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1. Introduction

All groups considered in this paper are finite.

A subgroup H of a group G is called S-permutable in G if H permutes with all Sylow

subgroups of G, i.e., HS = SH for any Sylow subgroup S of G. This concept was introduced by

Kegel in [1] and has been studied by some authors[2−5]. A subgroup H of a group G is called

S-semipermutable in G if H permutes with every Sylow p-subgroup S of G with (p, |S|) = 1[6]).

Obviously, an S-permutable subgroup is an S-semipermutable subgroup. The converse does not

hold in general. For example, a Sylow 3-subgroup of the symmetric group S4 of degree 4 is S-

semipermutable in S4 but not S-permutable in S4. Wang and Zhang have studied the influence of

S-semipermutability of some subgroups of prime power order on the structure of finite groups[7,8].

Let G be a group and let M(G) be the set of all maximal subgroups of all Sylow subgroups

of G. Many authors have investigated the structure of a group G under the assumption that

every member in M(G) is well-situated in G[9−17]. In many cases, the assumption that every

member in M(G) is well-situated in G is too strong. It seems to be natural to replace M(G) by

a small subset of M(G). As a choice to such a subset, we have the following:

Definition 1.1 Let d be the smallest generator number of a finite p-group P and let Md(P ) =

{P1, . . . , Pd} be a set of maximal subgroups of P such that ∩d
i=1Pi = Φ(G).
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We know that |M(P )| = (pd − 1)/(p− 1), |Md(P )| = d and

lim
d→∞

(pd − 1/p− 1)/d = ∞,

thus |M(P )| ≫ |Md(P )|.

In this paper, we investigate the structure of a group G under the assumption that every

member in Md(Gp) is S-semipermutable in G for each prime divisor p of |G| and a Sylow

p-subgroup Gp of G.

2. Preliminaries

In this section we collect some lemmas which are useful to the proof of our theorems.

Lemma 2.1[8] (1) Let G be a group. If H ≤ K ≤ G and H is S-semipermutable in G, then H

is S-semipermutable in K.

(2) Let H be p-subgroup of a group G for some prime p. If H is S-semipermutable in G and

K � G, then HK/K is S-semipermutable in G/K.

Lemma 2.2[18] Let P be a Sylow p-subgroup of a group G and N � G. If P ∩N ≤ Φ(P ), then

N is p-nilpotent.

Agrawal defined in [19] the generalized center of a group G, genz(G), as the subgroup of

G generated by all elements g of G such that 〈g〉 is S-permutable in G, and the generalized

hypercenter, genz∞(G), as the largest term of the chain

1 = genz0(G) ≤ genz1(G) = genz(G) ≤ genz2(G) ≤ · · ·

where genzi+1(G)/genzi(G) = genz(G/genzi(G)), for i ≥ 0. He proved that:

Lemma 2.3 A group G is supersolvable if and only if G = genz∞(G).

Lemma 2.4 Let P be an elementary abelian p-group of order pd with d ≥ 2 and let Md(P ) =

{M1, . . . , Md}. Then

(1) Xi =
⋂

j 6=iMj is cyclic of order p,

(2) P = 〈X1, . . . , Xd〉.

Lemma 2.5[20] Let H be a solvable normal subgroup of G with H 6= 1. If every minimal normal

subgroup of G contained in H is not contained in Φ(G), then the Fitting subgroup F (H) of H

is the direct product of some minimal normal subgroups of G which are contained in H .

3. The results

Theorem 3.1 Let p be the smallest prime dividing the order of G and let Gp be a Sylow

p-subgroup of G. If every member in Md(Gp) is S-semipermutable in G, then G is p-nilpotent.

Proof Assume that the theorem is false and let G be a counterexample of minimal order. It

follows from [21, IV, 2.8] that Gp is not cyclic. Furthermore, we claim the following facts.
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(i) Op′(G) = 1.

By Lemma 2.1(2), we observe that the hypothesis is still true for G/Op′(G). If Op′(G) 6= 1,

then the minimality of G implies that G/Op′(G) is p-nilpotent. It follows that G is p-nilpotent,

a contradiction. Thus we may assume that Op′(G) = 1. Similarly, we know that if Gp ≤ H < G,

then H is p-nilpotent, by the choice of G.

(ii) Let Q be a Sylow q-subgroup of G, where q 6= p. Then GpQ is a subgroup of G.

Let Md(Gp) = {P1, . . . , Pd}. We have d ≥ 2 and Gp = P1P2. By the hypothesis, each Pi

is S-semipermutable in G, so P1Q = QP1 and P2Q = QP2. Thus GpQ = P1P2Q = P1QP2 =

QP1P2 = QGp, i.e., GpQ is a subgroup of G.

Now, we make use of the above claims to prove our theorem and we treat two cases.

Case 1 |π(G)| = 2.

In this case, let Q be a Sylow q-subgroup of G, where q 6= p is a prime dividing the order

of G. Then assertion (ii) implies G = GpQ. For any i ∈ {1, . . . , d}, by the hypothesis, Pi is

S-semipermutable in G and so PiQ is a subgroup of G. Since p is the smallest prime dividing

the order of G, it follows that PiQ � G and G/PiQ is a group of order p. Set

N =
d
⋂

i=1

PiQ.

Then N is a normal subgroup of G such that G/N is a p-group. Since Pi is a maximal subgroup

of Gp, we have that Gp ∩ N =
⋂d

i=1 Pi = Φ(Gp). By Lemma 2.2, N is p-nilpotent. It follows

from Op′(G) = 1 that N is a p-group, contradicting that Q is a subgroup of N .

Case 2 |π(G)| ≥ 3.

In this case, let U be a subgroup of Gp with U 6= 1. Let Q1 be a Sylow q-subgroup of

NG(U) and Q be a Sylow q-subgroup of G which contains Q1 where q 6= p is a prime. Set

K = GpQ. Then assertion (ii) implies K is a group of G. It is obvious that K is a proper

group of G. Applying assertion (1), K is p-nilpotent. It follows that Q1 = Q∩NK(U) � NK(U)

and so UQ1 = U × Q1. This implies that NG(U)/CG(U) is a p-group. By the theorem of

Frobenius[21, IV, 5.8], G is p-nilpotent, a contradiction. The proof is completed. 2

Corollary 3.2 Let p be the smallest prime dividing the order of a group G, N a normal subgroup

of G such that G/N is p-nilpotent, and let P be a Sylow p-subgroup of N . If every member in

Md(P ) is S-semipermutable in G, then G is p-nilpotent.

Proof Let K/N be the normal Hall p′-subgroup of G/N . By Lemma 2.1(1) and Theorem 3.1,

K is p-nilpotent and therefore G is p-nilpotent. 2

Corollary 3.3 Let G be a group. If, for each Sylow subgroup P of G, every member in Md(P )

is S-Semipermutable in G, then G is a Sylow tower group.

Proof Let p be the smallest prime of |G|. Then, by Theorem 3.1, G is p-nilpotent. By the same

arguments and induction, we see that G is a Sylow tower group. 2
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Theorem 3.4 For a group G, the following statements are equivalent:

(i) G is supersolvable;

(ii) There is a normal subgroup H of G such that G/H is supersolvable and for each non-

cyclic Sylow subgroup P of H , every member in Md(P ) is S-semipermutable in G.

Proof We only need to show that (ii) implies (i). Assume that (ii) holds. By Lemma 2.1(1) and

Corollary 3.3, H is a Sylow tower group. Let q be the largest prime dividing the order of H and

let Q be a Sylow q-subgroup of H . Then Q is normal in G. By Lemma 2.1(2), the hypothesis is

still true for G/Q. Then by induction G/Q is supersolvable.

Assume that Φ(Q) 6= 1. Then, by Lemma 2.1(2), the hypothesis is still true for G/Φ(Q).

Then by induction G/Φ(Q) is supersolvable and therefore G is supersolvable. Consequently, we

may assume that Φ(Q) = 1 and so Q is an elementary abelian group of order qd. If Q is cyclic,

then G is supersolvable. Therefore we may assume that Q is not cyclic.

Let Md(Q) = {Q1, . . . , Qd}, where d ≥ 2. For any i ∈ {1, . . . , d}, by the hypothesis, Qi is

S-semipermutable in G. Let p be a prime dividing the order of G with p 6= q and let Gp be a

Sylow p-subgroup of G. Then QiGp is a group. This implies that Qi = Q ∩ QiGp � QiGp. In

particular, Gp normalizes Qi. It follows that K = Oq(G)Q normalizes Qi.

Set Xj =
⋂

i6=j Qi. By Lemma 2.4, Xj is of order q. Since all Qi are normal in K, we have

that Xj � K. Now any Sylow subgroup Gp of G with p 6= q is contained in K, so Gp normalizes

Xj . On the other hand, let Gq be a Sylow q-subgroup of G. Then XjGq = Gq = GqXj , since

Xi ≤ Q ≤ Gq. Hence Xj permutes with every Sylow subgroup of G and therefore every Xj is

contained in the generalized center of G, i.e., Xj ≤ genz(G) for all j. Again applying Lemma

2.4, we have Q = 〈X1, . . . , Xd〉. So Q ≤ genz(G). It follows that G/genz(G) is supersolvable.

Thus G is supersolvable by Lemma 2.3. 2

Corollary 3.5 Let G′ be the derived subgroup of a group G. If, for each non-cyclic Sylow

subgroup P of G′, every member in Md(P ) is S-semipermutable in G, then G′ is nilpotent.

Proof Take H = G′. By Theorem 3.4, G is supersolvable. Since the derived subgroup of a

supersolvable group is nilpotent, it follows that G′ is nilpotent. 2

Recall that a class F of groups is called a formation if G ∈ F and N � G, then G/N ∈ F ,

and if G/Ni ∈ F , i = 1, 2, then G/N1 ∩ N2 ∈ F . If, in addition, G/Φ(G) ∈ F implies G ∈ F ,

then F is called saturated. The class U of all supersolvable groups is an interesting example of

saturated formations.

Theorem 3.6 Let F be a saturated formation containing U and let G be a group. Then the

following two statements are equivalent:

(i) G ∈ F ;

(ii) There exists a normal subgroup H of G such that G/H ∈ F and for every Sylow sub-

group P of H , every member of M(P ) is S-semipermutable in G.

Proof Only (ii) ⇒ (i) needs to be proved. By Lemma 2.1(1) and Theorem 3.4, H is super-
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solvable. Let q be the largest prime dividing H and let Q be a Sylow q-subgroup of H . Then

Q is normal in G. Clearly, (G/Q)/(H/Q) ∼= G/H ∈ F . By Lemma 2.1(2), G/Q satisfies the

hypothesis. Then by induction G/Q ∈ F . Let M(Q) = {Q1, . . . , Qn}. For any i ∈ {1, . . . , n},

since Qi is S-semipermutable in G, we may see that QiGp is a subgroup of G, where p is a prime

dividing the order of G with p 6= q and Gp is a Sylow p-subgroup of G. Also, QiGq = Gq = GqQi

because Qi ≤ Q ≤ Gq, where Gq is a Sylow q-subgroup of G. Therefore, each member of M(Q)

is S-permutable in G. Thus, by [15, Theorem 3.3], G ∈ F . 2

The following example which is from a manuscript of the second author shows that Theorem

3.6 is false if one replaces M(P ) by Md(P ) in Theorem 3.6.

Example 3.7 There exists a saturated formation F containing U and a solvable group G with

a normal p-subgroup P such that G/P ∈ F and each member in Md(P ) is S-permutable in G

(hence S-semipermutable in G ). But G /∈ F .

Proof Let f be a formation function defined by f(p) = the class of p′- groups for any prime p

and let F be the formation locally defined by {f(p)}. If Y is a supersolvable group, then any

p-chief factor H/N of Y is cyclic of order p, so Y/CY (H/N) is cyclic of order dividing p− 1 and

hence Y/CY (H/N) ∈ f(p). Therefore, Y ∈ F and so F contains U . Clearly, A4 ∈ F .

Let P = 〈a, b, c〉 be an elementary abelian group of order 33 and let α and β be two auto-

morphisms of P defined respectively by

α =

(

a b c

c a b

)

, β =

(

a b c

b c−1 a−1

)

.

Then α3 = β3 = (αβ)2 = 1, so H = 〈α, β〉 ∼= A4. Then H acts on P by automorphism. Let

G = PH be the corresponding semidirect product. In fact, P is an irreducible and faithful A4-

module on GF (p) and so P is a minimal normal subgroup of G with CH(P ) = 1. Because A4 ∈ F

and G/P ∼= H = A4, we have G/P ∈ F . Let K = PS where S is a Sylow 2- subgroup of G. We

have O3(G) ≤ K �G. Since S is elementary abelian of order 4, it follows that a minimal normal

subgroup of K contained in P is of order p. By Maschke’s theorem[21, I, 17.7], P is a completely

reducible S-module. Hence P = 〈a1〉 × 〈a2〉 × 〈a3〉, where 〈ai〉(i = 1, 2, 3) are S-invariant. Let

Pi = 〈aj |j 6= i〉. Then every Pi is S-quasinormal in G and Md(P ) = {P1, P2, P3}. On the other

hand, P is a 3-chief factor of G and G = CG(P ) = G/P ∼= A4, which is not 3′-group. Hence

G /∈ F . 2

Theorem 3.8 Let p be a prime dividing the order of a p-solvable group G and let P be a

Sylow p-subgroup of G. If every member in Md(P ) is S-semipermutable in G, then G is p-

supersolvable.

Proof Assume that the theorem is false and let G be a counterexample of minimal order. Then

(1) Op(G) > 1.

It is obvious that G/Op′(G) satisfies the hypothesis. If Op′(G) > 1, then minimality of G

implies that G/Op′(G) is p-supersolvable and therefore G is p-supersolvable, a contradiction. So
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Op′(G) = 1. It follows that Op(G) > 1.

(2) Op(G) = S1 × · · · × Sr where Si (i = 1, . . . , r) is minimal normal subgroup of G of order

p.

Let N be a minimal normal subgroup of G contained in Op(G). If N ≤ Φ(P ), then, by

Lemma 2.1(2), G/N satisfies the hypothesis. Then G/N is p-supersolvable, by the choice of

G. Since N is normal in G, by [22, Theorem 5.2.13], we see that N ≤ Φ(G). It follows that

G is p-supersolvable, a contradiction. Thus N 6≤ Φ(P ). We may assume that N 6≤ P1 with

P1 ∈ Md(P ). Let N1 = N ∩ P1. Then |N : N1| = p. Let |G| = paqb1
1 · · · qbt

t be the prime

factorization. For any i ∈ {1, . . . , t}, let Qqi
be a Sylow qi-subgroup of G. By the hypothesis,

P1Qqi
is a subgroup of G and so N1 = N∩P1Qqi

�P1Qqi
. Hence N1�〈P1Qq1

, . . . , P1Qqt
, N〉 = G.

The minimality of N implies that N1 = 1. Then N is a cyclic group of order p. Now, N is an

abelian subgroup and NP1 = P , N ∩ P1 = 1. By Gaschütz’s Theorem[21, I, 17.4], there exists a

subgroup M of G such that G = NM , N ∩M = 1. It is obvious that M is a maximal subgroup

of G, i.e., N 6≤ Φ(G). Now, by Lemma 2.5, we see that Op(G) = S1×· · ·×Sr with Si is minimal

normal subgroup of G. By the same arguments as above, we see Si has order p, as desired.

(3) G/Op(G) p-supersolvable.

Because G/CG(Si) is cyclic, G/CG(Si) is p-supersolvable. Since the class of p-supersolvable

groups is a formation, We have that G/
⋂t

i=1 CG(Si) is p-supersolvable, i.e., G/CG(Op(G)) is

p-supersolvable. On the other hand, since G is p-solvable, it follows from [22, Theorem 9.3.1]

that CG(Op(G)) ≤ Op(G). Thus G/Op(G) p-supersolvable.

Applying our claims (2) and (3), G is p-supersolvable. 2

Theorem 3.9 Let p be an odd prime dividing the order of G and let P be a Sylow p-subgroup

of G. If NG(P ) is p-nilpotent and every member in Md(P ) is S-semipermutable in G, then G is

p-nilpotent.

Proof Assume that the theorem is false and let G be a counterexample of minimal order.

(1) Every proper subgroup of G containing P is p-nilpotent and Op′ (G) = 1.

Let H ≤ G with P ≤ H < G. Then NH(P ) ≤ NG(P ) and NH(P ) is p-nilpotent. Applying

Lemma 1.1(1), we see that H satisfies the hypothesis. Thus H is p-nilpotent, by the choice of G.

It is clear that the quotient group G/Op′(G) satisfies the hypothesis by Lemma 1.1(2). Thus, if

Op′(G) 6= 1, then the minimality of G implies that G/Op′(G) is p-nilpotent and therefore G is

p-nilpotent, a contradiction. Hence Op′(G) = 1.

(2) G is p-solvable.

Since G is not p-nilpotent, by a result of Thompson[23,Corollary], there exists a characteristic

subgroup T of P such that NG(T ) is not p-nilpotent. Since NG(P ) is p-nilpotent, we may choose

a characteristic subgroup T of P such that NG(T ) is not p-nilpotent and NG(K) is p-nilpotent

for every characteristic subgroup K of P with T < K ≤ P . Since T is a characteristic subgroup

of P , we have NG(P ) ≤ NG(T ). Moreover, NG(P ) < NG(T ). By (1), we see that NG(T ) = G.

Then T = Op(G), by the choice of T . Using the result of Thompson[23,Corollary] again, we see

that G/Op(G) is p-nilpotent and therefore G is p-solvable.
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(3) G is p-nilpotent.

By (2) and Theorem 3.8, G is p-supersolvable. Since a p-supersolvable group is p-solvable

group of p-rank at most 1, it follows from [21, VI, 6.6] that the p-length of G is at most 1. By

(1), we have that G = Opp′(G). In particular, NG(P ) = G. It follows that G is p-nilpotent, a

contradiction. The proof is completed. 2

Corollary 3.10 Let p be an odd prime dividing the order of a group G and N a normal subgroup

of G such that G/N is p-nilpotent. If NG(P ) is p-nilpotent and every member in Md(P ) is S-

semipermutable in G, then G is p-nilpotent, where P is a Sylow p-subgroup of N .

Proof Let K/N be the normal Hall p′-subgroup of G/N . By Lemma 2.1(1) and Theorem 3.9,

K is p-nilpotent and therefore G is p-nilpotent. 2
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