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Jordan Maps on Standard Operator Algebras
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Abstract Let A be a standard operator algebra on a Banach space of dimension > 1 and B
be an arbitrary algebra over @ the field of rational numbers. Suppose that M : A — B and
M?* : B — A are surjective maps such that

M(r(aM*(z) + M*(x)a)) = r(M(a)x + zM/(a)),
M*(r(M(a)x + xM(a))) = r(aM™(x) + M™(x)a)
for all @ € A,z € B, where r is a fixed nonzero rational number. Then both M and M™* are
additive.
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Let A and B be two associative algebras over the field ) of rational numbers, and let r be a
fixed nonzero rational number. Let M : A — B and M* : B — A be two maps. The ordered
pair (M, M*) is called an r-Jordan map of A x B if

{ M(r(aM*(z) + M*(z)a)) = r(M(a)x + xM(a)), 1)

M*(r(M(a)x + 2M(a))) = r(aM*(z) + M*(z)a)

for all a € A,z € B. Obviously, if ¢ : A — B is an r-Jordan map, that is, ¢ is a bijective map
which satisfies that ¢(r(ab+ba)) = r(¢(a)d(b) + ¢(b)d(a)) for all a,b € A, then the pair (¢, 1)
is an r-Jordan map of A x B.

It is an interesting problem to study the interrelation between the multiplicative and the
additive structure of a ring. It is Martindale who first established a condition on a ring R; such
that every multiplicative bijective map on R; is additive [8, Theorem]|. Recently, the question of
whether a Jordan map is additive is studied by many mathematicians [1-7]. In particular, in [6],
Lu showed that every r-Jordan map on a standard operator algebra is additive. In this paper,

we will extend this result to these mild r-Jordan maps.
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Throughout, X is a Banach space of dimension > 1. Denote by B(X) the algebra of all
linear bounded operators on X. A subalgebra of B(X) is called a standard operator algebra if

it contains all finite rank operators in B(X). Our result in this paper is the following.

Theorem Let X be a Banach space, dimX > 1, and let A C B(X) be a standard operator
algebra. Let B be algebra over () and r € ) be non-zero. Suppose (M,M?*) is an arbitrary
r-Jordan map of A x B, and both M and M* are surjective. Then both M and M* are additive.

The proof will be organized in a series of lemmas. We begin with the following trivial one.
Lemma 1 If (M, M*) is an arbitrary r-Jordan map of A x B, then M (0) = 0 and M*(0) = 0.

Proof Since (M, M*) is an arbitrary r-Jordan map of Ax B, we have that M (0) = M (r(0M*(0)+
M*(0)0)) = r(M(0)0 + 0M(0)) = 0. Similarly, M*(0) = M*(r(0M(0) + M (0)0)) = r(M*(0)0 +
0M*(0)) =0. O

In the following, let e; € A be a fixed non-trivial idempotent operator and let eo = 1 — ey,
where 1 is the identity operator on X. Set A;; = e;Ae;, 4,5 = 1,2. Then we can write A =
A1 @ Ao @ Aoy @ Aga. Tt should be mentioned that this idea is from Martindale [8]. In what
follows, when we write a;j, it indicates a;; € A;j.

The following lemma can be found in [5].

Lemma 2 Let s = s11 + S12 + S21 + S22 € A.
(i) Fort;; € A;; (1 <i,j <2), we have that

tijs + sty = 135851 + ti5Sj2 + S1itij + S2:tij.

(ii) Iftijsg, = 0 for every ti; € Ay (1< i,j,k < 2), then s;, = 0. Dually, if spiti; = 0 for
every t;; € A;; (1 <i,j,k <2), then si; = 0.

(iii) Iftijs + sty € Ay for every ti; € Ay (1 <i# j <2), then sj; = 0.

(iv) If siiti; + tijsi; = 0 for every t;; € Ay (i =1,2), then s;; = 0.

(v) Ift;js+stj; € Aij for every tj; € Aj; (1 <i#j<2), then s;; =0 and s;; = 0. Dually,
iftj;s+ stj; € Aj; for every t;; € Aj; (1 <i#j<2), then s;; =0 and sj; = 0.

Lemma 3 Both M and M* are bijective.

Proof It suffices to prove that M and M™* are injective. First we show that M is injective. Let
z,y € A and suppose M (z) = M(y). Note that A is dense in B(X) under the strong operator
topology. We can take a net {t,} C A such that sot-lim, t, = 1. For every t,, by surjectivity of
M* there is b, € B such that M*(b,) = t, and we have by (1)

r(tax + xty) = rM™(bo)x + xM*(by) = M™(r(boe M (x) + M (2)by,)
= M*(r(baM(y) + M(y)ba) = r(tay + yta).
Taking the limit in 7(tnx + 2t) = r(tay + yta), we get 22 = 2y. That is, z = y.

Now we turn to proving the injectivity of M*. Let x,y € B such that M*(z) = M*(y). Since
M*M is also surjective, we can choose s, € A such that M*M(s,) = t, for all . Then we have



112 P. S Jland S. J. ZHOU

by (1)
r(ta M~ (z) + M (2)ta) = (M M(Sa)M ) + M~ (@) M* M (s4))
= M*(r(M(sa)MM ™ (z) + MM~ (2)M(s4))) = M*(r(M(sa)z + M (sa)))
= r(saM"(x) + M (x)s )=( M*(y) + M (y)sa)
= M*(r(M(sa)y +yM(sa))) = M*(r(M(sa) MM~ (y) + MM~ (y) M (sa)))
=r(M*M(sa)M~(y) + M~ (y)M*M(sq)) = r(ta M~ (y) + M~ (y)ta).
Taking the limit in t, M~ (z)+M Y (2)te = ta M~ (y)+M L (y)ta, we get 2M ~1(z) = 2M ~1(y)

and so z =y. O

Lemma 4 The pair (M*~1, M—1!) is an r-Jordan map of Ax B, that is, the maps M*~': A — B
and M~!: B —s A satisfy

{ M*=Yr(aM~Y(z) + M—1(x)a)) =
M=t (r(M*Y(a)x + xM*~1(a)))
for alla € A,x € B.

r(M*~(a)x + xM*~1(a)), @)
=r(aM~(z) + M~ !(z)a)
Proof The first equality can follow from
M*(r(M*(a)z + xM*_l(a))) = M*(r(M* Y (a) MM (z) + MM Y (z)M*"'(a)))
=r(M* (M Y(a )) Nz “Ha) M (M (a)))
= r(aM ™ (z) + M~ (2)a) = M*(r(M* " (aM ™! (z) + M~ (2)a)))

and the second equality follows in a similar way. O

)+
) =

Lemma 5 Ifs,a,b € A such that M(s) = M(a) + M (b), then for allt € A
(i) M(r(ts+ st)) = M(r(ta + at)) + M (r(tb + bt));
(ii) M*Y(r(ts+st)) = M*~(r(ta + at)) + M*~1(r(tb + bt)).
Proof Let t € A. Then by (1)
M(r(ts +st)) = M(r(M*M* ' (t)s + sM*M*~1(t))) = r(M* " (t)M(s) + M (s)M*~(t))
= r(M7H(t)(M(a) + M (b)) + (M(a) + M (b)) M1 (t))
= r(M*7H(t)M (a) + M(a)M*7H(#)) + r(M*TH ()M (b) + M(0)M* (1))
= M(r(M*M* (t)a + aM*M*~*(t))) + M (r(M*M*~ ()b + bM*M*~1(t)))
= M(r(ta+ at)) + M(r(tb + bt)).
This proves (i).
Similarly to the above, it follows from the first equality of (2) that (ii) holds, completing the
proof. O
Lemma 6 For any a;; € A;; (1 <i,j <2), we have the following equalities:

(i) M(a11 + aij) = M(a11) + M(ai;), 1 <i# 35 <2;
(11) M(a22 + aij) = M(GQQ) + M(aij), 1<i#j<2;
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(111) M*’l(au + aij) = M**l(au) + M*fl(aij), 1<y #j <2
(IV) M*il(GQQ + CLl'j) = M*il(a;22) —+ M*fl(aij), 1 < 7 }é_] < 2.
Proof By Lemma 4, we only prove (i) and (ii).
Suppose that i = 1 and j = 2. Since M is surjective, we can find an element s = s11 + s12 +

S21 + S99 € A such that
M(S) = M(all) + M(alg).

For toy € Aga, we see that from Lemma 5(i)

M (r(taas + staz)) = M(r(teza11 + aiitaz)) + M(r(ta2a12 + aizta))
= M(O) + M(T(algtgg)) = M(T(algtgg)).
It follows that toos + stao = ajota for every tog € Asy. Hence toos + stos € Ajs for every
tog € Ags. Thus by Lemma 2(v), we get s = 0 and seo = 0. Hence we have sjatos = ajatas.
By Lemma 2(i), we get s12 = aj2. Thus s = s11 + aq2.
For t12 € Aja, we see that from Lemma 5(i)
M (r(ti2s + sti2)) = M(r(tiza11 + a11ti2)) + M (r(tizai2 + ai2ti2))
= M(O) + M(T(alltlg)) = M(T(alltlg)).
It follows that t125+st12 = aj1t1o for every t1o € A1s. Since s = s11+a12, we have s11t12 = aq1t12

for every t12 € Aja. Thus by Lemma 2(i), we have s;; = a3;. Consequently, s = a1 + aj2. This

proves the first equality. The second can be proved similarly. O

Lemma 7 For any a;j,bi; € Ai; (1 <1i,5 <2), we have the following equalities:
(1) M(T(CLlQ + b12a22)) = M(’I”alg) =+ M(’I”blgﬂLQQ),‘
(11) M*il(T(CLlQ + b12a22)) = M*il(TCLlQ) + M*il(Tb12a22)).

Proof (i) Compute
a12 + bi2aze = (e1 + b12)(a12 + a22) = (e1 + bi2) (@12 + az2) + (a12 + a)(e1 + bi2).
Then using (1) and Lemma 6, we have that

M(r(a12 + bi2az2)) = M(r((e1 + bi2)(ai2 + aze) + (a12 + azz)(e1 + bi2)))
= M(r((ey + bi2) M*(M* a1z + as2)) + M*(M*~(ayz2 + as2))(e1 + b12)))

M(er + bi2)M* a1z + azs) + M* a1z + aze) M (e1 + b12))
M(er) + M (b12))(M* ™ (a12) + M*™H(az2)) + (M**(a12) + M* " (a22)) (M (e1) + (b12)))
M(er)M* (arz) + M* Har)M(e1)) +r(M(e))M* (ags) + M*(ag) M (er))+
M (bi2) M* ™ (a12) + M*"H(a12) M (b12)) + (M (b12) M* ™ (ag2) + M* ™ (az2) M (b12))
r(ex M*M* " (ayz) + M*M*"(arz)e1)) + M (r(eg M*M* " (ag) + M*M*"(asz)er))+

(biaM*M* ay2) + M*M* *(a12)b12)) + M (r(biaM*M*~*(az) + M*M* ! (as2)b12))
r(eiaiz + aizeq)) + M(r(erazs + azser) + M(r(bizaiz + aizbi2)) + M(r(bizazs + azbi2))
raiz) + 2M(0) + M (rbi2aze) = M (rai2) + M (rbizass).
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(ii) Lemma 4 tells us that the pair (M*~1, M 1) is also an r-Jordan map of A x B. Therefore
(ii) holds. O

Lemma 8 For any a;; € A;; (1 <i,j <2), we have the following equalities:
(i) M(T(agl + anggl)) = M(T‘azl) + M(T‘aggbgl);
(ﬁ) M*_l(T((I12 + GQszl)) = M*_l(T(Ilz) + M*_l(f‘aggbgl)).

Proof (i) Compute
a1 + agabo1 = (a12 + aza)(e1 + bo1) = (e1 + ba1)(a12 + a22) + (a12 + az2)(e1 + bay).
Then we can complete the proof using a computation similar to that in the proof of Lemma 7.0
Lemma 9 M and M*~! are additive on A 1<i#j<2).
Proof By Lemma 4, we only prove that M is additive on A;; (1 <1 # j <2).
Let aq2,b12 € A2 and choose s = s11 + S12 + S21 + S22 € A such that
M(s) = M(a12) + M (b12).

For tay € Ass, we see that from Lemma 5(i) and Lemma 7

M (r(taas + staa)) = M (r(taeaiz + aratae)) + M (r(t22bia + biatae))

= M(raiatez) + M (rbiataz) = M(r(aiztaz + biataz)).

Hence toos + staa = (a12 + bi2)tas for every tog € Ags. It follows from Lemma 2(v) and (i) that
S92 = s21 = 0 and s12 = a2 + b1a.

Now there remains to prove that s = 0. For t12 € A4, applying Lemma 5(i) and Lemma
7 to M(s) = M(a12) + M(b12) again, we get that t125 + st;2 = 0. Since we have shown that
S22 = s91 = 0, we have that s11t12 = 0 for every ¢12 € Aq12. Hence from Lemma 2(ii) we get
s11 = 0. Therefore M is additive on Aqs.

It can be proved similarly that M is additive on As;. O

Lemma 10 M and M*~! are additive on A;; (i = 1,2).

Proof By Lemma 4, we only prove that M is additive on A;; (i = 1,2).
Let a;;, b;; € A;; and choose s = s11 + S12 + S21 + S92 € A such that
M(s) = M(a11) + M (b11).
Let j # i. For tj; € Aj;, we see that from Lemma 5(i)
M(r(tj;s + stj;)) = M(r(tjjau + aitj;)) + M(r(t;jby + bits;)) = 0.

Hence, we have t;;s + stj; = 0 for every t;; € A;;. It follows from Lemma 2(v) that s;; = s;; =
Sjj = 0
Now there remains to prove that s;; = ai; + bi;. For t;; € A;;, we see that from Lemma 5(i)

and Lemma 9

M(T(tijs + Stu)) = M(T(tijaii + aiitij)) + M(T(tljb“ + b”t”»
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= M(r(aiitij)) + M(r(biti;)) = M(r(aiti; + biiti;)).

Hence, we have tijs + stij = agti; + biitij for every ti; € Aij. Since Sji = Sij = Sjj = 0, it
follows that s11t12 = (a11 + b11)t12 for every t;; € A;;. Hence by Lemma 2(ii), we have that
i = @i + by O

Remark 11 We have shown that M and M*~! are additive on A;j for 1 <4, < 2. Therefore,
for a;; € A;j, we have that M(r(a;;)) = rM(a;;) and M*~(r(a;;)) = rM*~(a;;).
Lemma 12 M and M* are additive on e1 A = A1 + Aqa.

Proof Let ai1,b11 € A1 and let aqa,b12 € A12. Then by Lemmas 6, 9, and 10, we see that
M((a11 + ai2) + (b11 + b12)) = M((a11 + b11) + (@12 + b12))
= M(a11 + b11) + M(a12 + b12) = M (a11) + M (b11) + M (a12) + M (b12)
= M(a11 + ai2) + M(b11 + bi2).
Similarly, we can get that M*~1((a11 +a12) + (b1 +b12)) = M*~Y(a11 +aiz) + M* (b1 + bi2).

a

Lemma 13 For any a1 € A1, ase € Ago, we get that
(i) M(a11 + az2) = M(a11) + M(az2);
(11) M*il(ﬂLll + CLQQ) = M**l(au) + M*il(a22).

Proof By Lemma 4, we only prove (i). Since M is surjective, we can find an element s =
S11 + S12 + S21 + S22 € A such that
M(s) = M(a11) + M (az22).
We see that from Lemma 5(i)
M(r(e1s+se1)) = M(r(eraiy +arie1)) + M(r(erazz +azzer)) = M(0) + M (2rarr) = M(2raiy).

It follows that 2511 + S12+21 = 2&11. Hence we have that §12 = S21 = 0 and S11 — a11-

For toy € Aga, we see that from Lemma 5(i)
M (r(tazs + staz)) = M(r(ta2a11 + ai1te2)) + M (r(t22a22 + azates))
= M (r(ta2aze + a2sta2)).

It follows that toos+ stog = taoags + agotas for every tos € Aga. Since s12 = so1 = 0, we have that
to28 + Stog = tooaas + agatan for every tos € Age. Thus by Lemma 2(iv), we get that soo = age.
Consequently, s = a11 + ag2. O

It should be mentioned that the idea of the proof of the following lemma is from [6].

Lemma 14 If a is a finite rank operator on X, then M (ra) = rM/(a).

Proof If dimX < oo, then A must contain the identity operator 1 in B(X). By Lemma 13 and
Remark 11, we have that

M*_l(rl) = M*_l(rel +reg) = M*_l(rel) + M*_l(rez)



116 P. S Jland S. J. ZHOU
— TM*il(el) —|—T’M*71(62) — ’I“M*il(el —|—62) — TM*il(l).
Further, for every a € A, we have that
2
2r
= (M (o= )M* (1) + M* (r1) M (=)
2r 2r

M(ra) = M(r(—M*M*(r1) + M* M*~ (r1)—))

[\~
=

2r
= r(M(r(52)M* M7 (1) + MM (1)(5)) = M (a).

)
=r}(M(=)M* (1) + M1 ()M (5-))
)

We now assume that dimX = oo.

For every non-trivial idempotent operator ¢ € A, set e; = ¢. By Lemma 12, M and M*~!
are additive on gA. Therefore, for every a € gA, we have that M (ra) = rM (a).

Let a be a finite rank operator of X. Suppose that the range of a is sp{h1, ha,...,hn} (n <
o0), where hyq, ..., hy, are linearly independent. By the Hahn-Banach Extension Theorem, there
are fi,..., fn € X*, the dual Banach space of X, such that f;(h;) = J;; (Kronecker delta). Let
qg=h1® fi+ - h,® fn. Then ¢ is a finite rank idempotent operator in A. Clearly, ga = a.
Thus, we have that M(ra) = M(rqa) = rM(ga) = rM(a). O

Lemma 15 Let ajs € Aj2 and ag) € Aa. Then M(a12 + a21) = M(ai2) + M (ag1).
Proof Choose s = s11 + S12 + S21 + S22 € A such that
M(s) = M(a12) + M (az21). (3)
For t15 € Aja, we see that from Lemma 5(i)
M(r(ti2s + sti2)) = M(r(ti2a12 + a1ati2)) + M (r(tioa1 + asiti2)) = M (r(ti2a1 + a2iti2)).

Hence, by Lemma 3, we have that t128 + st1o = t12a01 + a21t12 for every t15 € Ajo. Multiplying
this equality by e; from the right, we have that t102801 = t12a91 for every t1o € Ajo. It follows
from Lemma 2(ii) that s = a21. Hence by Lemma 2(i), we get that ¢12800 + s11t12 = 0 for every

t12 € Aja. An argument similar to what has led to the equality so1 = ag1 proves that sio = aja
also holds.
By Lemma 5(i), from (3), we get that

M(r(e1s+ se1)) = M(r(e1ai2 + aizer)) + M(r(e1az1 + azier))
= M(rai2) + M(ras1).

Hence we deduce from Lemma 14 that
rM(e1s+ se1) = rM(a12) + rM(az) = rM(s).

By the injectivity of M, we have that e;s + se; = s. Thus s1; = s9s = 0. Consequently
$=a12 +ag. O

Lemma 16 Let a1 € A1, a12 € Ajo and a1 € Az Then M(a11 + a2 + a21) = M(a11) +
M(Glg) + M(CLQl).
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Proof Choose s = 511 + S12 + $21 + S22 € A such that
M(s) = M(a11) + M(ai2) + M(a21).
Then by Lemma 6, we have that
M(s) = M(a11 + ai2) + M(az1), (4)
M(s) = M(a11 + a21) + M(a12). (5)
For to; € Asy, we see that from Lemma 5(i)
M (r(tors + sto1)) = M(r(t21(a11 + a12) + (a11 + a12)t21)) + M (r(t21a21 + a2it21))
= M(r(ta1a11 + ta1a12 + a12ta1)).
By Lemma 3, we have that
218 + sto1 = ta1a11 + 21012 + G12t21 (6)

for every to; € Asy. Multiplying this equality by e; from the left, we get that sisto; = aiator
for every to; € Ag;. By Lemma 2(ii), it follows that s12 = a12. Multiplying (6) by ey from the
right, we get that

t21811 + S22t21 = t21a11 (7)

for every ta1 € Agy. Similarly, for t15 € A1z, by Lemma 5(i), we get s91 = ag; from (5).
For tos € Agg, by Lemma 5(i) and Lemma 15, we get from (4)

M (r(t22s + stag)) = M(rajates) + M (rtazasr) = M (r(aiatas + tazas)).

Therefore, togs + stag = a1atas + tasasy for every tao € Ags. Since s12 = a1z and So1 = asg, it
follows that tagses + Saatas = 0 for every tas € Asg. It follows from Lemma 2(iv) that sge = 0.

Hence, from (7), we have s11 = a11. Consequently, s = a1 + a12 + a21. O

Lemma 17 Ifa;; € A;j (1 <1i,j <2), then M(ai1 + a2 + a21 + az2) = M(a11) + M(a12) +
M(CLQl) + M(CLQQ).

Proof Choose s = s11 + S12 + $21 + S22 € A such that
M(s) = M(a11) + M(a12) + M(az1) + M(azz).
Then, by Lemma 5(i) and Lemma 16, we have that
M(r(e1s + se1)) = M (2ray1) + M(rai2) + M(raz1) = M(r(2a11 + az1) + a12)).

By Lemma 3, it follows that e;s + se; = 2a11 + a21 + a12. By a simple computation, we get that

S11 = ai11, S12 = A12 and s91 = ao1. For t15 € A12, we see that from Lemma 5(1)
M(T(t125 + St12)) = M(Tautlz) + M(T(tlgagl + a21t12)) + M(Tt12a22).
Making a use of Lemma 5(i) and Lemma 12 to the above equality, we have that

M(T2 (€1t128 + e1stia + t1aser)) = M(T2a11t12) + M(2T2t12a21) + M(T2t12a22)
= M(T2(allt12 + 2t12a21 + t12a22)).
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Hence we have that
t12521 + 12522 + s11t12 + 12821 = a11t12 + 2812021 + t12a22

for every t15 € A1s. Since we have shown that s11 = a11, S12 = a12 and s21 = as1, it follows that

t12522 = t12a22 for every tlg S A12 and hence S92 = d22. Consequently, S = aj1+ajz+ag;+ass. O

Proof of Theorem Let a = a11 + a1z + as1 + ase, b = by + b1 + ba1 + bas € A. Then Lemmas
17, 9, and 10 are all used in seeing the equalities

M(a+b) = M((a1r + b11) + (ai2 + b12) + (@21 + ba1) + (a22 + b22))
= M (a1 + b11) + M(ai2 + bi2) + M(a21 + ba1) + M(a22 + ba2)
= M(a11) + M (b11) + M(a12) + M (b12) + M(az1) + M (ba1) + M (ag2) + M (ba2)
= M(a11 + ai2 + ag1 + aga) + M (b11 + bia + bay + b22) = M(a) + M(b)

hold true. That is, M is additive on A.
Now let us show that M* is additive on B. Let z,y € B. For every t € A, by using the
additivity of M, we have

M (r(t(M*(z) + M*(y)) + (M*(z) + M*(y))t))
= M(r(tM*(x) + M*(x)t)) + M(r(tM*(y) + M*(y)t))
=r(M(t)z +zM(t) +r(M(t)y +yM(@) = r(M(t)(z +y) + (x +y) M ()
=M(@r(tM* (x+y)+ M (x+y)t)).
Since M is injective, it follows that
t(M*(z) + M*(y)) + (M*(x) + M*(y))t =tM*(z +y) + M*(z + y)t.

Since A is dense in B(X) under the strong operator topology, we have that 2(M*(x)+ M*(y)) =
2M*(x +y). Therefore M*(x +y) = M*(x) + M*(y). This completes the proof. O
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