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Abstract: A first-order necessary condition for an infinite-dimensional nonlinear op-
timization problem, which arises when the all-at-once method is employed to slove the
optimal control problems, is formulated and analyzed. Operator constraint and simple
bound on part of the variables are both considered. Based on this optimality condition,
the trust-region subproblems are built, then the trust region method may be employed
to deal with the optimization problem in infinite-dimensional space.
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1. Introduction

Optimal control theory has been intensively applied to many fields. This kind of
problem can be referred to as the infinite-dimensional optimization problem. It is well
known that the necessary conditions are the basis for solving the nonlinear programming
problems by using the gradient methods. The corresponding necessary conditions can be
found in [1], for problems with only inequality operator constraint, and in [2] for problems
with only equality operator constraint; Maurer® presented the general abstract optimality
conditions for infinite dimensional programming problems with cone constraints. Based
on the idea introduced by Coleman and Lil¥, Ulbrichl® gave a KKT necessary optimality
condition of a special infinite dimensional optimization problem, which arises when the
black-box approach is applied to optimal control problems with bound-constrained on the
controls.

The present work is motivated by the application of all-at-once approach to optimal
control problems with bounds on the controls, then it is possible to solve the above infinite-
dimensional nonlinear programming problem using the trust-region algorithm based on the
present necessary condition.
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The paper is organized as follows. In the next section we describe constrained problem
considered and the assumptions used. In Section 3, we present the classical necessary opti-
mality conditions, and in terms of the operator theories and the introduction of the scaling
functionals, we reformulate the necessary optimality condition in the infinite framework;
In Section 4, the trust-region subproblems are built.

2. Problem formulation and assumptions

Optimal control problem can be formulated as the following abstract optimization
problem with special structure in infinite dimensional space.

min  f(y,u)
st. e(y,u)=0 (1)
u € uad;

where U,g = {u] a(z) < u(z) < b(z),z € N},92 C R™ is a domain with positive and finite
Lebesgue measure 0 < () < oo. fis areal functional on Z = Y x U, e is an operator from
Z toW.Y,U and W are Hilbert spaces. e(y,u) = 0 is an operator equation corresponding
to the state equation in the associated optimal control problem, the variables y,u are the
state and the control respectively.

We adopt the following notations throughout: z = (y,u) € Y x U = Z; (-,-) stands
for the inner product in a Hilbert space; f'(z) and €’(z) denote the Fréchet derivative of f
and e respectively. V denotes the gradient operator. Then for a fixed zp € Z,V f(z) is a
linear functional on Z, i.e. V f(2y) € Z*,Z* is the dual space of Z, but since Z is a Hilbert
space, thus Z* = Z;€'(29) is a linear operator from Z to W; (e(z2),e(z)) is a real functional
on Z, and for all w € W, (w,e'(z0)(+)) is also a functional on Z, and when applied to some
z € Z, take the value (w,e’(zp)z). For normed linear spaces E and F, we let L(E, F)
denote the space of linear and bounded operators from E into F. For simplicity, £(&, )
will be abbreviated to £(£). For A € £(£,F) we use the symbols R(A) and N(A) for
the range space and the null space of A respectively, and the operator A* € L(F*, E*)
denotes the adjoint of A. Following the above notations, then e’(29)z € W for all z € Z,
and €'(z0) € L(Z, W),V f(z0) € Z*.

When the black-box approach is applied to optimal control problem with bound con-
strained on u, problem (1) can be reformulated as the following reduced form:

min  f(y(u),u)
st. u € Uy (2)

In [5], Ulbrich investigated this problem, and the optimality conditions, the trust-region
interior-point algorithm were presented to solve this problem based on 4]
Now we introduce the following functional

Ly, v, A) = f(y,u) + (X, e(y, u))w, (3)

where L :Y x U x W* — R', A € W* and W* denotes the dual space of W. Since W is a
Hilbert space, thus W = W*.
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In order to establish the optimality conditions of problem (1), we introduce the follow-
ing assumptions.

(A1) There exists local optimal solution (y*,u*) € Z, and f(y*,u*) < f(y,u), if
(v,u) € Z,e(y,u) = 0,u € Usg, lly — ¥*lly + [lu~ u*|lv < €,e > 0.

(A2) f and e are twice continuously Fréchet-differentiable; V2 f(y, u), e”(y, u) are Lip-
schitz continuous in a neighborhood of (y,u) € Z;

(A3) €'(y,u) is surjective and e, (y,u) is bijective.

3. Optimality conditions

Completely analogous to those of finite-dimensional problem, we can obtain the first-
order necessary optimality condition of problem (1) as follows:

Theorem 3.1 Assume that (A1)-(A3) are valid, and that (y*,u*) is a local optimal
solution of problem (1), then there exist \* € W*,u; > 0,45 > 0, such that

Vyf(y*,u) + e (y7,u*)" A" = 0,
Vuf(y*,u*) + €, (v W) X — pg 4+ = 0,

C(y*,u*) = 0, (4)
(u*(z) — a(2))u; + (b(z) — w*(2))y =0,
u* € uadr

where e (y*,u*)* and e,(y*,u*)* denote the adjoint operators of e (y*,u*) and el (y*,u*),
respectively.

Theorem 3.2 Let the same assumptions as in the above theorem hold, and let (y*,u*)
be a local optimal solution of problem (1), then (y*,u*) satisfies

e(y*,u*) =0,
=0 a(z) < v <b(z),

Vo L(y*,u*, X*)=<¢ >0 u* =a(z), (5)
<0 u*=b(z),

X = (e (v w) )TV F (v, u),

u* € Uyd.

Proof Since (y*,u*) is the local optimal solution of problem (1), obviously, u* € U,q and
e(y*,u*) = 0, and for arbitrary y € Y, the following equality holds.

(Vyf (v, u),y) + (ey(y™, vy, A") =0, VyeY.
Since the choice of y is arbitrary in Y, then
YV f(y* u) + e (v, u) A = 0.
Based on the invertibility of ej(y*,u*), we can obtain that

/\* = ~(e;(y*, u*)*)"lvyf(y*, u*)'
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If a(z) < u* < b(z), then we can obtain that V, L(y*,u*, A*) = 0; if u* = a(z), then obey
@t > 0,4t = 0. Based on the complementary condition, we can obtain Vo L(y*,u*, A*) > 0;
Analogously, if u* = b(z) we can obey uX = 0,u; > 0 respectively, it is obviously that
VuL(y*,u*,A*) < 0.

We introduce the following assumption, which is needed to reformulate the optimality

conditions.
(A4) For each z = (y,u) € Y x U, there exists a linear bounded operator T'(z) : U — Z,
such that

N(e(2)) = {s € Z | €(z)(s) = 0} = {T(2)(u) | w € U} = R(T(2))-
Let R(z) be a linear bounded operator E(z) : W — Z, i.e., R(2) € L(W, Z), such that
e(z2)R(z) = Iy, Vz€ Z,

where Iy is an identity operator, Iy € L(W).
Given (y,u) € Z, then (§,v) € Z lies in the null space of €'(y, u) if and only if

ey (y,u)€ + e, (y,u)v = 0.

Since e, (y,u) is bijective, we obtain

(6v) € N(€(y, ) == (£,v) = (—ey(y,u) ey (y, u)w,v).

This leads to the following definition of operators
T(yvu) = (—e;/(y,u)'lei‘(y,u),IU)T, R(yvu) = (e;(y’u)—lvo)T’

where Iy is identity operator, Iy € £(U) and the second component in R(y,u) denotes
the null operator in L(W, U). According to the above expressions, we have

VuL(y*, u*, ) = Vi f(y*,u*) + € (y*, u* ) A*
= Vuf(y",u) — €, (v, v ) (e, (v*, w*)*) 'V, f(y*, u*))
= T(y*, v )" V(y*,u").

Then, if (y*,u*) € Y x U is a local optimal solution of problem (1), the first-order necessary
optimality condition (5) can be written as the following equivalent form

e(y*au*) =0,
=0 a(z) < u* < b(z),
T(y*, vy Viy,u)=¢ >0 u* =a(z), (6)
<0 uw* = b(=),
u* € Uyg.

Based on the idea introduced by Coleman and Lil4l, for arbitrary (y,u) € Y x U,u €
Uyd, we introduce the following scaling functional which is assumed to satisfy

=0 if u(z)=a(z) and T(y,u)*Vf(y,u)>0
dly,ul(z) = ¢ =0 if u(z)=1b(z) and T(y,u)*Vf(y,u) <0 (7)
>0 else.
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We can define an affine scaling function as follows

w(z) - a(z) £ T@W'Vf(y,u) >0 or T(y,u)*Vf(y,u) =0
and u(z) < ( a(z) + ¥(z)),
(

o) — () f T@w*Vf(y,u) <0 or T(y,u)*Vf(y,u)=0
o) =) wd u(e) > Hale) + b(a)). !

di(y,u)(=z) = (8)

It is easily to verify that di(y,u) satisfies the condition (7).
Following the above discussion, we can obtain the conclusion as follows:

Theorem 3.3 The point (y*, u*) satisfies the first-order necessary conditions if and only
if the following conditions are valid

e(y*,u*) =0,
{d(y w)T(y*, w*)*V f(v*, u*) = 0. (9)

Proof It is obviously that we need only to prove (9) is equivalent to (6). Firstly, we
assume (6) is valid. If a(z) < u* < b(z), then T(y*,v*)*Vf(y*,u*) = 0; if u* = a(z),
then T(y*,w*)*V f(y*,u*) > 0, in terms of the definition of d(y,u)(z), we can obtain
d(y*,u*)(z) = 0 for arbitrary z € Q; Analogously, if u* = b(z), then d(y*,u*)(z) = 0 for
any ¢ € Q, hence (9) is valid. On the other hand, let d(y*,v*)T(y*,u* 'V f(y*,u*) = 0
hold. For all z €  with a(z) < w* < b(z), we have d(y*,u")(z) > 0, which implies
T(y*,v*)*Vf(y*,v*) = 0. For all z € Q with u* = a(z), we obtain T(y*,uv*)*V f(y*,u*) >
0, since T(y*,u*)*V f(y*,u*) > 0 would yield the contradiction d(y*,u*)(z) > 0; Analo-
gously, we can show that T(y*,u*)*V f(y*,u*) < 0 for all z € Q with v* = b(z). Thus, (6)
holds.

4. Trust-region subproblem

One way to motivate the algorithms is to apply Newton’s method augmented by trust-
region globalization to the system of nonlinear equation (9). In this section we focus on
constructing the trust-region subproblems based on (9). Firstly, we need a substitution for
the derivative of d(y,u)T(y,u)*V f(y,u). Formal application of the product rule suggests
choosing an approximate derivative of the form/.

D(y, w)V [T(y, )"V Iy, w)] + D'(y,w) [T(3,w)"V (3, 4)], u € Uaa- (10)

Here D(y,u) denotes the pointwise multiplication operator associated with d(y,u). It is
clearly when d(y,u) = di(y,u), the choice Dy(y,u)w = dr.w, Dy(y,u)n = dpn, for all
neY,we U, with

if T(y,u)*Vf(y,u)>0 or T(y,u) Vi(y,u)=0
and u(z) < %(a(fﬂ) + b(z)),
W)z = 11
d]u(y'A )( ) if T(y,u)*Vf(y,u) <0 or T(y, ) Vf(y, )—* 0 ( )
and u(z) > %(a(z) + b(z))



and

dry(3,0)(2) = 0. (12)
Now we introduce the derivative of 7'(y,u)*V f(y,u). Since
T(y,u)'VI(y,u) = Vuf(y,u) + e (4, u)"A, (13)
where A € Z* is determined by
e(y,u)'A = =Vyf(y,u), (14)

and the following equalities are fulfilled

%(Tw,u)*w(y,u)) :T<y,u>*( v (15)

—B% (T(y,u)*Vf(y,u) = T(y,u) (Vyu

u,)\)) ’ (16)
YU, A)
where A = (e;(y,u)*)_lvyf(y,u).
It can be shown that a Newton’s step in (y,u) on nonlinear system (9) is given by
8;(:’/,“)89 + ei‘(y,u)s“ = -'e(yvu)v
s
(D(y,w)T(y, ) 9 L(y,w,\) + (0, Dify,w) () (7)
= =D(y,w)T(y,w)'V f(y,u),

where 2 2
Vi Ly, u,A) V2 L(y,u, A
2 _ vy ! yus o0
ViL(y,u,\) = ( VI L(y,u,N) Vi L(yuA |’

uy

Following (A3), the solutions of the linearized state equation in (17) are of the form

u

s = (j‘,y) =" + T(y, u)sq, (18)

where

= Ry el - - ( e;(y,u)(—)le(y,u) ) ) (19)

The above system (17) can be equivalently written as

s = 5"+ T(y,u)s,
(D(y,w)T(y, u)* V2 L{y,u, \T(y,u) + D.L(y,u)) su (20)
= ~-D(y,u)T(y,u)* (V2L(y,u,/\)s" + Vf(y,u)) .

Then above system (20) can be reformulated as

s = 35"+ T(y,u)sq,
(T(y, w)* VEL(y, 4, \)T(y,4) + D™} (y, u) Di(y, u)) s, (21)
= =T(y,u)* (VEL(y,u, A)s" + V f(y,u)) .
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Introducing the scaled step s, = D";’(y,u)su, then (21) takes the form

§ = 1 +D2(y, )T (y, u)3y, ‘
(Df )T (y,u) V2 L(y, u, )T (y,4) D¥ (3, u) + Di(y, u)) bu (22)
= —D3(y,u)T(y, u)* (V2L(y, 1, \)s" + Vf(y,u)) .

Following the idea introduced by Dennis and Vicentel®, we can structure two trust-
region subproblems corresponding to the system of equation of (22) respectively.

min (el (y, v), e, (y,w)s" + e(y, u)ffy (23)
st. sz <A

and

min § (8, (D3 (y,w)T(y, ) V2L(y,u, NIy, u)D¥ (v, u) + Dily,w))su)+
(3, D3 (3, u)T(y,u)" (V2L(y, u, A)s™ + V f(y,u))) (24)
st. |8u]lu < A

Let B denote a symmetric approximation of V2L(y,u, ), and assume that the norms
| Bllz(z,2+) are uniformly bounded by a constant ¢; > 0; In the subproblem (23), since

s™ is required to have the form (’(;; ), the displacement along s™ is made only in the y
variable. As a consequence, z and z 4+ s™ have the same u component, then the previous
two trust-region subproblems can be rewritten as

min 3¢ (y,2)s] + e(y, u)||?
st lsylly < A " (%)

min § (4, (D (v, )T (y, ) BT(y,4)D% (y,1) + Dy, w))3u)t
(3, DE (3, w)T(y, u)* (Bs™ + V f(y,u))) (26)
s.t. ||Sullu < A.

If we work with the original variable, the subproblem (26) reads as follows

min 3 (s, (T(y,u)* BT (y,u) + D™ (y,u) D, (y, u))su)+
<5u,T(y1u)* (Bsn + Vf(y,u))) (27)
s.t. [|1D7 Ny, u)sullu < A
u+ 8y € uad'

In the above subproblem, we require that the new iterate is in the interior of the box
constraint. However, it is important to remark that the bound constraint do not need to
be strictly enforced when computing s,{6]. An approximate of

min  3(su,(T(y,u)*BT(y,u) + D} (y,u) Dy (y, u)su)+
<su,T( w)* (Bs™ 4 Vf(y,u))) (28)
st. ||D7Y (g, w)sully < A

is computed and then scaled by a constant 4y > 0 so that u + ysy € Uag.
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Let 2z, = (yr,ur) € Z be given with uy € Uyq, we introduce a quadratic model
1
qe(s) = L + (s, VL) + §<3’ By.s)
of L(zx + s,\) defined by (3) about (z,Ax). Obviously, we can derive that

1 *
ar(sk + T(yr, uk)su) = qr(sk) + (Su, k) + §<3u,T(ykauk) BT (Y, tk)Su), (29)

where
9k = T(ye, we) Var(sr) = Tyr, ur) (Brsg + V (g, ur)),

and By is the symmetric approximation of V2 L(y, uk, Ak ), B € L(Z,L(Z, RY)) = L(Z,Z*).
For convenience, we define

1 _
or(se) = qu(sy + T(ye, wr)su) + '2‘(31“ D' Diysu). (30)

In order to compute the new iterate z;.4 = 2zi + Sk, with sp = sP + Ti(su )k, ur + (3u)k €
U,q, we should solve the following trust-region subproblems in order.

min ||e], (yx, ur) (85 )k + e(yr, u)lI3
st {I(sy)elly < A Y 3y

and
min  pu(sk)
st IDF (suell < Ay (32)
up + (Su)k € Uya.

Due to the above discussion, the problem (1) is transferred into two trust-region sub-
problems which are similar to the trust-region subproblem for the unconstrained case. In
unconstrained optimization, the use of a trust-region has made it possible to make strong
guarantees of convergence, in order to ensure global convergence, the step is required to
satisfy the FCD condition; namely, the step must product at least a fraction of decrease
obtained by Cauchy step[6]. Here the Cauchy decrease denotes the maximum possible
decrease along the steepest descent direction of ||e, (yk,ur)sy + e(yx, ur)||w at s = 0 and
¥k at s, = 0 inside the feasible region of the subproblem (31) and (32) respectively.

In order to guarantee global convergence we require (s} )i to satisfy

N(sydelly < K lle(ye, ur)llw, (33)

where K is a positive constant independent of the iterate k of the algorithm; and satisfy
the following fraction of Cauchy decrease condition

leyr, we )l — lley (vr, wa)(si)e + (e, ur)lly
> k1 (leCynr will3, =l (v ) (55 )k + (o wa) 1) (34)
l(sy)elly < Ak,
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where ki > 0 does not depend on the iterate k of the algorithm and (sg)k is the so-called
Cauchy step for this trust-region subproblem, i.e. (s7)r is the optimal solution of the
following one-dimensional optimization problem

min 3 ley (yk, uk)sy + e(yi, ur )l
st lsylly < A
sy = —tey (Y, ur)e(yr, ux), t>0.

Now following the powerful lemma presented by Powelll®! we can deduce that the
decrease given by (s}); is such that

lleCyr, we)llfy — Ney (ver we) (s )i + e(yi, we )i
lleg, (yr, wr)* e(yr, ue )|y
el (yr, ur)*el (yr, ur)ly '

> Sralle (s ue)"e(an ue)y min A ()

However, we do not have to solve (31) exactly. For example, in the finite-dimensional
setting, it is only to assume that (s]}),. satisfies (33) and

lle(wn, w )l — lley (9, we )53 )i + ey, we)ll3w
2 Kale(yr, wa)llw min {xo|e(yi, ur)llw, A}, (36)
where K, ks, k3 are positive constants independent of k. Similar techniques can be applied
in the infinite-dimensional framework. In fact, the condition (34) is just a weaker form of

Cauchy decrease for the trust-region subproblem (31).
As for subproblem (32), it is analogous to the situation in [7]. We may take

—Dyigr, = —Di(T (yr, us)*Brsi + V f(y, ur))

as the Cauchy decrease direction of ¢}, and therefore define the following fraction of Cauchy
decrease condition: There exists k4 > 0 (fixed for all k) such that (s, ) is an approximate
solution of

(T (yr>ur)* BeT (yrs ur) + Dy ' Diy)su = =T (ykrur)*(Bisk + V (g, ue))  (37)

atisfyin

S 1D~ (su)klly < A,y
ug + (8u) € Uad, (38)
er((su)r) < Kap((53)k )

where (s5)y, is a solution of the following one-dimensional optimization problem.

min  i(5.)

s.t. 8y = —tDT(yr, ue ) (Bist + V (g, w)), t >0 (39)
1D sullu < A
or(a(z) — up) < s < op(b(z) — ur),

where o}, € [0,1] ensure that the Cauchy step (sg)x remains strictly feasible with respect
to the box constraint, and the parameter o € (0,1} is fixed for all iterate k.
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