Journal of Mathematical Research and Exposition
Vol.11 No.l Feb. 1991

A Refinement of Hilbert’s Double Series Theorem*

L,C. Hsu Y.J.Wang

fDalian’ University of Technology) (Liaoning Normal University)

L 4
The object of this note is to prove the following .
Theorem Let {a,} and {b,} be sequences of real numbers such that o<y
Tal< +o0o and 0<Tb:< +oo, Then we have the inequality
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where 6=3//2 -1=1.121320343.
~Clearly (1) offers a refined form of Hilbert's inequality
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Also, as an immedlate consequence of (1) we have the inequality
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Proof of the theorem Making use of G.H. ﬁardy’s idea for the proof of
(2), one may apply Ca\fchy’s'inequality to estimate the left side of (1) as fol-
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where 6, is defined by
1
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Thus it suffices to verify that the following mequalxty _
§,.<=z -6/n (5)
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holds for all positive integers n, where § =3//2 - 1.

Evidently we have
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:n—(Zarctg./z/n—JT/(n+1)—Jn/2/(n+2))=7r—c$n. (6)

Consequently we need only to show that the J, as defined by (6 ) is grea-
ter than 0/J7 for all n>1. In the first place direct computation shows that d,

>¢//n holds for all »<6. Indeed we have & =1.17509, 0,=0.84937, 6,==0.69164,

0,=0.59510, 6,=0.52874, Jds=0.48066, while 6//n gives smaller numerical va-
lues 1.12132, 0.79289, 0.64739, 0.56066, 0.50147, 0.45778, for n=1, 2 3,4,5,
6, respectively.

In what follows we may -assume n>7. Plainly we have
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and we may write
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Thus it follows that
é,=2arctgj2/n—/n/(n+1) - jn/2/(n+2)
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>ET-1n=6//n, when n>T.

Consequently (5) is verified by means of (6 ) for all n>>1. This comple-
tes the proof of the theorem.

Remarks It may be of interest to ask the question of how to determine
the largest possible value of # that keeps (1) valid. For various classical re-
sults concerning Hilbert’s inequality and its extensions, refer to Hardy-Little-
wood¥Polya/s “Inequalities”,chap.9, and D.S. Mitrinovic’s “Analytic Inequali-
ties”, § 3.9. 36, (Springer Verlag, 1970).
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