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There has been much discussion on the Increasing Function Theorem (IFT) and related

results such as the Mean Value Theorem (MVT)[1,2] recent years in the Calculus reform in the

USA. One viewpoint is using the IFT to replace the MVT while the many ones have reservations.

Motivated by these articles, in this paper we will change the angle of view to consider the

connections among these theorems in Calculus. Our point of view is that the MVT needs to

be retained, but its proof (and the proofs of other fundamental theorems in Calculus) can be

modernized. Our treatment of several well-known theorems in Calculus, including the starting

point, the implication, and the inference, are different from that available in the current literature.

Our process implies the equivalence of the MVT and Strictly IFT (and therefore IFT) in the

sense that the theoretical corpus of Calculus can be derived using either IFT or Rolle’s Theorem

(and thus MVT) as the starting point.

In addition, we find that the Heine-Borel Lemma (i.e., the Heine-Borel Covering Theorem on

closed intervals), easily proved using the bisection scheme (i.e., Bolzano method), is convenient

for extending some local properties of a function to the entire closed interval being considered.

Consider a collection
∑

of open intervals . If for every point x in [a, b] there is an open interval

of
∑

containing x, we say
∑

covers [a, b]. The Heine-Borel Lemma states that if a closed

interval [a, b] is covered by a collection
∑

of open intervals, then there must be finite open

intervals selected from
∑

by which [a, b] is covered. The Lemma can be proven by the bisection

scheme and therefore is not too advanced for an elementary calculus textbook. Using the Heine-

Borel Lemma, we can in turn prove the Intermediate Value Theorem (IVT), the Extreme Value

Theorem (EVT), etc. for continuous functions. However, in this paper we will use the Heine-

Borel Lemma to prove the following main lemma, Lemma 1 (see [3, Theorem 5.17 p.112).
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Next, as very easy corollaries of Lemma 1, the Strictly Incresing Function Theorem (Theo-

rem 1), the Rolle’s Theorem (Theorem 2) and the Intermediate-Value Theorem for Derivatives

(Theorem 3) are obtained. We thus give alternative proofs and new implications about several

well known theorems in the Calculus.

Lemma 1 Let f be a real differentiable function on the interval (a, b). If f ′(x) 6= 0 for all x in

(a, b) then f is strictly monotone on (a, b).

Proof Let x′ and x′′ be any two points in the interval (a, b) with x′ < x′′. Then for every

x ∈ [x′, x′′] we have limz→x
f(z)−f(x)

z−x
= f ′(x) 6= 0, and so there exists δx > 0 such that

z ∈ Ix = (x − δx, x + δx) and z ∈ (a, b) implies

f(z) − f(x)

z − x
> 0, if f ′(x) > 0;

f(z) − f(x)

z − x
< 0, if f ′(x) < 0. (1)

The collection of all such intervals Ix forms an open cover of [x′, x′′]. By the Heine-Borel Covering

Theorem, there is a finite number of these Ix , say Ix1
, · · · , Ixn

where x′ < x1 < x2 < · · · < xn <

x′′, such that

[x′, x′′] ⊆
n⋃

i=1

Ixi
. (2)

Clearly, we can assume that Ixi
∩ Ixi+1

6= ∅(i = 1, · · · , n − 1) by deleting points for which it is

not true.

Now we need consider the following two cases:

(i) For all i = 1, · · · , n, f ′(xi) have same sign.

We may assume without loss of generality that f ′(xi) > 0 (i = 1, · · · , n). In this case, for

each i ∈ {1, · · · , n − 1} choose zi ∈ Ixi
∩ Ixi+1

such that xi < zi < xi+1. By (1), we have

f(zi) − f(xi)

zi − xi

> 0 and
f(zi) − f(xi+1)

zi − xi+1
> 0.

Thus

f(xi) < f(zi) < f(xi+1), i = 1, · · · , n − 1; (3)

and from x′ ∈ Ix1
(x′ < x1) and x′′ ∈ Ixn

(xn < x′′) we have

f(x′) < f(x1) and f(x′′) < f(xn). (4)

Combining the inequalities (3) and (4) we obtain

f(x′) < f(x1) < · · · < f(xn) < f(x′′).

This shows that for every pair of points x′ and x′′ in (a, b), x′ < x′′ implies f(x′) < f(x′′). Hence

f is strictly increasing on (a, b).
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(ii) There exist xi and xi+1(i ∈ {1, · · · , n − 1}) such that f ′(xi) · f ′(xi+1) < 0.

We may assume without loss of generality that f ′(xi) > 0 and f ′(xi+1) < 0. Then by (1)

we have
f(z) − f(xi)

z − xi

> 0 when z ∈ Ixi
,

f(z) − f(xi+1)

z − xi+1
< 0 when z ∈ Ixi+1

.

Choose z′ ∈ Ixi
∩ Ixi+1

such that xi < z′ < xi+1 then

f(z′) − f(xi)

z′ − xi

> 0 and
f(z′) − f(xi+1)

z′ − xi+1
< 0.

Thus

f(z′) > f(xi) and f(z′) > f(xi+1).

Due to the fact that a continuous function assumes its maximum and minimum on a closed

interval, the last two inequalities imply that there exists z ∈ (xi, xi+1) such that f(z) is a

maximum of f on [xi, xi+1].

Since f ′(z) is a real mumber, it must be positive , negative, or zero. We shall show that

f ′(z) cannot be positive or negative and , therefore f ′(z) must be zero, which contradicts the

condition that f ′(x) 6= 0 for all x ∈ (a, b). This contradiction shows that only case (i) holds.

Let g(h) = (f(z + h) − f(z))/h, and define g(0) = f ′(z), since f is continuous, g is a

continuous function of h for h 6= 0. Also, since limh→0 g(h) = f ′(z) = g(0), g is also continuous

at h = 0. Now assume that f ′(z) is positive. Thus g(0) is positive and by the sign preserving

property of continuous functions ,g(h) is positive over some interval centered at h = 0 . Therefore,

f(z + h) < f(z) when h < 0 and f(z + h) > f(z) when h > 0. However, this contradicts that

f takes on an extremum at the point z. A similar argument can be made if it is assumed that

f ′(z) is negative. Since f ′(z) cannot be positive or negative , we have f ′(z) = 0.

Thus the Lemma is proved.

From first part of the proof of the Lemma 1 we obtain easily the following Theorem 1 which

be called that the Strictly Increasing Function Theorem (SIFT) in [1].

Theorem 1 Assume f is differentiable and f ′(x) > 0 (resp. f ′(x) < 0) for each x in (a, b).

Then f is strictly increasing (resp. strictly decreasing) on (a, b).

From the Theorem 1 by a perturbing for the function f , we have at once that the Increasing

Function Theorem (IFT), that is ,if f is differentiable and f ′(x) > 0 (resp. f ′(x) ≤ 0) for each

x in (a, b), then f is non-decreasing (resp. non-increasing) on (a, b)[1].

Theorem 2 (the Rolle’s Theorem) Let a real function f be continuous on [a, b], differentiable

on (a, b) and such that f(a) = f(b). Then there exists c ∈ (a, b) with f ′(c) = 0.

Proof Suppose f ′(x) 6= 0 for all x ∈ (a, b), then f is strictly monotone on (a, b) by the Lemma

1. From the continuity of f on [a, b] it follows easily that f(a) 6= f(b) which contradicts the

condition that f(a) = f(b).
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Remark From the above proof we see that Rolle’s Theorem (and further the MVT) can is

derived directly from the SIFT (or IFT). This show the SIFT (or IFT) and MVT are equivalent.

Theorem 3 (the Intermediate-Value Theorem for Derivatives) Let f be a real differentiable

function on [a, b]. If f ′

+(a) < λ < f ′

−
(b) then there exists a point ξ ∈ (a, b) such that f ′(ξ) = λ

(A similar result holds if f ′

+(a) > f ′

−
(b)).

Proof Define g on (a0, b0), where −∞ < a0 < a < b < b0 < +∞ as follows:

g(x) = f(x) − λx, when x ∈ [a, b];

g(x) = f(a) − λx + f ′

+(a)(x − a), when a0 < x < a;

g(x) = f(b) − λx + f ′

−
(b)(x − b), when b < x < b0.

The function g is differentiable on (a0, b0). Suppose g′(x) 6= 0 for all x ∈ (a0, b0), then either

g′(x) > 0 or g′(x) < 0 for all x ∈ (a0, b0) by the Lemma 1.

If g′(x) > 0 for all x ∈ (a0, b0) then f ′

+(a) − λ > 0; if g′(x) < 0 for all x ∈ (a0, b0) then

f ′

−
(b)−λ < 0. Whatever consequences follow, it contradicts that the condition that f ′

+(a) < λ <

f ′

−
(b).

Therefore there exists a point ξ ∈ (a0, b0) such that g′(ξ) = 0 and so f ′(ξ) = λ. Further-

more ξ ∈ (a, b) since g′(x) = f+(a) − λ < 0 when a0 < x ≤ a and g′(x) = f ′

−
(b) − λ > 0 when

b ≤ x < b0.
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