Hopf Algebras in Group Yetter-Drinfel'd Categories

SHEN Bing Liang, WANG Shuan Hong
(Department of Mathematics, Southeast University, Jiangsu 210096, China)
(E-mail: bingliangshen@yahoo.com.cn; shuanwang2002@yahoo.com)

Abstract

In this note we first show that if H is a finite-dimensional Hopf algebra in a group Yetter-Drinfel'd category ${ }_{L}^{L} \mathcal{Y} \mathcal{D}(\pi)$ over a crossed Hopf group-coalgebra L, then its dual H^{*} is also a Hopf algebra in the category ${ }_{L}^{L} \mathcal{Y} \mathcal{D}(\pi)$. Then we establish the fundamental theorem of Hopf modules for H in the category ${ }_{L}^{L} \mathcal{Y} \mathcal{D}(\pi)$.

Keywords Crossed Hopf group-coalgebra; group-comodulelike object; group-(co)module (co)algebra.
Document code A
MR(2000) Subject Classification 16W30
Chinese Library Classification O153.3

1. Introduction

Hopf group-coalgebras which are generalizations of ordinary Hopf algebras, were introduced by Turaev ${ }^{[1]}$ and studied in [2] and [3]. On the one hand, crossed Hopf group-coalgebras play key roles in the theory of constructing homotopical invariant of 3-manifold ${ }^{[1]}$. On the other hand, the structure of a Hopf group-coalgebra is much more complicated than that of the usual Hopf algebra. In particular, the group Yetter-Drinfel'd category introduced by Zunino ${ }^{[4]}$ is more complicated than the ordinary Yetter-Drinfel'd category.

In the classical Hopf algebra theory, Sweedler showed that the dual of a finite-dimensional Hopf algebra is still a Hopf algebra and obtained the fundamental theorem of Hopf modules ${ }^{[5]}$. In 1998, Doi ${ }^{[6]}$ showed that if H is a finite-dimensional Hopf algebra in the Yetter-Drinfel'd category ${ }_{L}^{L} \mathcal{Y} \mathcal{D}$ over a Hopf algebra L, then its dual H^{*} is also a Hopf algebra in the category ${ }_{L}^{L} \mathcal{Y} \mathcal{D}$ and he proved the fundamental theorem of Hopf modules in ${ }_{L}^{L} \mathcal{Y} \mathcal{D}$. We remark here that although a lot of results of classical Hopf algebra theory can be generalized to Hopf group-coalgebras, we do not know why it works. This stimulates that the people are interested in some topics related to a Hopf group-coalgebra.

The main aim of this note is to generalize the Doi's results in [6] to the setting of a group Yetter-Drinfel'd category over a Hopf group-coalgebra.

The paper is organized as follows.
In Section 1, we will recall some basic notions related to a Hopf group coalgebra. In Section 2, we mainly show that if H is a finite-dimensional Hopf algebra in a group Yetter-Drinfel'd

Received date: 2007-10-31; Accepted date: 2008-07-07
Foundation item: the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20060286006); the National Natural Science Foundation of China (No. 10571026).
category ${ }_{L}^{L} \mathcal{Y} \mathcal{D}(\pi)$ over a crossed Hopf group-coalgebra L, then its dual H^{*} is also a Hopf algebra in the category ${ }_{L}^{L} \mathcal{Y} \mathcal{D}(\pi)$ (cf. Theorem 3.3). In Section 3, we establish the fundamental theorem of Hopf modules for H in the category ${ }_{L}^{L} \mathcal{Y} \mathcal{D}(\pi)$ (cf. Theorem 4.3).

2. Basic definitions and results

Throughout this paper, k denotes a fixed field. We will work over k. We always let π be a discrete group, L a crossed Hopf group-coalgebra with a bijective antipode S_{L}, and H a Hopf algebra in the π-Yetter-Drinfel'd category ${ }_{L}^{L} \mathcal{Y} \mathcal{D}(\pi)$.

We first recall from Turaev ${ }^{[1]}$ that a π-coalgebra is a family of k-spaces $C=\left\{C_{\alpha}\right\}_{\alpha \in \pi}$ together with a family of k-linear maps $\Delta=\left\{\Delta_{\alpha, \beta}: C_{\alpha \beta} \longrightarrow C_{\alpha} \otimes C_{\beta}\right\}_{\alpha, \beta \in \pi}$ (called a comultiplication) and a k-linear map $\varepsilon: C_{1} \longrightarrow k$ (called a counit), such that Δ is coassociative in the sense that,
(i) $\left(\Delta_{\alpha, \beta} \otimes i d_{C_{\gamma}}\right) \Delta_{\alpha \beta, \gamma}=\left(i d_{C_{\alpha}} \otimes \Delta_{\beta, \gamma}\right) \Delta_{\alpha, \beta \gamma}$, for any $\alpha, \beta, \gamma \in \pi$.
(ii) $\left(i d_{C_{\alpha}} \otimes \varepsilon\right) \Delta_{\alpha, 1}=i d_{C_{\alpha}}=\left(\varepsilon \otimes i d_{C_{\alpha}}\right) \Delta_{1, \alpha}$, for all $\alpha \in \pi$.

We use the Sweedler-like notation ${ }^{[2]}$ for the comultiplication in the following way: for any $\alpha, \beta \in \pi$ and $c \in C_{\alpha \beta}$, we write

$$
\Delta_{\alpha, \beta}(c)=c_{(1, a)} \otimes c_{(2, \beta)}
$$

A Hopf π-coalgebra is a π-coalgebra $L=\left(\left\{L_{\alpha}\right\}, \Delta, \varepsilon\right)$ endowed with a family of k-linear maps $S=\left\{S_{\alpha}: L_{\alpha} \longrightarrow L_{\alpha^{-1}}\right\}_{\alpha \in \pi}$ (called an antipode) such that
(a) each L_{α} is an algebra with multiplication m_{α} and unit element $1_{\alpha} \in L_{\alpha}$,
(b) $\varepsilon: L_{1} \rightarrow k$ and $\Delta_{\alpha, \beta}: L_{\alpha \beta} \rightarrow L_{\alpha} \otimes L_{\beta}$ are algebra maps, for all $\alpha, \beta \in \pi$,
(c) for each $\alpha \in \pi, m_{\alpha}\left(S_{\alpha^{-1}} \otimes i d_{L_{\alpha}}\right) \Delta_{\alpha^{-1}, \alpha}=\varepsilon 1_{\alpha}=m_{\alpha}\left(i d_{L_{\alpha}} \otimes S_{\alpha^{-1}}\right) \Delta_{\alpha, \alpha^{-1}}$.

The antipode $S=\left\{S_{\alpha}\right\}_{\alpha \in \pi}$ of L is said to be bijective if each S_{α} is bijective. The antipode of a Hopf π-coalgebra is anti-multiplicative and anti-comultiplicative, i.e., we have

$$
\begin{aligned}
S_{\alpha}(a b) & =S_{\alpha}(b) S_{\alpha}(a), \quad S_{\alpha}\left(1_{\alpha}\right)=1_{\alpha^{-1}} \\
\Delta_{\beta^{-1}, \alpha^{-1}} S_{\alpha \beta} & =T_{L_{\alpha^{-1}}, L_{\beta^{-1}}}\left(S_{\alpha} \otimes S_{\beta}\right) \Delta_{\alpha, \beta}, \quad \varepsilon S_{1}=\varepsilon
\end{aligned}
$$

for all $\alpha, \beta \in \pi, a, b \in L_{\alpha}$.
Furthermore, a Hopf π-coalgebra $L=\left(\left\{L_{\alpha}\right\}, \Delta, \varepsilon, S\right)$ is said to be crossed if it is endowed with a family of algebra isomorphisms $\Phi=\left\{\Phi_{\beta}: L_{\alpha} \rightarrow L_{\beta \alpha \beta^{-1}}\right\}_{\alpha, \beta \in \pi}$ (the crossing) such that each Φ_{β} preserves the comultiplication and the counit, i.e., for all $\alpha, \beta, \gamma \in \pi$,

$$
\left(\Phi_{\beta} \otimes \Phi_{\beta}\right) \circ \Delta_{\alpha, \gamma}=\Delta_{\beta \alpha \beta^{-1}, \beta \gamma \beta^{-1}} \circ \Phi_{\beta}, \quad \varepsilon \Phi_{\beta}=\varepsilon
$$

and Φ is multiplicative in the sense that $\Phi_{\alpha \beta}=\Phi_{\alpha} \circ \Phi_{\beta}$, for all $\alpha, \beta \in \pi$.
Let L be a crossed Hopf π-coalgebra. Then one has that $\Phi_{1} \mid L_{\alpha}=i d_{L_{\alpha}}, \Phi_{\beta}^{-1}=\Phi_{\beta^{-1}}$ for any $\alpha \in \pi$ and Φ preserves the antipode, i.e., $\Phi_{\beta} S_{\alpha}=S_{\beta \alpha \beta^{-1}} \Phi_{\beta}$ for all $\alpha, \beta \in \pi$.

Let $C=\left\{C_{\alpha}\right\}_{\alpha \in \pi}$ be a π-coalgebra and V a k-vector space. Then we recall from Wang ${ }^{[3]}$ that a left π-C-comodulelike object is a couple $V=\left(V, \rho^{V}=\left\{\rho_{\lambda}^{V}\right\}\right)$, where for any $\lambda \in \pi, \rho_{\lambda}^{V}: V \rightarrow$ $C_{\lambda} \otimes V$ is a k-linear map (comodulelike structure), which is denoted by $\rho_{\lambda}^{V}(v)=v_{(-1, \lambda)} \otimes v_{(0,0)}$, such that the following conditions are satisfied:
(I) The couple V is coassocitative in the sense that, for any $\lambda_{1}, \lambda_{2} \in \pi$, we have

$$
\left(i d_{C_{\lambda_{1}}} \otimes \rho_{\lambda_{2}}^{V}\right) \circ \rho_{\lambda_{1}}^{V}=\left(\Delta_{\lambda_{1}, \lambda_{2}} \otimes i d_{V}\right) \circ \rho_{\lambda_{1}, \lambda_{2}}^{V}
$$

i.e., $v_{\left(-1, \lambda_{1}\right)} \otimes v_{(0,0)\left(-1, \lambda_{2}\right)} \otimes v_{(0,0)(0,0)}=v_{\left(-1, \lambda_{1} \lambda_{2}\right)\left(1, \lambda_{1}\right)} \otimes v_{\left(-1, \lambda_{1} \lambda_{2}\right)\left(2, \lambda_{2}\right)} \otimes v_{(0,0)} \triangleq v_{\left(-2, \lambda_{1}\right)} \otimes$ $v_{\left(-1, \lambda_{2}\right)} \otimes v_{(0,0)}$, for any $v \in V, \lambda_{1}, \lambda_{2} \in \pi$.
(II) The couple V is counitary in the sense that $\left(\varepsilon \otimes \mathrm{id}_{V}\right) \circ \rho_{1}^{V}=\mathrm{id}_{V}$.

Let L be a crossed Hopf π-coalgebra with a bijective antipode S_{L}. Fix $\alpha \in \pi$, a left-left α-Yetter-Drinfel'd module ${ }^{[3]}$ is a left π - L-comodulelike object $V=\left(V, \rho^{V}=\left\{\rho_{\lambda}^{V}\right\}\right)$ where V is a left L_{α}-module for all $\alpha \in \pi$, satisfying the compatibility condition:

$$
\begin{equation*}
l_{(1, \lambda)} v_{(-1, \lambda)} \otimes l_{(2, \alpha)} \rightarrow v_{(0,0)}=\left(l_{(1, \alpha)} \rightarrow v\right)_{(-1, \lambda)} \Phi_{\alpha}\left(l_{\left(2, \alpha^{-1} \lambda \alpha\right)}\right) \otimes\left(l_{(1, \alpha)} \rightarrow v\right)_{(0,0)} \tag{1}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\rho_{\lambda}^{V}(l \rightarrow v)=l_{(1, \lambda \alpha)(1, \lambda)} v_{(-1, \lambda)} \bar{S}_{\lambda} \Phi_{\alpha}\left(l_{\left(2, \alpha^{-1} \lambda^{-1} \alpha\right)}\right) \otimes l_{(1, \lambda \alpha)(2, \alpha)} \rightarrow v_{(0,0)} \tag{2}
\end{equation*}
$$

for all $v \in V, l \in L_{\alpha}$.
We denote the category of left-left α-Yetter-Drinfel'd modules by ${ }_{L}^{L} \mathcal{Y} \mathcal{D}_{\alpha}$. Let ${ }_{L}^{L} \mathcal{Y} \mathcal{D}(\pi)$ be the disjoint union of the categories ${ }_{L}^{L} \mathcal{Y} \mathcal{D}_{\alpha}$ for all $\alpha \in \pi$. The category ${ }_{L}^{L} \mathcal{Y} \mathcal{D}(\pi)$ admits a structure of braided T-category and is called group Yetter-Drinfel'd category (simply π-Yetter-Drinfel'd category) ${ }^{[4]}$.

3. The dual in group Yetter-Drinfel'd categories

In this section, we mainly show that if H is a finite-dimensional Hopf algebra in a group Yetter-Drinfel'd category ${ }_{L}^{L} \mathcal{Y} \mathcal{D}(\pi)$ over a crossed Hopf group-coalgebra L, then its dual H^{*} is also a Hopf algebra in the category ${ }_{L}^{L} \mathcal{Y} \mathcal{D}(\pi)$.

Definition 3.1 Let L be a crossed Hopf π-coalgebra with a bijective antipode S_{L}. An object H in ${ }_{L}^{L} \mathcal{Y} \mathcal{D}(\pi)$ is called a bialgebra in this category if it is both a k-algebra and a k-coalgebra satisfying the following conditions:

$$
\begin{gather*}
\Delta(x y)=x_{1}\left(x_{2(-1, \lambda)} \rightarrow y_{1}\right) \otimes x_{2(0,0)} y_{2}, \Delta(1)=1 \otimes 1, \varepsilon(x y)=\varepsilon(x) \varepsilon(y), \varepsilon(1)=1, \tag{3}\\
\rho_{\lambda}^{H}(x y)=x_{(-1, \lambda)} y_{(-1, \lambda)} \otimes x_{(0,0)} \otimes y_{(0,0)}, \rho_{\lambda}^{H}(1)=1_{\lambda} \otimes 1_{H}, \tag{4}
\end{gather*}
$$

i.e., H is a left π-L-comodule algebra,

$$
\begin{equation*}
x_{(-1, \lambda)} \otimes\left(x_{(0,0)}\right)_{1} \otimes\left(x_{(0,0)}\right)_{2}=x_{1(-1, \lambda)} x_{2(-1, \lambda)} \otimes x_{1(0,0)} \otimes x_{2(0,0)}, \tag{5}
\end{equation*}
$$

$x_{(-1, \lambda)} \varepsilon_{H}\left(x_{(0,0)}\right)=\varepsilon_{H}(x) 1_{\lambda}$, i.e., H is a left π-L-comodule coalgebra,

$$
\begin{equation*}
l \rightarrow(x y)=\left(l_{(1, \alpha)} \rightarrow x\right)\left(l_{(2, \beta)} \rightarrow y\right), l \rightarrow 1_{H}=\varepsilon(l) 1_{H}, \tag{6}
\end{equation*}
$$

i.e., H is a left π - L-module algebra,

$$
\begin{equation*}
\Delta(l \rightarrow x)=\left(l_{(1, \alpha)} \rightarrow x_{1}\right) \otimes\left(l_{(2, \beta)} \rightarrow x_{2}\right), \varepsilon(l \rightarrow x)=\varepsilon(l) \varepsilon(x) \tag{7}
\end{equation*}
$$

i.e., H is a left π-L-module coalgebra.

Furthermore, we call H a Hopf algebra in ${ }_{L}^{L} \mathcal{Y} \mathcal{D}(\pi)$ if there exists an antipode $S: H \rightarrow H$ (here S is both left L_{α}-linear and colinear, i.e., S is a morphism in the category of $\left.{ }_{L}^{L} \mathcal{Y} \mathcal{D}(\pi)\right)$, which is a convolution inverse to $i d_{H}$. We easily see that S is anti-multiplicative and anti-comultiplicative. That is, for all $x, y \in H, \lambda \in \pi$,

$$
\begin{gather*}
S_{H}(x y)=\left(x_{(-1, \lambda)} \rightarrow S_{H}(y)\right) S_{H}\left(x_{(0,0)}\right) \text { and } S_{H}(1)=1 \tag{8}\\
\Delta\left(\left(S_{H}(x)\right)=\left(x_{1(-1, \lambda)} \rightarrow S_{H}\left(x_{2}\right)\right) S_{H}\left(x_{1(0,0)}\right), \varepsilon_{H} S_{H}=\varepsilon_{H}\right. \tag{9}
\end{gather*}
$$

Assume that H is a Hopf algebra in ${ }_{L}^{L} \mathcal{Y} \mathcal{D}(\pi)$ and finite-dimensional over k. We will make its dual $H^{*}=\operatorname{Hom}(H, k)$ into a Hopf algebra in ${ }_{L}^{L} \mathcal{Y} \mathcal{D}(\pi)$. First, the dual H^{*} has a left L_{α}-module structure, that is,

$$
\begin{equation*}
(l \rightarrow f)(h)=f\left(S_{\alpha}(l) \rightarrow h\right), \text { for all } l \in L_{\alpha}, f \in H^{*}, h \in H \tag{10}
\end{equation*}
$$

Also, since H is a finite-dimensional left π - L-comodulelike object, its dual H^{*} has a left π - L-comodulelike object via

$$
\rho_{\lambda}^{H^{*}}: H^{*} \rightarrow L_{\lambda} \otimes H^{*}, \quad \rho_{\lambda}^{H^{*}}(f)=f_{(-1, \lambda)} \otimes f_{(0,0)}
$$

where

$$
\begin{equation*}
f_{(0,0)}(h) f_{(-1, \lambda)}=f\left(h_{(0,0)}\right) \bar{S}_{\lambda} \Phi_{\alpha}\left(h_{\left(-1, \alpha^{-1} \lambda^{-1} \alpha\right)}\right), \text { for all } h \in H \tag{11}
\end{equation*}
$$

Then $H^{*} \in_{L}^{L} \mathcal{Y} \mathcal{D}(\pi)$.
Proof We can easily prove that H^{*} is a left L_{α}-module and a left π - L-comodulelike object. Now we show the compatibility condition (1).

$$
\begin{aligned}
& l_{(1, \lambda)} f_{(-1, \lambda)}\left(l_{(2, \alpha)} \rightarrow f_{(0,0)}\right)(h) \\
& \quad=l_{(1, \lambda)} f_{(-1, \lambda)} f_{(0,0)}\left(S_{\alpha}\left(l_{(2, \alpha)}\right) \rightarrow h\right) \\
& \quad \stackrel{(11)}{=} l_{(1, \lambda)} f\left(y_{(0,0)}\right) \bar{S}_{\lambda} \Phi_{\alpha}\left(y_{\left(-1, \alpha^{-1} \lambda^{-1} \alpha\right)}\right) \quad\left(\text { here } y=S_{\alpha}\left(l_{(2, \alpha)}\right) \rightarrow h\right) \\
& \quad=l_{(1, \lambda)} f\left(S_{\alpha}\left(l_{(3, \alpha)}\right) \rightarrow h_{(0,0)} \bar{S}_{\lambda} \Phi_{\alpha}\left(S_{\alpha^{-1} \lambda \alpha}\left(l_{\left(4, \alpha^{-1} \lambda \alpha\right)}\right) h_{\left(-1, \alpha^{-1} \lambda^{-1} \alpha\right)} S_{\alpha^{-1} \lambda \alpha} \Phi_{\alpha^{-1}} S_{\left.\lambda^{-1}\left(l_{\left(2, \lambda^{-1}\right)}\right)\right)}\right)\right. \\
& \quad=l_{(1, \lambda)} S_{\lambda^{-1}}\left(l_{\left(2, \lambda^{-1}\right)}\right) f\left(S_{\alpha}\left(l_{(3, \alpha)}\right) \rightarrow h_{(0,0)}\right) \bar{S}_{\lambda} \Phi_{\alpha}\left(h_{\left(-1, \alpha^{-1} \lambda^{-1} \alpha\right)}\right) \Phi_{\alpha}\left(l_{\left(4, \alpha^{-1} \lambda \alpha\right)}\right) \\
& \quad=f\left(S_{\alpha}\left(l_{(1, \alpha)}\right) \rightarrow h_{(0,0)}\right) \bar{S}_{\lambda} \Phi_{\alpha}\left(h_{\left(-1, \alpha^{-1} \lambda^{-1} \alpha\right)}\right) \Phi_{\alpha}\left(l_{\left(2, \alpha^{-1} \lambda \alpha\right)}\right) \\
& \quad=\left(l_{(1, \alpha)} \rightarrow f\right)_{(-1, \lambda)} \Phi_{\alpha}\left(l_{\left(2, \alpha^{-1} \lambda \alpha\right)}\right)\left(l_{(1, \alpha)} \rightarrow f\right)_{(0,0)}(h)
\end{aligned}
$$

Lemma 3.2 For any left π-L-comodulelike object $V=\left\{V, \rho_{\lambda}^{V}\right\}$, define $\theta_{V}: H^{*} \otimes V \rightarrow$ $\operatorname{Hom}(H, V)$ by

$$
\theta_{V}(f \otimes v)(h)=f\left(v_{\left(-1, \lambda^{-1}\right)} \rightarrow h\right) v_{(0,0)}, \quad f \in H^{*}, v \in V, h \in H
$$

Also, define $\theta^{(2)}: H^{*} \otimes H^{*} \rightarrow(H \otimes H)^{*}$ and $\theta^{(3)}: H^{*} \otimes H^{*} \otimes H^{*} \rightarrow(H \otimes H \otimes H)^{*}$ by

$$
\begin{aligned}
& \theta^{(2)}(f \otimes g)(x \otimes y)=f\left(\bar{S}_{\lambda}\left(y_{\left(-1, \lambda^{-1}\right)}\right) \rightarrow x\right) g\left(y_{(0,0)}\right), \quad f, g, j \in H^{*}, x, y, z \in H, \lambda \in \pi \\
& \theta^{(3)}(f \otimes g \otimes j)(x \otimes y \otimes z)=f\left(\bar{S}_{\lambda}\left(y_{\left(-1, \lambda^{-1}\right)} z_{\left(-2, \lambda^{-1}\right)}\right) \rightarrow x\right) g\left(\bar{S}_{1}\left(z_{(-1,1)}\right) \rightarrow y_{(0,0)}\right) j\left(z_{(0,0)}\right)
\end{aligned}
$$

Then $\theta_{V}, \theta^{(2)}$ and $\theta^{(3)}$ are bijective.

Proof Define $\beta: H^{*} \otimes V \rightarrow H^{*} \otimes V$ by $\beta(f \otimes v)=\left(\bar{S}_{\lambda}\left(v_{\left(-1, \lambda^{-1}\right)}\right) \rightarrow f\right) \otimes v_{(0,0)}$ and $\gamma: H^{*} \otimes V \rightarrow$ $\operatorname{Hom}(H, V)$ by $\gamma(f \otimes v)(h)=f(h) v$. It is easy to check that $\gamma \circ \beta=\theta_{V}$. Note that β is bijective and the inverse is given by $\beta^{-1}(f \otimes v)=\left(v_{(-1, \lambda)} \rightarrow f\right) \otimes v_{(0,0)}$.

$$
\begin{aligned}
\beta \beta^{-1}(f \otimes v) & =\beta\left(\left(v_{(-1, \lambda)} \rightarrow f\right) \otimes v_{(0,0)}\right) \\
& =\left(\bar{S}_{\lambda}\left(v_{\left(-1, \lambda^{-1}\right)}\right) v_{(-2, \lambda)} \rightarrow f\right) \otimes v_{(0,0)} \\
& =\varepsilon\left(v_{(-1,1)}\right) f \otimes v_{(0,0)}=f \otimes v .
\end{aligned}
$$

Similarly, we can prove $\beta^{-1} \beta=i d$. The map γ is also bijective since H is finite-dimensional. Hence θ_{V} is bijective. The maps $\theta^{(2)}$ and $\theta^{(3)}$ are also bijective. We can refer to Lemma in [6]. \square

Theorem 3.3 If H is a finite-dimensional Hopf algebra in ${ }_{L}^{L} \mathcal{Y} \mathcal{D}(\pi)$, then H^{*} is a Hopf algebra in ${ }_{L}^{L} \mathcal{Y} \mathcal{D}(\pi)$, with multiplication $m_{H^{*}}=\left(\Delta_{H}\right)^{*} \circ \theta^{(2)}$, unit $u_{H^{*}}=\varepsilon_{H}$, comultiplication $\Delta_{H^{*}}=$ $\left(\theta^{(2)}\right)^{-1} \circ\left(m_{H}\right)^{*}$, counit $\varepsilon_{H^{*}}: f \rightarrow f\left(1_{H}\right)$, and antipode $\left(S_{H}\right)^{*}$. Explicitly, multiplication is given by

$$
\begin{equation*}
(f g)(x)=f\left(g_{\left(-1, \lambda^{-1}\right)} \rightarrow x_{1}\right) g_{(0,0)}\left(x_{2}\right)=f\left(\bar{S}_{\lambda}\left(x_{2\left(-1, \lambda^{-1}\right)}\right) \rightarrow x_{1}\right) g\left(x_{2(0,0)}\right) \tag{12}
\end{equation*}
$$

for all $f, g \in H^{*}, x \in H$. Comultiplication $\Delta(f)=f_{1} \otimes f_{2}$ is given by

$$
\begin{equation*}
f(x y)=f_{1}\left(f_{2\left(-1, \lambda^{-1}\right)} \rightarrow x\right) f_{2(0,0)}(y)=f_{1}\left(\bar{S}_{\lambda}\left(y_{\left(-1, \lambda^{-1}\right)}\right) \rightarrow x\right) f_{2}\left(y_{(0,0)}\right) \tag{13}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
f_{1}(x) f_{2}(y)=f\left(\left(y_{\left(-1, \lambda^{-1}\right)} \rightarrow x\right) y_{(0,0)}\right), \quad \text { for all } x, y \in H, \lambda \in \pi . \tag{14}
\end{equation*}
$$

In particular $H^{* *}$ is a Hopf algebra in ${ }_{L}^{L} \mathcal{Y} \mathcal{D}$. If $\left(S_{L_{\alpha}}\right)^{2}=i d_{L_{\alpha}}$, then the canonical map $\iota: H \rightarrow H^{* *}(\pi)$ given by $\iota(h)(f)=f(h)$ is a Hopf algebra isomorphism.

Proof It is easy to see that H^{*} becomes an algebra. To show the coassociativity, we use the isomorphism $\theta^{(3)}$. For $f \in H^{*}$ and $x, y, z \in H$ we compute

$$
\begin{aligned}
f((x y) z) \stackrel{(13)}{=} & f_{1}\left(\bar{S}_{\lambda}\left(z_{\left(-1, \lambda^{-1}\right)}\right) \rightarrow(x y)\right) f_{2}\left(z_{(0,0)}\right) \\
= & f_{1}\left(\left(\bar{S}_{\lambda}\left(z_{\left(-1, \lambda^{-1}\right)}\right) \rightarrow x\right)\left(\bar{S}_{1}\left(z_{(-2,1)}\right) \rightarrow y\right)\right) f_{2}\left(z_{(0,0)}\right) \\
\stackrel{(6)(13)}{=} & f_{11}\left(\bar{S}_{\lambda}\left(z_{\left(-4, \lambda^{-1}\right)}\right) \bar{S}_{\lambda}\left(y_{\left(-1, \lambda^{-1}\right)}\right) \bar{S}_{\lambda}\left(z_{\left(-1, \lambda^{-1}\right)} \bar{S}_{\lambda^{-1}}\left(z_{(-2, \lambda)}\right)\right) \rightarrow x\right) \\
& f_{12}\left(\bar{S}_{1}\left(z_{(-3,1)}\right) \rightarrow y_{(0,0)}\right) f_{2}\left(z_{(0,0)}\right) \\
= & f_{11}\left(\bar{S}_{\lambda}\left(y_{\left(-1, \lambda^{-1}\right)} z_{\left(-2, \lambda^{-1}\right)}\right) \rightarrow x\right) f_{12}\left(\left(\bar{S}_{1}\left(z_{(-1,1)}\right) \rightarrow y_{(0,0)}\right)\right) f_{2}\left(z_{(0,0)}\right) \\
= & \theta^{(3)}\left(f_{11} \otimes f_{12} \otimes f_{2}\right)(x \otimes y \otimes z),
\end{aligned}
$$

and

$$
\begin{aligned}
f(x(y z)) & \stackrel{(13)}{=} f_{1}\left(\bar{S}_{\lambda}\left((y z)_{\left(-1, \lambda^{-1}\right)}\right) \rightarrow x\right) f_{2}\left((y z)_{(0,0)}\right) \\
& \stackrel{(5)}{=} f_{1}\left(\bar{S}_{\lambda}\left(y_{\left(-1, \lambda^{-1}\right)} z_{\left(-1, \lambda^{-1}\right)}\right) \rightarrow x\right) f_{2}\left(y_{(0,0)} z_{(0,0)}\right) \\
& \stackrel{(13)}{=} f_{1}\left(\bar{S}_{\lambda}\left(y_{\left(-1, \lambda^{-1}\right)} z_{\left(-2, \lambda^{-1}\right)}\right) \rightarrow x\right) f_{21}\left(\bar{S}_{1}\left(z_{(-1,1)}\right) \rightarrow y_{(0,0)}\right) f_{22}\left(z_{(0,0)}\right) \\
& =\theta^{(3)}\left(f_{1} \otimes f_{21} \otimes f_{22}\right)(x \otimes y \otimes z) .
\end{aligned}
$$

Thus $f_{11} \otimes f_{12} \otimes f_{2}=f_{1} \otimes f_{21} \otimes f_{22}$ (we write it by $f_{1} \otimes f_{2} \otimes f_{3}$). The property of counit is easily checked. We next prove $\Delta_{H^{*}}(f g)=f_{1}\left(f_{2(-1, \lambda)} \rightarrow g_{1}\right) \otimes f_{2(0,0)} g_{2} \in H^{*} \otimes H^{*}$ by using $\theta^{(2)}$. For all $x, y \in H$,

```
\(\theta^{(2)}\left(f_{1}\left(f_{2(-1, \lambda)} \rightarrow g_{1}\right) \otimes f_{2(0,0)} g_{2}\right)(x \otimes y)\)
    \(=\left(f_{1}\left(f_{2(-1, \lambda)} \rightarrow g_{1}\right)\right)\left(\bar{S}_{\lambda}\left(y_{\left(-1, \lambda^{-1}\right)} \rightarrow x\right)\left(f_{2(0,0)} g_{2}\right)\left(y_{(0,0)}\right)\right.\)
    \(\stackrel{(12)(5)}{=}\left(f_{1}\left(f_{2(-1, \lambda)} \rightarrow g_{1}\right)\right)\left(\bar{S}_{\lambda}\left(y_{1\left(-1, \lambda^{-1}\right)} y_{2\left(-2, \lambda^{-1}\right)}\right) \rightarrow x\right) f_{2(0,0)}\)
        \(\left(\bar{S}_{1}\left(y_{2(-1,1)}\right) \rightarrow y_{1(0,0)}\right) g_{2}\left(y_{2(0,0)}\right)\)
    \(\stackrel{(2)}{=} f_{1}\left(\bar{S}_{\lambda}\left(x_{2\left(-1, \lambda^{-1}\right)} y_{1\left(-2, \lambda^{-1}\right)} y_{2\left(-3, \lambda^{-1}\right)}\right) \rightarrow x_{1}\right)\left(f_{2(-1, \lambda)} \rightarrow g_{1}\right)\left(\bar{S}_{1}\left(y_{1(-1,1)} y_{2(-2,1)}\right) \rightarrow x_{2(0,0)}\right)\)
        \(f_{2(0,0)}\left(\bar{S}_{1}\left(y_{2(-1,1)}\right) \rightarrow y_{1(0,0)}\right) g_{2}\left(y_{2(0,0)}\right)\)
    \(=f_{1}\left(\bar{S}_{\lambda}\left(x_{2\left(-1, \lambda^{-1}\right)} y_{1\left(-3, \lambda^{-1}\right)} y_{2\left(-5, \lambda^{-1}\right)}\right) \rightarrow x_{1}\right) f_{2}\left(\bar{S}_{1}\left(y_{2(-2,1)}\right) \rightarrow y_{1(0,0)}\right)\)
        \(g_{1}\left(\bar{S}_{\lambda^{-1}}\left(y_{2(-1, \lambda)}\right) y_{1\left(-1, \lambda^{-1}\right)} y_{2\left(-3, \lambda^{-1}\right)} \bar{S}_{\lambda}\left(y_{1\left(-2, \lambda^{-1}\right)} y_{2\left(-4, \lambda^{-1}\right)}\right) \rightarrow x_{2(0,0)}\right) g_{2}\left(y_{2(0,0)}\right)\)
    \(=f_{1}\left(\bar{S}_{\lambda}\left(x_{2\left(-1, \lambda^{-1}\right)} y_{1\left(-1, \lambda^{-1}\right)} y_{2\left(-3, \lambda^{-1}\right)}\right) \rightarrow x_{1}\right) f_{2}\left(\bar{S}_{1}\left(y_{2(-2,1)}\right) \rightarrow y_{1(0,0)}\right)\)
    \(g_{1}\left(\bar{S}_{\lambda^{-1}}\left(y_{2(-1, \lambda)}\right) \rightarrow x_{2(0,0)}\right) g_{2}\left(y_{2(0,0)}\right)\).
```

On the other hand,

$$
\begin{aligned}
& \left(\theta^{(2)} \Delta_{H^{*}}(f g)\right)(x \otimes y)=(f g)(x y) \\
& \quad \stackrel{12)}{=} f\left(\bar{S}_{\lambda}\left((x y)_{2\left(-1, \lambda^{-1}\right)}\right) \rightarrow(x y)_{1}\right) g\left((x y)_{2(0,0)}\right) \\
& \quad=f\left(\bar{S}_{\lambda}\left(x_{2\left(-1, \lambda^{-1}\right)} y_{2\left(-1, \lambda^{-1}\right)}\right) \rightarrow\left(x_{1}\left(x_{2(-2, \lambda)} \rightarrow y_{1}\right)\right)\right) g\left(x_{2(0,0)} y_{2(0,0)}\right) \\
& =f\left(\left(\bar{S}_{\lambda}\left(x_{2\left(-1, \lambda^{-1}\right)} y_{2\left(-1, \lambda^{-1}\right)}\right) \rightarrow x_{1}\right)\left(S_{1}\left(x_{2(-2,1)} y_{2(-2,1)}\right) x_{2(-3,1)} \rightarrow y_{1}\right)\right) g\left(x_{2(0,0)} y_{2(0,0)}\right) \\
& =f\left(\left(\bar{S}_{\lambda}\left(x_{2\left(-1, \lambda^{-1}\right)} y_{2\left(-2, \lambda^{-1}\right)}\right) \rightarrow x_{1}\right)\left(S_{1}\left(y_{2(-3,1)}\right) \rightarrow y_{1}\right)\right) g_{1}\left(\bar{S}_{\lambda^{-1}}\left(y_{2(-1, \lambda)}\right) \rightarrow x_{2(0,0)}\right) g_{2}\left(y_{2(0,0)}\right) \\
& =f_{1}\left(\bar{S}_{\lambda}\left(x_{2\left(-1, \lambda^{-1}\right)} y_{1\left(-1, \lambda^{-1}\right)} y_{2\left(-3, \lambda^{-1}\right)}\right) \rightarrow x_{1}\right) f_{2}\left(\bar{S}_{1}\left(y_{2(-2,1)}\right) \rightarrow y_{1(0,0)}\right) \\
& \quad g_{1}\left(\bar{S}_{\lambda^{-1}}\left(y_{2(-1, \lambda)}\right) \rightarrow x_{2(0,0)}\right) g_{2}\left(y_{2(0,0)}\right) .
\end{aligned}
$$

We show $(f g)_{(-1, \alpha)} \otimes(f g)_{(0,0)}=f_{(-1, \alpha)} g_{(-1, \alpha)} \otimes f_{(0,0)} g_{(0,0)}$ in $L_{\alpha} \otimes H^{*}$, for any $x \in H$,

$$
\begin{aligned}
& \left(f_{(0,0)} g_{(0,0)}\right)(x) f_{(-1, \alpha)} g_{(-1, \alpha)} \\
& \stackrel{(12)}{=} f_{(0,0)}\left(\bar{S}_{\alpha}\left(x_{2\left(-1, \alpha^{-1}\right)}\right) \rightarrow x_{1}\right) g_{(0,0)}\left(x_{2(0,0)}\right) f_{(-1, \alpha)} g_{(-1, \alpha)} \\
& \quad \stackrel{(11)}{=} f\left(\bar{S}_{\alpha}\left(x_{2\left(-1, \alpha^{-1}\right)}\right) \rightarrow x_{1(0,0)}\right) g\left(x_{2(0,0)}\right) \bar{S}_{\alpha} \Phi_{\alpha}\left(x_{1(-1, \alpha)} x_{2(-2, \alpha)}\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& (f g)_{(0,0)}(x)(f g)_{(-1, \alpha)} \stackrel{(11)}{=} f g\left(x_{(0,0)}\right) \bar{S}_{\alpha} \Phi_{\alpha}\left(x_{(-1, \alpha)}\right) \\
& \stackrel{(2)}{=} f\left(\bar{S}_{\alpha}\left(x_{(0,0) 2\left(-1, \alpha^{-1}\right)}\right) \rightarrow x_{(0,0)}\right) g\left(x_{(0,0) 2(0,0)}\right) \bar{S}_{\alpha} \Phi_{\alpha}\left(x_{(-1, \alpha)}\right) \\
& \quad \stackrel{(5)}{=} f\left(\bar{S}_{\alpha}\left(x_{2\left(-1, \alpha^{-1}\right)}\right) \rightarrow x_{1(0,0)}\right) g\left(x_{2(0,0)}\right) \bar{S}_{\alpha} \Phi_{\alpha}\left(x_{1(-1, \alpha)} x_{2(-2, \alpha)}\right) .
\end{aligned}
$$

We check that $f_{(-1, \alpha)} \otimes\left(f_{(0,0)}\right)_{1} \otimes\left(f_{(0,0)}\right)_{2}=f_{1(-1, \alpha)} f_{2(-1, \alpha)} \otimes f_{1(0,0)} \otimes f_{2(0,0)}$ in $L_{\alpha} \otimes H^{*} \otimes H^{*}$,

$$
\begin{aligned}
& f_{1(-1, \alpha)} f_{2(-1, \alpha)} \theta^{(2)}\left(f_{1(0,0)} \otimes f_{2(0,0)}\right)(x \otimes y) \\
& \quad=f_{1(-1, \alpha)} f_{2(-1, \alpha)} f_{1(0,0)}\left(\bar{S}_{\alpha}\left(y_{\left(-1, \alpha^{-1}\right)}\right) \rightarrow x\right) f_{2(0,0)}\left(y_{(0,0)}\right) \\
& \stackrel{(2)}{=} f_{1}\left(\bar{S}_{\alpha}\left(y_{\left(-3, \alpha^{-1}\right)}\right) \rightarrow x_{(0,0)}\right) f_{2}\left(y_{(0,0)}\right) \bar{S}_{\alpha} \Phi_{\alpha}\left(y_{(-1, \alpha)} \bar{S}_{\alpha}\left(y_{\left(-2, \alpha^{-1}\right)}\right) x_{(-1, \alpha)} \Phi_{\alpha}\left(y_{(-4, \alpha)}\right)\right) \\
& =f_{1}\left(\bar{S}_{\alpha}\left(y_{\left(-1, \alpha^{-1}\right)}\right) \rightarrow x_{(0,0)}\right) f_{2}\left(y_{(0,0)}\right) \bar{S}_{\alpha} \Phi_{\alpha}\left(x_{(-1, \alpha)} y_{(-2, \alpha)}\right) \\
& =f\left(x_{(0,0)} y_{(0,0)}\right) \bar{S}_{\alpha} \Phi_{\alpha}\left(x_{(-1, \alpha)} y_{(-1, \alpha)}\right)=f_{(-1, \alpha)} f_{(0,0)}(x y) \\
& \stackrel{(13)}{=} f_{(-1, \alpha)} \theta^{(2)}\left(\left(f_{(0,0)}\right)_{1} \otimes\left(f_{(0,0)}\right)_{2}\right)(x \otimes y) .
\end{aligned}
$$

It is easy to see that $l \rightarrow(f g)=\left(l_{(1, \alpha)} \rightarrow f\right)\left(l_{(2, \beta)} \rightarrow g\right)$, for all $l \in L_{\alpha \beta}, f, g \in H^{*}$ and $\Delta(l \rightarrow f)=\left(l_{(1, \alpha)} \rightarrow f_{1}\right) \otimes\left(l_{(2, \beta)} \rightarrow f_{2}\right)$ in $H^{*} \otimes H^{*}$ (by using $\left.\theta^{(2)}\right)$. We compute that $S_{H^{*}}\left(f_{1}\right) f_{2}=f\left(1_{H}\right) \varepsilon_{H}=f_{1} S_{H^{*}}\left(f_{2}\right), f \in H^{*}$, for all $x \in H$,

$$
\begin{aligned}
\left(S_{H^{*}}\left(f_{1}\right) f_{2}\right)(x) & \stackrel{(12)}{=} S_{H^{*}}\left(f_{1}\right)\left(\bar{S}_{\lambda}\left(x_{2\left(-1, \lambda^{-1}\right)}\right) \rightarrow x_{1}\right) f_{2}\left(x_{2(0,0)}\right) \\
& =f_{1}\left(\bar{S}_{\lambda}\left(x_{2\left(-1, \lambda^{-1}\right)}\right) \rightarrow S\left(x_{1}\right)\right) f_{2}\left(x_{2(0,0)}\right) \\
& \stackrel{(14)}{=} f\left(\left(x_{2\left(-1, \lambda^{-1}\right)} \bar{S}_{\lambda}\left(x_{2\left(-2, \lambda^{-1}\right)}\right) \rightarrow S\left(x_{1}\right)\right) x_{2(0,0)}\right) \\
& =f\left(S\left(x_{1}\right) x_{2}\right)=f\left(1_{H}\right) \varepsilon(x),
\end{aligned}
$$

and

$$
\begin{aligned}
f_{1} S_{H^{*}}\left(f_{2}\right)(x) & \stackrel{(12)}{=} f_{1}\left(\bar{S}_{\lambda}\left(x_{2\left(-1, \lambda^{-1}\right)}\right) \rightarrow x_{1}\right) S_{H^{*}}\left(f_{2}\right)\left(x_{2(0,0)}\right) \\
& =f_{1}\left(\bar{S}_{\lambda}\left(x_{2\left(-1, \lambda^{-1}\right)}\right) \rightarrow x_{1}\right) f_{2}\left(S\left(x_{2(0,0)}\right)\right) \\
& \left.\stackrel{(14)}{=} f\left(\left(x_{2\left(-1, \lambda^{-1}\right.} \bar{S}_{\lambda}\left(x_{2\left(-2, \lambda^{-1}\right)}\right)\right) \rightarrow x_{1}\right) S\left(x_{2(0,0)}\right)\right) \\
& =f\left(x_{1} S\left(x_{2}\right)\right)=f\left(1_{H}\right) \varepsilon(x) .
\end{aligned}
$$

Thus H^{*} is a Hopf algebra in ${ }_{L}^{L} \mathcal{Y} \mathcal{D}$.
Finally it follows from $S_{L_{\alpha}}^{2}=i d_{L_{\alpha}}$ that the canonical map ι is both L_{α}-linear and colinear, since

$$
\begin{aligned}
& (l \rightarrow \iota(x))(f)=\iota(x)\left(S_{\alpha}(l) \rightarrow f\right)=f\left(S_{\alpha}^{2}(l) \rightarrow x\right)=f(l \rightarrow x)=\iota(l \rightarrow x)(f), \\
& \iota(x)_{(-1, \alpha)} \iota(x)_{(0,0)}(f)=\iota(x)\left(f_{(0,0)}\right) \bar{S}_{\alpha} \Phi_{\alpha}\left(f_{(-1, \alpha)}\right)=\bar{S}_{\alpha}\left(f\left(x_{(0,0)}\right) \bar{S}_{\alpha}\left(x_{(-1, \alpha)}\right)\right) \\
& \quad=f\left(x_{(0,0)}\right) \bar{S}_{\alpha}^{2}\left(x_{(-1, \alpha)}\right)=f\left(x_{(0,0)}\right) x_{(-1, \alpha)}=x_{(-1, \alpha)} \iota\left(x_{(0,0)}\right)(f) .
\end{aligned}
$$

It is easy to see that the map ι is multiplicative and comultiplicative.

4. The fundamental theorem in group Yetter-Drinfel'd categories

In this section, we mainly establish the fundamental theorem of Hopf modules for H in the category ${ }_{L}^{L} \mathcal{Y} \mathcal{D}(\pi)$.

Definition 4.1 Let H be a Hopf algebra in ${ }_{L}^{L} \mathcal{Y} \mathcal{D}(\pi)$. A right H-Hopf module in ${ }_{L}^{L} \mathcal{Y} \mathcal{D}(\pi)$ is an object $M \in{ }_{L}^{L} \mathcal{Y} \mathcal{D}(\pi)$ such that it is both a right H-module and a right H-comodule via
$\rho_{M}: M \rightarrow M \otimes H, \rho_{M}(m)=m_{0} \otimes m_{1}$ and the following (15)-(19) hold.

$$
\begin{align*}
& \rho_{M}(m h)=m_{0}\left(m_{1(-1, \alpha)} \rightarrow h_{1}\right) \otimes m_{1(0,0)} h_{2}, \quad m \in M, h \in H \tag{15}\\
& \rho_{\lambda}^{M}(m h)=m_{(-1, \lambda)} h_{(-1, \lambda)} \otimes m_{(0,0)} h_{(0,0)}, \quad m \in M, h \in H \tag{16}\\
& m_{(-1, \lambda)} \otimes m_{(0,0) 0} \otimes m_{(0,0) 1}=m_{0(-1, \lambda)} m_{1(-1, \lambda)} \otimes m_{0(0,0)} \otimes m_{1(0,0)} \in L_{\lambda} \otimes M \otimes H \tag{17}\\
& l \rightarrow(m h)=\left(l_{(1, \alpha)} \rightarrow m\right)\left(l_{(2, \beta)} \rightarrow h\right), l \in L_{\alpha \beta}, m \in M, h \in H \tag{18}\\
& \rho_{M}(l \rightarrow m)=\left(l_{(1, \alpha)} \rightarrow m_{0}\right) \otimes\left(l_{(2, \beta)} \rightarrow m_{1}\right), l \in L_{\alpha \beta}, m \in M \tag{19}
\end{align*}
$$

Example 4.2 (1) H itself is a right H-Hopf module (in ${ }_{L}^{L} \mathcal{Y} \mathcal{D}(\pi)$) in the natural way. If V is an object in ${ }_{L}^{L} \mathcal{Y} \mathcal{D}(\pi)$, then so is $V \otimes H$ by $l_{\alpha \beta} \rightarrow(v \otimes h)=\left(l_{(1, \alpha)} \rightarrow v\right) \otimes\left(l_{(2, \beta)} \rightarrow h\right)$ and $\rho_{\lambda}^{V \otimes H}=v_{(-1, \lambda)} h_{(-1, \lambda)} \otimes v_{(0,0)} \otimes h_{(0,0)}$. It is also both a right H-module and a right H-comodule by $(v \otimes h) x=v \otimes h x$ and $\rho_{V \otimes H}(v \otimes h)=v \otimes h_{1} \otimes h_{2}$. One can easily check that $V \otimes H$ is a right H-Hopf module in ${ }_{L}^{L} \mathcal{Y} \mathcal{D}(\pi)$.
(2) If H is a finite dimensional Hopf algebra in ${ }_{L}^{L} \mathcal{Y} \mathcal{D}(\pi)$. We can show that H^{*} becomes a right H-Hopf module in ${ }_{L}^{L} \mathcal{Y} \mathcal{D}(\pi)$. First, the right H-module structure is $(f \cdot h)(x)=f(h x), f \in$ $H^{*}, h, x \in H$. Second, H^{*} is a right H-comodule using the identification $\theta_{H}: H^{*} \otimes H \cong$ $\operatorname{Hom}(H, H)$ in Lemma 3.2 as follows:

$$
\rho_{H^{*}}: H^{*} \rightarrow \operatorname{Hom}(H, H) \cong H^{*} \otimes H, \rho_{H^{*}}(f)(x)=f\left(x_{1}\right) S_{H}\left(x_{2}\right)
$$

That is, $\rho_{H^{*}}(f)=f_{0} \otimes f_{1}$ means

$$
f\left(x_{1}\right) S_{H}\left(x_{2}\right)=f_{0}\left(f_{1(-1, \alpha)} \rightarrow x\right) f_{1(0,0)}, \text { for all } f \in H^{*}, x \in H
$$

Theorem 4.3 If H is a Hopf algebra in ${ }_{L}^{L} \mathcal{Y} \mathcal{D}(\pi)$ and M a right H-Hopf module in ${ }_{L}^{L} \mathcal{Y} \mathcal{D}(\pi)$, then
a) $M^{\text {coh }}=\left\{m \in M \mid \rho_{M}(m)=m \otimes 1_{H}\right\}$ is both a L_{α}-submodule and a π - L-subcomodulelike object. So $M^{\mathrm{coh}} \in{ }_{L}^{L} \mathcal{Y} \mathcal{D}(\pi)$.
b) Let $P(m)=m_{0} S\left(m_{1}\right), m \in M$. Then $P(m) \in M^{\text {coh }}$. If $n \in M^{\text {coh }}$, and $h \in H$, then $\rho_{M}(n h)=n h_{1} \otimes h_{2}$ and $P(n h)=n \varepsilon(h)$.
c) The map $F: M^{\text {coh }} \otimes H \rightarrow M, F(n \otimes h)=n h$ is an isomorphism of Hopf modules. The inverse map is given by $G(m)=P\left(m_{0}\right) \otimes m_{1}$. Here $M^{\text {coh }} \otimes H$ is a right H-Hopf module in ${ }_{L}^{L} \mathcal{Y} \mathcal{D}(\pi)$ by Example 4.2, and the structure is given by

$$
(m \otimes h) x=m \otimes h x ; \quad \rho_{M^{\mathrm{coh}} \otimes H}(m \otimes h)=m \otimes h_{1} \otimes h_{2}
$$

for all $m \in M^{\mathrm{coh}}, \quad h, x \in H$.
Proof a) Let $n \in M^{\text {coh. }}$. Then $\rho_{M}(l \rightarrow n)=\left(l_{(1, \alpha)} \rightarrow n\right) \otimes\left(l_{(2,1)} \rightarrow 1_{H}\right)=l_{(1, \alpha)} \rightarrow n \otimes$ $\varepsilon\left(l_{(2,1)}\right) 1_{H}=l \rightarrow n \otimes 1_{H}$. Hence $l \rightarrow n \in M^{\text {coh }}$. We also have $n_{(-1, \lambda)} \otimes n_{(0,0) 0} \otimes n_{(0,0) 1}=$ $n_{(-1, \lambda)} \otimes n_{(0,0)} \otimes 1_{H}$. This implies that $n_{(-1, \lambda)} \otimes n_{(0,0)} \in L_{\lambda} \otimes M^{\mathrm{coh}}$.
b) Since $h_{1(-1, \lambda)} h_{2(-1, \lambda)} \otimes h_{1(0,0)} S_{H}\left(h_{2(0,0)}\right)=\rho_{\lambda}^{H}\left(h_{1} S\left(h_{2}\right)\right)=1_{\lambda} \otimes \varepsilon(h) 1_{H}$, we have

$$
\begin{aligned}
\rho_{M}(P(m)) & =\rho_{M}\left(m_{0} S\left(m_{1}\right)\right) \\
& \stackrel{(9)(15)}{=} m_{0}\left(m_{1(-1, \alpha)} m_{2(-1, \alpha)} \rightarrow S_{H}\left(m_{3}\right)\right) \otimes m_{1(0,0)} S_{H}\left(m_{2(0,0)}\right) \\
& =m_{0} S_{H}\left(m_{1}\right) \otimes 1_{H}=P(m) \otimes 1_{H}
\end{aligned}
$$

The other is easy.
c) The map F is left L-linear, since $F(l \rightarrow(n \otimes h))=\left(l_{(1, \alpha)} \rightarrow n\right)\left(l_{(2, \beta)} \rightarrow h\right)=l \rightarrow n h=$ $l \rightarrow F(n \otimes h)$. And F is also left L-colinear by (16). Now we have

$$
G F(n \otimes h)=G(n h)=P\left(n h_{1}\right) \otimes h_{2}=n \varepsilon\left(h_{1}\right) \otimes h_{2}=n \otimes h
$$

and

$$
F G(m)=F\left(P\left(m_{0}\right) \otimes m_{1}\right)=P\left(m_{0}\right) m_{1}=m_{0} S\left(m_{1}\right) m_{2}=m
$$

References

[1] TURAEV V G. Homotopy field theory in dimension 3 and crossed group-categories [J]. 2000, ArXiv Preprint Math, GT/0005291.
[2] VIRELIZIER A. Hopf group-coalgebras [J]. J. Pure Applied Algebra, 2002, 171: 75-122.
[3] WANG Shuanhong. Group twisted smash products and Doi-Hopf modules for T-coalgebras [J]. Comm. Algebra, 2004, 32(9): 3437-3458.
[4] ZUNINO M. Yetter-Drinfeld modules for crossed structures [J]. J. Pure Applied Algebra, 2004, 193(1-3): 313-343.
[5] SWEEDLER M. Hopf Algebras [M]. Benjamin, New York, 1969.
[6] DOI Y. Hopf modules in Yetter-Drinfeld categories [J]. Comm. Algebra, 1998, 26(9): 3057-3070.

