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Abstract

~
.

For the linear partial differential operater with constant coefficients L, =

a Dy, the sufficient and necessary conditions for all ¢™ solutions u(x, y)
la [Zm ‘ o
of equation (4 ) satisfying Asgeirsson’s mean value equality (2) are that L. =c+

+aAx where a(+ 0 ), c are constants, A, is the Laplacian. -

It is wellknown that arbitrary homogeneous differential eqyatiohs of sec-
ond order with constant coefficients, if not parabolically degenerate, can always
be. brought into the form ' ‘

+ eoe = ees + —
'uxl +uxnxn u}’x}’n .+ uymym
by making a suitable linear transformation of the coordinates and, if necessary,

cu

by cancelling an exponential factor, We can also eliminate the coefficient ¢
formally (in case it is positive) by introducing an artificial new variable X i1

ny

and setting u=pe ™'« The differential equation takes on the form

uxlxl + ooe +l'lx.+1x,¢| :uy,y, + coe +u)’m)'m .
where we write again « instead of y., Moreover, by assuming that the u is
independent of certain of the variables x and y, we can, without lose of gen-
erallty, write the differential equation in the form
Au=A,u |
i.e. . '
n

n
1;1uxtx/;1§uyiy, . . ) 1

In 1936, L, Asgeirsson proposed the following wellknown mean value theo-
rem [ ! ]. ' ' '
Theorem | For every function # which is a twice continuously differenti-
able solution of equation (1) troughout the region of x,y-space, we have
1 : : . . )
—W—n1x_J‘ l—ru(x, yO)ds,,:M’%l -r u(x09 ’vy)dsyb ’ ( 2)

X¥o i T Y=y, l=r
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where o, is sphere area of radius r, dS., dS, the surface element Equality (2)
means that the average for fixed x( =x,) over é sphere of radius ¥ in y-space
is the same as the average for fixed y(=y,) over a sphere of radius r in x-sp
space, '

A natural problem is that if we set linear partial differential operator with

constant coefficients

= laEmami | (3)

instead of A, in (1), does the Asgeirsson mean value equality ( 2) remain
true? Liu [ 2] answered this problem in part. He proved that for all almost-
periodic solutions of equation : “
Lou(x, y)=L,u(x, y) (4)
equality (2) is true, The main result of the present paper is as follows;
Theorem 2 For the linear partial differential operator with constant coeffi-
cients (3), the sufficient and necessary conditions for all C™’solutions u(x, y)
of the equation (4) satisfying the mean value equality of Asgeirsson (2)are
that L ,=c +aA, where a(-+ 0), ¢ are constants, A, is the Laplaman .
Proof The sufficienty is a direct result of Asgeirsson mean value theorem
We only prove the necessarity.
Write (3) in the form
* 5D, ¢ S abbr S ab; (5)
i=1 i, el 3<|a]<m
where ‘4= (a,;),., is symmetric matrix. For necessarity, we must prove that if
all C™'solutiops u of equation (4) satisfying equality (2), then
b= 0, i =1,2,%, n,
a;=a*+ 0, P =1,2 00
a;;= 0, i£jy i,j=1,2,%+, n.
a,=0, . |al> 3.
The following two facts are always used to prove that u(x, y) does not

(6)

satisfy the mean value equality (2):
1) If f(x) is continuous, nonnegative and nonzero function, then

fx)d§S,>0.

lxV=r

2 ) If continuous function f(x) is odd for some x;, then

f(x)dS,.=0.
x| =r

The proof of (6) is given in six steps.
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1° First we show that &,= 0, ; =1,2,-+, n. For convenience, we only
prove b,= (. Otherwise, let
‘ S (x) = (bax, —b1x3) 2= 2b;(ay b3 — aybyby + arnb?)x,
then u(x, y)=/f(x)~ f(y) satisfes (4), but fails in (2), because of

[ ux, 0)ds,>0> [ uCo, yyds, .
. lx] =r Iyl=r
2° Then we prove thatva;, =g50. If for some i, a;,;= 0, then equation

(4) possesses a solution u(x, y)=x;-y2 but the solution fails in (2). So
that @, 0. And if for some i,j, a,#a,> then ulx, y)=a;x}-aux; is a
solution of (4), but h
J' u(x, 0)dS,=(a,;~a;) j xS, #+0,
x]=r < =r

u(0, y)dS,=0.
|yl=r .
3° Next we have that a,;=0 (i%j). If not, for some i,j, a;;=a;+0,
then u(x, y) =xj= (a,xx,)/a,;, satisfies (4), and fails in (2),
~ 4° . According to steps 1°—3°, operator ( 3) can be written in the form .

L,=c+aA,+Ya, D5+ L. aD} (a#0) (7)
la|< t8l<m

where a = (a,, a, +-, a,) are the least order of derivatives of L, satisfying |a|>
3, and at least one a; is odd. Now we prove that a,= 0.
Let x":x‘il...x‘:", k is the largest integer which does not exceed _|_‘2’_|’ if h>
k, we have A*x“=(, When '
20y =41 by=eee = (2K b= 1,
with a suitable selection of A, by simple computation, we know that

a)

pde [ [ 4B (A yh e + by (M) yi¥

ulx, y)=Ax"-

satisfies equation (4)., And in accordance with (0, y) =0, we get

= _e 2 - _al 2
u(x, 0)dS,= m[ [Ax =5 ag Ix [1dS, = [ [-5oma, |x [14S,

x| =r |x] =r

T[ u(0, x)dS,= 0.
[y]=r

Hence, the above two equalities imply a,=0.
5° From step 4°, it is known tkat operator (7 ) can be written in the

following form
Ly=c+ah .+ X aD¥+ 2 aD, (8)
lal=k k< [B]<m
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here k>2. Now, we want to prove that for any a satisfying la |=k, ay, -b{:' ,

where b is a constant. Namely, operator (8) can be written in the form

L.=c+aA,+bA + ST aD) . , (9)
k< B |<m
For this purpose, consider the following formulas
kY (2an

DYx¥=(2a)), Ax¥= ( la)'=?c).

al
It is not difficult to check that for any ¢ with |a|=k, as

_a)y ki

M = ana (aza_a'i"‘a(zk’o’"_’ 0))

the function

1
u(x, p) =x¥+=pIA x¥% cee + —2 —y*A* 20 py |x |?

21 (Zk)!

is a solution of (4). To get (9) from (8), we now prove that M =0, It

is not difficult to check that u(x, y)+M |x |* is a solution of (1), then from
Asgeirsson theorem, u(x, y) +M |x|* satisfies the mean value equality (2). And
recall thall that we have assumed u(x, y) satisfying mean value equality (2),

therefore, we get .
[ - M|x Pds;=

hence M =0 .
6 ° In this last step, we prove that b=0 in (9). For this purpose, we )
consider the following linear differential operator with constant coefficients

m
L, = z'a Dl'+aD:  (a#0)
n =3

X, nyxy

Obviously, if there exists an n,,- 3<n,<<m,, such that anli 0, then equation

L f(xl) =0
must possess a solution whlch is not one of the followmg equation
xlf(xl) =0.

By assumption that all solutions of equation ( 4) satisfies the mean value
equality (2), we get that for operator (9), all solutions f(x) of equation
L.f(x)=L,f(x)
satisfy the following elliptic mean value equality

L[ f(x)dS.=f(xo)
@, |x—xo|=

for all x, in R",' where w, is sphere area of radius r. So that f(x) must gat-
isfy laplace equation
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Af(x)=10. (11D
Hence, all solutions of equation (10) are ones of equation (11). Therefore
we get b=0 from the above explanation. _
The above six steps tells us that from steps 1°-3°, operator (3) must take

on the form

L.,=c+ad, + aDs .
< la [ <m
A 4

And in 2': a,,D:, for derivatives of the least order a = (a,, *+, a,), not only
3< lai<m

is there no any odd «a, (by step 40), but also it is impossible for all a, to be
even (b}" steps 5°-6°). Hence, all ¢, must be zero..
Therefofe, operator ( 3) must be in the form
L,=c+aA, (a=0).
This completes the proof of the Theorém.
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