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Abstract: Let H be a cosemisimple Hopf algebra over an algebraically closed field k£ of
characteristic zero. We show that if H is of type I : 1 +m : p+ 1 : ¢ with p*> < ¢ , or of type
1:1+1:m+1:n in the sense of Larson and Radford, then H has the Frobenius property,
that is, Kaplansky conjecture is true for these Hopf algebras.
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1. Introduction

In recent years, the theory of cosemisimple Hopf algebras over an algebraically closed field &k
of characteristic zero has been studied considerably. Many results have been found. For example,
it was showed in [1, 2] that H is cosemisimple if H is semisimple and S? = id. Recall that a
cosemsimple Hopf algebra H is said to have the Frobenius property if the dimensions of simple

H-comodules divide the dimension of H.

It was conjectured by Kaplansky in [3] that every cosemisimple Hopf algebra had the Frobe-
nius property. This is still an open problem, although it has been shown in [4] that any coqua-
sitriangular cosemisimple Hopf algebra H has the Frobenius property. In several recent papers,
Natale in [5] has shown that every cosemisimple Hopf algebra of dimension less than 60 is semi-

solvable, and hence has the Frobenius property!6:7.

In this paper, we shall show that if a cosemisimple Hopf algebra H has the type l: 1+ m :
p+1:qwith p> < ¢, or the type 1 : 1 +1:m + 1 : n in the sense of Larson and Radford!®l,
then H has the Frobenius property. In particular, the cosemisimple Hopf algebras of dimension
60 have the Frobenius property. Our results follow from the theory of the Grothendieck algebras
of a Hopf algebra, introduced by Nichols and Richmond in [9, 10] (see Section 2).

Throughout, k& will denote an algebraically closed field of characteristic zero. All vector

spaces and tensor product will be over k. Our references for the theory of Hopf algebras are [11]
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or [12]. The notation for Hopf algebras is standard.

2. The Grothendieck algebra of a Hopf algebra

Let H be a Hopf algebra over a field k, and let 4 be the category of finite dimensional
right H-comodules. Let F be the free abelian group on the symbols (M), where (M) denotes
the isomorphism class of the object M in UH. Denote by G(H) = F/F, the Grothendieck
group, where Fy is the subgroup of F generated by all expressions (M) — (L) — (N), where
0 —L— M — N — 0is a short exact sequence of finite dimensional right H-comodules. The
image of the symbol corresponding to the class of M € U in G(H) is denoted [M]. Then by
Proposition 1 of [9], the group G(H) is a free abelian group, with standard basis X’ consisting of
the images of the classes of the simple right H-comodules.

The basic elements of degree 1 of G(H) are of the form [kg|, where g € G(H), the set of
group-like elements of H. Simply, we shall write [kg] as g in G(H).

Let M and N be right H-comodules. Then M ® N is a right H-comodule via p(m ® n) =
> mo ® ng ® ming, for allm € M,n € N.

Thus, the Grothendieck group G(H) is a ring with multiplication given by [M|[N] = [M ® N|
for each M, N € U™. Let R be any subfield of the complex numbers field C, and let G(H)® =
G(H) ®z R be the R-module obtained by extending the scalars. Then G(H)® is naturally an
algebra over R with the basis X

By Proposition 8 of [9], the map * : G(H) — G(H) given by [M]* = [M*] is a group
homorphism and a ring anti-homomorphism. If H is cosemisimple, then “x” is an involution.

For any z € G(H), we write z = ), m(z,2)x, and refer to the integer m(x, z) as the
multiplicity of z in z. If m(z,z) # 0, we say that = is a basic component of z. Extending m
to a biadditive function, we define m(z,2") = > .y m(z,2z)m(x,2') for all 2,2’ € G(H). In
particular, for z,y € X, g € G(H)

m(g, zy) = { (1): fthirwize.g,

There is a unique ring homomorphism d : G(H)® — R such that d([M]) = dim;M for all
M eut.

Recall that a standard subring of G(H) is a subring of G(H) which is spanned as an abelian
group by a subset of the standard basis X. Then by Theorem 6 of [9], there is a 1 — 1 cor-
respondence between standard subrings of G(H) and subbialgebras of H generated as algebras
by their simple subcoalgebras, given by: the subbialgebra algebra B generated by its simple
subcoalgebras corresponds to the standard subring spanned by {z¢ | C' is a simple subcoalgebra

of B}, where x¢ denotes the basis element corresponding to the simple coalgebra C'.

3. Main results

Let H be a finite dimensional cosemisimple Hopf algebra over the algebraically closed field

k of characteristic zero. Let di,ds,...,ds, n1,n9,...,ns be positive integers, with d; < ds <
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--- < dg. Recall that H is said to have type[S]: ny:di+ng:do+---+ng:dgifdi,do,...,ds are
the dimensions of the simple H-comodules and that n; is the number of the simple H-comodules
of dimension d;.

Let x,y be basic elements in X'. We shall denote by G[z,y] the subset of G(H) consisting
of those elements g for which gr = y. In particular, by Theorem 10 of [9], G[z]=G[z,z] =
{g [ m(g,za*) =1}

We need the following lemma, due to the dual version[®13].

Lemma 3.1 Let z be a basic element in X. Then we have:

(1) The order of G|x] divides (d(x))?.

(2) The order of G(H) divides n(d(z))?, where n is the number of the simple H-comodule
of degree d(zx).

Proof Tt follows from Nichols and Zoeller Theorem!™ (see also Lemma 2.2.2 of Ref. [5]). O

Theorem 3.2 Let H be finite dimensional cosemisimple Hopf algebra over an algebraically
closed field k of characteristic 0. Suppose that H is of typel: 14+ m :p+1:q and p? < ¢, then
p||G(H)|, q | dimyH.

Proof Let x1,x2,...,x,, be distinct basis elements of degree p, and let y be the unique basic
element of degree ¢q. Notice that the standard subring B generated by {z;,¢9|i=1,2,...,m,g €
G(H)} is exactly > cpr) L9 + S, Zx;, since p? < g. For any i, we have z;x} = > geG) 9T
ZZGX,m(z,ziz:)>O z. Again since p? < ¢, if m(z,z;x) > 0 and z € X, then 2 € {z1,22,...,2Tm }.
By applying d, we have p | |G[x;]|, hence p | |G(H)|.

Now for any i, 1 < ¢ < m, we claim that x;y = py and yz; = py. In fact, if for any j,
m(z;,z;y) > 0, then by Theorem 8 of [10], we have m(y, zfx;) > 0, which contradicts the fact
that p? < ¢. Similarly, we have yx; = py.

Note that y* =y, so m(x;,y?) = p. Thus, there is an integer s such that

V= P g+p@+aat ) +sy.
9€G(H)

Applying d yields ¢ = I + mp? + sq. Using the fact dimyH = [ + mp? + ¢%, we obtain dim,H =
2¢? — sq. This gives q | dimyH. O

Corollary 3.3 Let p, q be two distinct prime numbers and let H be a cosemisimple Hopf algebra
with dimension pq?,p* < q, and let H be not-cocommutative. If H has Frobenius property, then
H is of type ¢ : 1+ (p — 1) : q. In particular, if H is a coquasitriangular Hopf algebra then
G(H) is non-trivial.

Proof Let z be any basic element of G(H). By assumption, we have d(z) = 1,p or ¢ since
(d(z))? < pg®. Let m and n be the numbers of the simple comodules of dimension p and g,
respectively. We claim that m = 0. In fact, by the proof of Theorem 3.2, we have p | |G(H)|.
This means that |G(H)| = p or |G(H)| = pq since H is not cocommutative. But by Lemma 3.1
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|G(H)| | ng?, which is impossible since n < p.

Now H is of type I : 1 +n : ¢ where |G(H)| =1 and n # 0 since H is not cocomutative. By
the proof of Theorem 3.2 (or see Ref.[8, Corollary 3.6]) we know ¢ | . It follows that | = pq, q or
¢%. We shall rule out pg and gq.

Suppose that [ = pq. Then pg? = pq + ng?. Therefore, q | p, a contradiction.

Suppose that | = q. Then pg? = ¢ + ng?, which is also impossible. All together, we have
|G(H)| = ¢*.

In particular, if H is coquasitriangular, then by [4], H has the Frobenius property, and the

assertion follows. O

Theorem 3.4 Let H be a cosemisimple Hopf algebra over k of type 1 : 1+1:n+1:m. Then
H has the Frobenius property.

Proof Let x and y be the unique basic element of degree n and m, respectively. Noticing that
x = z* and d(x) # 1, we obtain that 22 = 1 + ax + by, for nonnegative integers a, b with b # 0.
Applying d, we get (d(z),d(y)) = 1, i.e., there exists s,t € Z, such that sd(x) + td(y) = 1.
It follows that the standard subring generated by {x} is G(H). This gives that {1,z,y} and
{1, z,[H]} are both bases of G(H)Q, where Q is the rational numbers field. Set z? = a1 + Bz +
~[H] for some «, 3,7 € Q and v # 0. Notice that the matrix of the left multiplication by = on
G(H)Q with the basis {1,z,y} is a matrix with integer coefficients. Using the basis {1, x, [H]}
and the fact that 2[H] = d(x)[H]|, we obtain that 8 + d(z) is an integer. Hence [ is an integer.
Noticing that 22 = (o + 7)1 + (vd(x) + B)x + vd(y)y, we have vd(z) + 3 = a,vd(y) = b € N. It
follows that vd(x) € Z. Thus, we obtain v = ysd(x) + vytd(y) € Z.

Now since 0 < vd(y) = b = (22,y) = (z,2y) < d(y), we have v = 1. Therefore, « = 0 and
2?2 =1+ (B+d(x))z+d(y)y. It follows that dimy H = 1+ d?(z) + d*(y) = (d(z))* — Bd(x). This

means n = d(z) | dimpH. Similarly, we have m | dimy H. O

Theorem 3.5 Let H be a cosemisimple Hopf algebra over k of dimension 60. Then H has
Frobenius property.

Proof If H has a simple comodule with dimension 7, then the type of H must be one of:
2:141:34+1:7;3:142:24+1:7;7:141:24+1:7;11:1+1:7. But it is impossible
from the Lemma 3.1 and Theorem 3.2. So the dimensions of all simple comodules of H should
be 1,2,3,4,5 or 6, which can divide 60. O
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