 30/112
VARDIM 50/100/200/1000 2/3/5/23 1/2/4/20 F/3/F/F
ROSEX 50/100/1000/5000 | 3/4/27/118 | 1/3/24/64 | 3/4/35/195
TRID 100/200/1000/5000 | 6/12/44/212 | 4/9/41/149 | 5/29/57/298

Table 5.3 Test results (CPU)

From the numerical results in Tables 5.2 and 5.3, we see that the non-quasi Newton method

and the hybrid non-memoryless method are sometimes more efficient. Especially the memoryless

non-quasi-Newton method requires little storage and computation. So it is able to efficiently

solve large scale optimization problems.
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