On S-Semipermutable Subgroups of Finite Groups

LU Jia Kuan¹, LI Shi Rong²

Department of Mathematics, Shanghai University, Shanghai 200444, China;
Department of Mathematics, Guangxi University, Guangxi 530004, China)

(E-mail: ljk_607@163.com)

Abstract Let *d* be the smallest generator number of a finite *p*-group *P* and let $\mathcal{M}_d(P) = \{P_1, \ldots, P_d\}$ be a set of maximal subgroups of *P* such that $\bigcap_{i=1}^d P_i = \Phi(P)$. In this paper, we study the structure of a finite group *G* under the assumption that every member in $\mathcal{M}_d(G_p)$ is *S*-semipermutable in *G* for each prime divisor *p* of |G| and a Sylow *p*-subgroup G_p of *G*.

Keywords S-semipermutable subgroups; p-nilpotent groups; supersolvable groups.

Document code A MR(2000) Subject Classification 20D10; 20D20 Chinese Library Classification 0151.1

1. Introduction

All groups considered in this paper are finite.

A subgroup H of a group G is called S-permutable in G if H permutes with all Sylow subgroups of G, i.e., HS = SH for any Sylow subgroup S of G. This concept was introduced by Kegel in [1] and has been studied by some authors^[2-5]. A subgroup H of a group G is called S-semipermutable in G if H permutes with every Sylow p-subgroup S of G with $(p, |S|) = 1^{[6]}$. Obviously, an S-permutable subgroup is an S-semipermutable subgroup. The converse does not hold in general. For example, a Sylow 3-subgroup of the symmetric group S_4 of degree 4 is Ssemipermutable in S_4 but not S-permutable in S_4 . Wang and Zhang have studied the influence of S-semipermutability of some subgroups of prime power order on the structure of finite groups^[7,8].

Let G be a group and let $\mathcal{M}(G)$ be the set of all maximal subgroups of all Sylow subgroups of G. Many authors have investigated the structure of a group G under the assumption that every member in $\mathcal{M}(G)$ is well-situated in $G^{[9-17]}$. In many cases, the assumption that every member in $\mathcal{M}(G)$ is well-situated in G is too strong. It seems to be natural to replace $\mathcal{M}(G)$ by a small subset of $\mathcal{M}(G)$. As a choice to such a subset, we have the following:

Definition 1.1 Let d be the smallest generator number of a finite p-group P and let $\mathcal{M}_d(P) = \{P_1, \ldots, P_d\}$ be a set of maximal subgroups of P such that $\bigcap_{i=1}^d P_i = \Phi(G)$.

Received date: 2008-01-17; Accepted date: 2008-10-16

Foundation item: the National Natural Science Foundation of China (No. 10161001); the Natural Science Foundation of Guangxi Autonomous Region (No. 0249001); a Research Grant of Shanghai University (No. SHUCX091043).

We know that $|\mathcal{M}(P)| = (p^d - 1)/(p - 1), |\mathcal{M}_d(P)| = d$ and

$$\lim_{d \to \infty} (p^d - 1/p - 1)/d = \infty,$$

thus $|\mathcal{M}(P)| \gg |\mathcal{M}_d(P)|$.

In this paper, we investigate the structure of a group G under the assumption that every member in $\mathcal{M}_d(G_p)$ is S-semipermutable in G for each prime divisor p of |G| and a Sylow p-subgroup G_p of G.

2. Preliminaries

In this section we collect some lemmas which are useful to the proof of our theorems.

Lemma 2.1^[8] (1) Let G be a group. If $H \leq K \leq G$ and H is S-semipermutable in G, then H is S-semipermutable in K.

(2) Let H be p-subgroup of a group G for some prime p. If H is S-semipermutable in G and $K \trianglelefteq G$, then HK/K is S-semipermutable in G/K.

Lemma 2.2^[18] Let P be a Sylow p-subgroup of a group G and $N \leq G$. If $P \cap N \leq \Phi(P)$, then N is p-nilpotent.

Agrawal defined in [19] the generalized center of a group G, genz(G), as the subgroup of G generated by all elements g of G such that $\langle g \rangle$ is S-permutable in G, and the generalized hypercenter, genz_{∞}(G), as the largest term of the chain

$$1 = \operatorname{genz}_0(G) \le \operatorname{genz}_1(G) = \operatorname{genz}(G) \le \operatorname{genz}_2(G) \le \cdots$$

where $\operatorname{genz}_{i+1}(G)/\operatorname{genz}_i(G) = \operatorname{genz}(G/\operatorname{genz}_i(G))$, for $i \ge 0$. He proved that:

Lemma 2.3 A group G is supersolvable if and only if $G = \text{genz}_{\infty}(G)$.

Lemma 2.4 Let P be an elementary abelian p-group of order p^d with $d \ge 2$ and let $\mathcal{M}_d(P) = \{M_1, \ldots, M_d\}$. Then

- (1) $X_i = \bigcap_{j \neq i} M_j$ is cyclic of order p,
- (2) $P = \langle X_1, \dots, X_d \rangle.$

Lemma 2.5^[20] Let H be a solvable normal subgroup of G with $H \neq 1$. If every minimal normal subgroup of G contained in H is not contained in $\Phi(G)$, then the Fitting subgroup F(H) of H is the direct product of some minimal normal subgroups of G which are contained in H.

3. The results

Theorem 3.1 Let p be the smallest prime dividing the order of G and let G_p be a Sylow p-subgroup of G. If every member in $\mathcal{M}_d(G_p)$ is S-semipermutable in G, then G is p-nilpotent.

Proof Assume that the theorem is false and let G be a counterexample of minimal order. It follows from [21, IV, 2.8] that G_p is not cyclic. Furthermore, we claim the following facts.

986

On S-semipermutable subgroups of finite groups

(i) $O_{p'}(G) = 1.$

By Lemma 2.1(2), we observe that the hypothesis is still true for $G/O_{p'}(G)$. If $O_{p'}(G) \neq 1$, then the minimality of G implies that $G/O_{p'}(G)$ is p-nilpotent. It follows that G is p-nilpotent, a contradiction. Thus we may assume that $O_{p'}(G) = 1$. Similarly, we know that if $G_p \leq H < G$, then H is p-nilpotent, by the choice of G.

(ii) Let Q be a Sylow q-subgroup of G, where $q \neq p$. Then G_pQ is a subgroup of G.

Let $\mathcal{M}_d(G_p) = \{P_1, \ldots, P_d\}$. We have $d \geq 2$ and $G_p = P_1P_2$. By the hypothesis, each P_i is S-semipermutable in G, so $P_1Q = QP_1$ and $P_2Q = QP_2$. Thus $G_pQ = P_1P_2Q = P_1QP_2 = QP_1P_2 = QP_1P_2 = QG_p$, i.e., G_pQ is a subgroup of G.

Now, we make use of the above claims to prove our theorem and we treat two cases.

Case 1 $|\pi(G)| = 2.$

In this case, let Q be a Sylow q-subgroup of G, where $q \neq p$ is a prime dividing the order of G. Then assertion (ii) implies $G = G_p Q$. For any $i \in \{1, \ldots, d\}$, by the hypothesis, P_i is S-semipermutable in G and so $P_i Q$ is a subgroup of G. Since p is the smallest prime dividing the order of G, it follows that $P_i Q \leq G$ and $G/P_i Q$ is a group of order p. Set

$$N = \bigcap_{i=1}^{d} P_i Q.$$

Then N is a normal subgroup of G such that G/N is a p-group. Since P_i is a maximal subgroup of G_p , we have that $G_p \cap N = \bigcap_{i=1}^d P_i = \Phi(G_p)$. By Lemma 2.2, N is p-nilpotent. It follows from $O_{p'}(G) = 1$ that N is a p-group, contradicting that Q is a subgroup of N.

Case 2 $|\pi(G)| \ge 3.$

In this case, let U be a subgroup of G_p with $U \neq 1$. Let Q_1 be a Sylow q-subgroup of $N_G(U)$ and Q be a Sylow q-subgroup of G which contains Q_1 where $q \neq p$ is a prime. Set $K = G_p Q$. Then assertion (ii) implies K is a group of G. It is obvious that K is a proper group of G. Applying assertion (1), K is p-nilpotent. It follows that $Q_1 = Q \cap N_K(U) \leq N_K(U)$ and so $UQ_1 = U \times Q_1$. This implies that $N_G(U)/C_G(U)$ is a p-group. By the theorem of Frobenius^[21, IV, 5.8], G is p-nilpotent, a contradiction. The proof is completed.

Corollary 3.2 Let p be the smallest prime dividing the order of a group G, N a normal subgroup of G such that G/N is p-nilpotent, and let P be a Sylow p-subgroup of N. If every member in $\mathcal{M}_d(P)$ is S-semipermutable in G, then G is p-nilpotent.

Proof Let K/N be the normal Hall p'-subgroup of G/N. By Lemma 2.1(1) and Theorem 3.1, K is p-nilpotent and therefore G is p-nilpotent.

Corollary 3.3 Let G be a group. If, for each Sylow subgroup P of G, every member in $\mathcal{M}_d(P)$ is S-Semipermutable in G, then G is a Sylow tower group.

Proof Let p be the smallest prime of |G|. Then, by Theorem 3.1, G is p-nilpotent. By the same arguments and induction, we see that G is a Sylow tower group.

Theorem 3.4 For a group G, the following statements are equivalent:

(i) G is supersolvable;

(ii) There is a normal subgroup H of G such that G/H is supersolvable and for each noncyclic Sylow subgroup P of H, every member in $\mathcal{M}_d(P)$ is S-semipermutable in G.

Proof We only need to show that (ii) implies (i). Assume that (ii) holds. By Lemma 2.1(1) and Corollary 3.3, H is a Sylow tower group. Let q be the largest prime dividing the order of H and let Q be a Sylow q-subgroup of H. Then Q is normal in G. By Lemma 2.1(2), the hypothesis is still true for G/Q. Then by induction G/Q is supersolvable.

Assume that $\Phi(Q) \neq 1$. Then, by Lemma 2.1(2), the hypothesis is still true for $G/\Phi(Q)$. Then by induction $G/\Phi(Q)$ is supersolvable and therefore G is supersolvable. Consequently, we may assume that $\Phi(Q) = 1$ and so Q is an elementary abelian group of order q^d . If Q is cyclic, then G is supersolvable. Therefore we may assume that Q is not cyclic.

Let $\mathcal{M}_d(Q) = \{Q_1, \ldots, Q_d\}$, where $d \geq 2$. For any $i \in \{1, \ldots, d\}$, by the hypothesis, Q_i is S-semipermutable in G. Let p be a prime dividing the order of G with $p \neq q$ and let G_p be a Sylow p-subgroup of G. Then Q_iG_p is a group. This implies that $Q_i = Q \cap Q_iG_p \leq Q_iG_p$. In particular, G_p normalizes Q_i . It follows that $K = O^q(G)Q$ normalizes Q_i .

Set $X_j = \bigcap_{i \neq j} Q_i$. By Lemma 2.4, X_j is of order q. Since all Q_i are normal in K, we have that $X_j \leq K$. Now any Sylow subgroup G_p of G with $p \neq q$ is contained in K, so G_p normalizes X_j . On the other hand, let G_q be a Sylow q-subgroup of G. Then $X_jG_q = G_q = G_qX_j$, since $X_i \leq Q \leq G_q$. Hence X_j permutes with every Sylow subgroup of G and therefore every X_j is contained in the generalized center of G, i.e., $X_j \leq genz(G)$ for all j. Again applying Lemma 2.4, we have $Q = \langle X_1, \ldots, X_d \rangle$. So $Q \leq genz(G)$. It follows that G/genz(G) is supersolvable. Thus G is supersolvable by Lemma 2.3.

Corollary 3.5 Let G' be the derived subgroup of a group G. If, for each non-cyclic Sylow subgroup P of G', every member in $\mathcal{M}_d(P)$ is S-semipermutable in G, then G' is nilpotent.

Proof Take H = G'. By Theorem 3.4, G is supersolvable. Since the derived subgroup of a supersolvable group is nilpotent, it follows that G' is nilpotent.

Recall that a class \mathcal{F} of groups is called a formation if $G \in \mathcal{F}$ and $N \leq G$, then $G/N \in \mathcal{F}$, and if $G/N_i \in \mathcal{F}$, i = 1, 2, then $G/N_1 \cap N_2 \in \mathcal{F}$. If, in addition, $G/\Phi(G) \in \mathcal{F}$ implies $G \in \mathcal{F}$, then \mathcal{F} is called saturated. The class \mathcal{U} of all supersolvable groups is an interesting example of saturated formations.

Theorem 3.6 Let \mathcal{F} be a saturated formation containing \mathcal{U} and let G be a group. Then the following two statements are equivalent:

(i) $G \in \mathcal{F}$;

(ii) There exists a normal subgroup H of G such that $G/H \in \mathcal{F}$ and for every Sylow subgroup P of H, every member of $\mathcal{M}(P)$ is S-semipermutable in G.

Proof Only $(ii) \Rightarrow (i)$ needs to be proved. By Lemma 2.1(1) and Theorem 3.4, H is super-

solvable. Let q be the largest prime dividing H and let Q be a Sylow q-subgroup of H. Then Q is normal in G. Clearly, $(G/Q)/(H/Q) \cong G/H \in \mathcal{F}$. By Lemma 2.1(2), G/Q satisfies the hypothesis. Then by induction $G/Q \in \mathcal{F}$. Let $\mathcal{M}(Q) = \{Q_1, \ldots, Q_n\}$. For any $i \in \{1, \ldots, n\}$, since Q_i is S-semipermutable in G, we may see that Q_iG_p is a subgroup of G, where p is a prime dividing the order of G with $p \neq q$ and G_p is a Sylow p-subgroup of G. Also, $Q_iG_q = G_q = G_qQ_i$ because $Q_i \leq Q \leq G_q$, where G_q is a Sylow q-subgroup of G. Therefore, each member of $\mathcal{M}(Q)$ is S-permutable in G. Thus, by [15, Theorem 3.3], $G \in \mathcal{F}$.

The following example which is from a manuscript of the second author shows that Theorem 3.6 is false if one replaces $\mathcal{M}(P)$ by $\mathcal{M}_d(P)$ in Theorem 3.6.

Example 3.7 There exists a saturated formation \mathcal{F} containing \mathcal{U} and a solvable group G with a normal *p*-subgroup P such that $G/P \in \mathcal{F}$ and each member in $\mathcal{M}_d(P)$ is S-permutable in G (hence S-semipermutable in G). But $G \notin \mathcal{F}$.

Proof Let f be a formation function defined by f(p) = the class of p'- groups for any prime pand let \mathcal{F} be the formation locally defined by $\{f(p)\}$. If Y is a supersolvable group, then any p-chief factor H/N of Y is cyclic of order p, so $Y/C_Y(H/N)$ is cyclic of order dividing p-1 and hence $Y/C_Y(H/N) \in f(p)$. Therefore, $Y \in \mathcal{F}$ and so \mathcal{F} contains \mathcal{U} . Clearly, $A_4 \in \mathcal{F}$.

Let $P = \langle a, b, c \rangle$ be an elementary abelian group of order 3^3 and let α and β be two automorphisms of P defined respectively by

$$\alpha = \left(\begin{array}{cc} a & b & c \\ c & a & b \end{array}\right), \quad \beta = \left(\begin{array}{cc} a & b & c \\ b & c^{-1} & a^{-1} \end{array}\right).$$

Then $\alpha^3 = \beta^3 = (\alpha\beta)^2 = 1$, so $H = \langle \alpha, \beta \rangle \cong A_4$. Then H acts on P by automorphism. Let G = PH be the corresponding semidirect product. In fact, P is an irreducible and faithful A_4 -module on GF(p) and so P is a minimal normal subgroup of G with $C_H(P) = 1$. Because $A_4 \in \mathcal{F}$ and $G/P \cong H = A_4$, we have $G/P \in \mathcal{F}$. Let K = PS where S is a Sylow 2- subgroup of G. We have $O^3(G) \leq K \leq G$. Since S is elementary abelian of order 4, it follows that a minimal normal subgroup of K contained in P is of order p. By Maschke's theorem^[21, I, 17.7], P is a completely reducible S-module. Hence $P = \langle a_1 \rangle \times \langle a_2 \rangle \times \langle a_3 \rangle$, where $\langle a_i \rangle (i = 1, 2, 3)$ are S-invariant. Let $P_i = \langle a_j | j \neq i \rangle$. Then every P_i is S-quasinormal in G and $\mathcal{M}_d(P) = \{P_1, P_2, P_3\}$. On the other hand, P is a 3-chief factor of G and $G = C_G(P) = G/P \cong A_4$, which is not 3'-group. Hence $G \notin \mathcal{F}$.

Theorem 3.8 Let p be a prime dividing the order of a p-solvable group G and let P be a Sylow p-subgroup of G. If every member in $\mathcal{M}_d(P)$ is S-semipermutable in G, then G is p-supersolvable.

Proof Assume that the theorem is false and let G be a counterexample of minimal order. Then

(1) $O_p(G) > 1.$

It is obvious that $G/O_{p'}(G)$ satisfies the hypothesis. If $O_{p'}(G) > 1$, then minimality of G implies that $G/O_{p'}(G)$ is p-supersolvable and therefore G is p-supersolvable, a contradiction. So

 $O_{p'}(G) = 1$. It follows that $O_p(G) > 1$.

(2) $O_p(G) = S_1 \times \cdots \times S_r$ where S_i (i = 1, ..., r) is minimal normal subgroup of G of order p.

Let N be a minimal normal subgroup of G contained in $O_p(G)$. If $N \leq \Phi(P)$, then, by Lemma 2.1(2), G/N satisfies the hypothesis. Then G/N is p-supersolvable, by the choice of G. Since N is normal in G, by [22, Theorem 5.2.13], we see that $N \leq \Phi(G)$. It follows that G is p-supersolvable, a contradiction. Thus $N \not\leq \Phi(P)$. We may assume that $N \not\leq P_1$ with $P_1 \in \mathcal{M}_d(P)$. Let $N_1 = N \cap P_1$. Then $|N : N_1| = p$. Let $|G| = p^a q_1^{b_1} \cdots q_t^{b_t}$ be the prime factorization. For any $i \in \{1, \ldots, t\}$, let Q_{q_i} be a Sylow q_i -subgroup of G. By the hypothesis, $P_1Q_{q_i}$ is a subgroup of G and so $N_1 = N \cap P_1Q_{q_i} \leq P_1Q_{q_i}$. Hence $N_1 \leq \langle P_1Q_{q_1}, \ldots, P_1Q_{q_t}, N \rangle = G$. The minimality of N implies that $N_1 = 1$. Then N is a cyclic group of order p. Now, N is an abelian subgroup and $NP_1 = P$, $N \cap P_1 = 1$. By Gaschütz's Theorem^[21, I, 17.4], there exists a subgroup M of G such that G = NM, $N \cap M = 1$. It is obvious that M is a maximal subgroup of G, i.e., $N \not\leq \Phi(G)$. Now, by Lemma 2.5, we see that $O_p(G) = S_1 \times \cdots \times S_r$ with S_i is minimal normal subgroup of G. By the same arguments as above, we see S_i has order p, as desired.

(3) $G/O_p(G)$ p-supersolvable.

Because $G/C_G(S_i)$ is cyclic, $G/C_G(S_i)$ is *p*-supersolvable. Since the class of *p*-supersolvable groups is a formation, We have that $G/\bigcap_{i=1}^t C_G(S_i)$ is *p*-supersolvable, i.e., $G/C_G(O_p(G))$ is *p*-supersolvable. On the other hand, since *G* is *p*-solvable, it follows from [22, Theorem 9.3.1] that $C_G(O_p(G)) \leq O_p(G)$. Thus $G/O_p(G)$ *p*-supersolvable.

Applying our claims (2) and (3), G is p-supersolvable. \Box

Theorem 3.9 Let p be an odd prime dividing the order of G and let P be a Sylow p-subgroup of G. If $N_G(P)$ is p-nilpotent and every member in $\mathcal{M}_d(P)$ is S-semipermutable in G, then G is p-nilpotent.

Proof Assume that the theorem is false and let G be a counterexample of minimal order.

(1) Every proper subgroup of G containing P is p-nilpotent and $O_{p'}(G) = 1$.

Let $H \leq G$ with $P \leq H < G$. Then $N_H(P) \leq N_G(P)$ and $N_H(P)$ is *p*-nilpotent. Applying Lemma 1.1(1), we see that H satisfies the hypothesis. Thus H is *p*-nilpotent, by the choice of G. It is clear that the quotient group $G/O_{p'}(G)$ satisfies the hypothesis by Lemma 1.1(2). Thus, if $O_{p'}(G) \neq 1$, then the minimality of G implies that $G/O_{p'}(G)$ is *p*-nilpotent and therefore G is *p*-nilpotent, a contradiction. Hence $O_{p'}(G) = 1$.

(2) G is p-solvable.

Since G is not p-nilpotent, by a result of Thompson^[23,Corollary], there exists a characteristic subgroup T of P such that $N_G(T)$ is not p-nilpotent. Since $N_G(P)$ is p-nilpotent, we may choose a characteristic subgroup T of P such that $N_G(T)$ is not p-nilpotent and $N_G(K)$ is p-nilpotent for every characteristic subgroup K of P with $T < K \leq P$. Since T is a characteristic subgroup of P, we have $N_G(P) \leq N_G(T)$. Moreover, $N_G(P) < N_G(T)$. By (1), we see that $N_G(T) = G$. Then $T = O_p(G)$, by the choice of T. Using the result of Thompson^[23,Corollary] again, we see that $G/O_p(G)$ is p-nilpotent and therefore G is p-solvable. (3) G is p-nilpotent.

By (2) and Theorem 3.8, G is p-supersolvable. Since a p-supersolvable group is p-solvable group of p-rank at most 1, it follows from [21, VI, 6.6] that the p-length of G is at most 1. By (1), we have that $G = O_{pp'}(G)$. In particular, $N_G(P) = G$. It follows that G is p-nilpotent, a contradiction. The proof is completed.

Corollary 3.10 Let p be an odd prime dividing the order of a group G and N a normal subgroup of G such that G/N is p-nilpotent. If $N_G(P)$ is p-nilpotent and every member in $\mathcal{M}_d(P)$ is S-semipermutable in G, then G is p-nilpotent, where P is a Sylow p-subgroup of N.

Proof Let K/N be the normal Hall p'-subgroup of G/N. By Lemma 2.1(1) and Theorem 3.9, K is p-nilpotent and therefore G is p-nilpotent.

References

- KEGEL O H. Sylow-Gruppen und Subnormalteiler endlicher Gruppen [J]. Math. Z., 1962, 78: 205–221. (in German)
- [2] DESKINS W E. On quasinormal subgroups of finite groups [J]. Math. Z., 1963, 82: 125–132.
- [3] SCHMID P. Subgroups permutable with all Sylow subgroups [J]. J. Algebra, 1998, 207: 285–293.
- [4] ASAAD M, HELIEL A A. On S-quasinormally embedded subgroups of finite groups [J]. J. Pure Appl. Algebra, 2001, 165(2): 129–135.
- [5] BALLESTER-BOLINCHES A, PEDRAZA-AGUILERA M C. Sufficient conditions for supersolubility of finite groups [J]. J. Pure Appl. Algebra, 1998, 127(2): 113–118.
- [6] ZHANG Qinhai. s-semipermutability and abnormality in finite groups [J]. Comm. Algebra, 1999, 27(9): 4515–4524.
- [7] WANG Lifang, ZHANG Qinhai. Influence of s-semipermutability of some subgroups of prime power order on structure of finite groups [J]. J. Math. Res. Exposition, 2005, 25(3): 423–428.
- [8] ZHANG Qinhai, WANG Lifang. The influence of s-semipermutable subgroups on the structure of finite groups [J]. Acta Math. Sinica (Chin. Ser.), 2005, 48(1): 81–88. (in Chinese)
- [9] SRINIVASAN S. Two sufficient conditions for supersolvability of finite groups [J]. Israel J. Math., 1980, 35(3): 210–214.
- [10] WALLS G L. Groups with maximal subgroups of Sylow subgroups normal [J]. Israel J. Math., 1982, 43(2): 166–168.
- [11] ASAAD M. On maximal subgroups of Sylow subgroups of finite groups [J]. Comm. Algebra, 1998, 26(11): 3647–3652.
- [12] LI Yangming, WANG Yanming, WEI Huaquan. The influence of π -quasinormality of some subgroups of a finite group [J]. Arch. Math. (Basel), 2003, **81**(3): 245–252.
- [13] WANG Yanming. C-normality of groups and its properties [J]. J. Algebra, 1996, 78: 101–108.
- [14] WANG Yanming. Finite groups with some subgroups of Sylow subgroups c-supplemented [J]. J. Algebra, 2000, 224(2): 467–478.
- [15] ASAAD M, HELIEL A A. On permutable subgroups of finite groups [J]. Arch. Math. (Basel), 2003, 80(2): 113–118.
- [16] LI Yangming, LI Xianhua. S-permutable subgroups and p-nilpotency of finite groups [J]. J. Pure Appl. Algebra, 2005, 202(1-3): 72–81.
- [17] HUANG Jianhong, GUO Wenbin. s-conditionally permutable subgroups of finite groups [J]. Chinese Ann. Math. Ser. A, 2007, 28(1): 17–26. (in Chinese)
- [18] TATE J. Nilpotent quotient groups [J]. Topology, 1964, **3**(1): 109–111.
- [19] AGRAWAL R K. Generalized center and hypercenter of a finite group [J]. Proc. Amer. Math. Soc., 1976, 58: 13–21.
- [20] LI Deyu, GUO Xiuyun. The influence of c-normality of subgroups on the structure of finite groups (II) [J]. Comm. Algebra, 1998, 26(6): 1913–1922.
- [21] HUPPERT B. Endliche Gruppen I [M]. Springer-Verlag, Berlin-New York, 1967.
- [22] ROBINSON D J S. A Course in the Theory of Groups [M]. Springer-Verlag, New York, 1993.
- [23] THOMPSON J G. Normal p-complements for finite groups [J]. J. Algebra, 1964, 1: 43–46.