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1. Introduction
The invariant manifold theory is a powerful tool in analyzing the asymptotic behav-
ior of a dynamical system or solution of differential equation in the vicinity of an
equilibrium, and this theory is being driven to develop by some application prob-
lems arising in science and engineering(cf. Bates etc [3,4], Chow etc [6–9], Gal and
Guo [14], Hirsch etc [17], Magal and Ruan [22], Sandstede etc [25], Schnaubelt [26],
Wiggins [30], Zhang and Zhang [31], and references therein).

In this paper, we consider a class of abstract semilinear equations

dz(t)

dt
= Sz(t) +H(z(t)), t ∈ R, z(t) ∈ Z, (1.1)

where Z is a Banach space, S : D(S) ⊂ Z → Z is a sectorially dichotomous
operator, and H : O → Z is a smooth map with H(0) = 0 and DzH(0) = 0. Here,
O ⊂ Zα is an open set, Z0 = Z, Zα ≜ D(Sα) endows with the graph norm which
satisfies the relation of continuous embedding D(S) ↪→ Zα ↪→ Z for α ∈ (0, 1), and
Sα is the α-fractional power of S.

If the operator S of (1.1) is the infinitesimal generator of a strongly continuous
semigroup or analytic semigroup on Z, the invariant manifold theory of (1.1) has
been established (cf. Henry [16], Chow and Lu [6, 7], Bates and Jones [2], Vander-
bauwhede and Iooss [29], and references therein). If S in (1.1) is the infinitesimal
generator of a certain bisemigroup, then S has infinite spectrum in both sides of the
imaginary axis on the complex plane, the Hille-Yosida theorem implies that (1.1)
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does not generate a semiflow or flow on Z for any given initial values. Hence, this
Cauchy problem corresponding to (1.1) is often called ill-posed on Z (cf. [11, 12]).
Even though the ill-posed Cauchy problem may not be solvable on Z for arbitrary
initial values, some solutions can be defined on a subspaces of Z with suitable ini-
tial values. For example, ElBialy in [12] showed the existence of local Lipschitzian
stable and unstable manifolds for the following system

dx(t)
dt = Lx(t) + f(z(t)),

dy(t)
dt = Ry(t) + g(z(t)),

x(t1) = x1 ∈ X, y(t2) = y2 ∈ Y, z = (x, y) ∈ X×Y = Z, t ∈ [t1, t2],

(1.2)

based on the existence of dichotomous mild solutions under the dichotomous initial
conditions introduced by Latushkin and Layton [21]. Here X,Y and Z are all
Banach spaces, (L,R) is the infinitesimal generator of a hyperbolic and strongly
continuous bisemigroup ({eLt}t≥0, {e−Rt}t≥0), and the nonlinearity (f, g) are locally
Lipschitz continuous in z.

Combined with the dichotomous initial conditions in [12,21]:{
(z̃; t1, t2)|t1 < t2, z̃ = (x1, y2) ∈ Z, x(t1) = x1 ∈ X , y(t2) = y2 ∈ Y

}
, (1.3)

the equation (1.1) can be transformed into the coupled system:
dx(t)
dt = S+x(t) + F (z(t)),

dy(t)
dt = S−y(t) +G(z(t)),

x(t1) = x1, y(t2) = y2, z = x+ y ∈ X ⊕ Y = Z, t ∈ [t1, t2],

(1.4)

where S+ := S|X and −S− := −S|Y are densely defined and sectorial operators
on the Banach spaces X and Y respectively, F (z(t)) := P+H(z(t)), G(z(t)) :=
P−H(z(t)) and P+ (P−) is the projection of Z onto X (Y) along Y (X ). We are
interested in the asymptotic behavior of the dichotomous solution in a neighborhood
of the equilibrium z = 0, and obtain the existence and smoothness of global stable
and unstable manifolds for the system (1.4). The existence of global stable manifold
is carried out by the Liapunov-Perron method, and the smoothness proof is built
by the Lemma 2.1 in Chow and Lu [7] and the Henry’s lemma [16, Lemma 6.1.6].
In addition, the existence of global unstable manifold can follow from the existence
of global stable manifold by reversing time.

As an application of our results, we study the following elliptic equation in
infinite cylindrical domain R× Ω

uxx +∆yu+ f(y, u, ux,∇yu) = 0, (x, y, u) ∈ R× Ω× Rm,

u(x, y) = 0, x ∈ R, y ∈ ∂Ω,
(1.5)

where Ω is an open and bounded subset of Rn with smooth boundary, ∇y is the
gradient in the y-variable and ∆y is the Laplace operator in the y-variable. We
shows that the existence and asymptotic behavior of solutions for system (1.5)
under some boundary value conditions.

It is worth pointing out that, the elliptic problem in infinite cylindrical domain
formulated by the abstract form (1.1) could be transformed to a first order system
consisting of a pair of semilinear coupled parabolic equations, and it is well known
that the investigation of parabolic problem base on the theory of analytic semigroup
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is very importance, refer to the monographs [16,19]. So the assumption of sectorial
dichotomy for the linear operator S in the equation (1.1) make it more realistic.
In addition, one often encounter nonlinearities of PDEs depend not only on the
unknown state variable but also on its derivatives, so it is reasonable to define the
nonlinearities of the equation (1.1) in Zα which between Z and D(S).

This paper is organized as follows. In Section 2, some notations, definitions, hy-
pothesises and lemmas are given. In Section 3, we devote to existence and smooth-
ness of global stable and unstable manifolds. Last, we give an elliptic equation in
infinite cylindrical domain as an example to illustrate our results.

2. Preliminaries
Let S be a linear operator with the domain D(S) and range R(S). We denote
the resolvent set and the spectrum of S in the complex plane by ρ(S) and σ(S),
respectively, denote R(λ, S) ≜ (λI − S)−1 by its resolvent operator for λ ∈ ρ(S),
and denote ℜλ by the real part of λ ∈ σ(S). For any constant σ̃ ∈ (0, π), we define
the sector regions Σσ̃ ≜ {λ ∈ C\{0} : | arg λ| ≤ σ̃} and −Σσ̃ ≜ {λ ∈ C\{0} :
| arg(−λ)| ≤ σ̃}.

Let X and Y be Banach spaces and U be an open subset of X, we denote
L(X,Y) by the bounded linear operator from X to Y. Firstly we use the following
notations to represent some function spaces:

(i) For any integer k ≥ 0, let

Ck(U,Y) = {f |f : U → Y is k-times continuously differentiable,
sup
x∈U

∥Dj
xf(x)∥L(Xj ,Y) < ∞ for all 0 ≤ j ≤ k},

where Dj
x denotes the jth differentiation operator with respect to the variable

x. Ck(U,Y) is a Banach space equipped with the norm

∥f∥k = max
0≤j≤k

sup
x∈U

∥Dj
xf(x)∥L(Xj ,Y),

where the space Xj denotes X×X× · · · ×X︸ ︷︷ ︸
j

.

(ii) Let k ≥ 0 be an integer, γ ∈ (0, 1], let

Ck,γ(U,Y) = {f |f ∈ Ck(U,Y), and Hγ(D
k
xf) < ∞},

Ck,γ(U,Y) is a Banach space equipped with the norm ∥f∥k,γ = max
{
∥f∥k,

Hγ(D
k
xf)
}

, where Hγ(D
k
xf) = sup

x,x̂∈U,x̸=x̂

∥Dk
xf(x)−Dk

x̂f(x̂)∥L(Xk,Y)

∥x−x̂∥γ
X

.

(iii) Let J = (−∞, t0] or [t0,∞) for t0 ∈ R. For a constant β ∈ R, let

Cβ(J,Y) = {y ∈ C0(J,Y) : ∥y∥Cβ
= sup

t∈J
e−βt∥y(t)∥Y < ∞},

which is a Banach space equipped with the norm ∥ · ∥Cβ
.

Note that we also define the space Ck,γ(U,Y) for γ=0, and specify Ck,0(U,Y) :=
Ck(U,Y) and ∥f∥k,0 := ∥f∥k. Next, let me recall the definitions of sectorial and
sectorially dichotomous operator, see [23,28].
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Definition 2.1. Let S : D(S) ⊂ Z → Z be a closed and linear operator.
(1) If there exists σ̃ ∈ (0, π/2) and M > 0 such that σ(S) ⊂ C \ Σπ/2+σ̃, and

∥R(λ, S)∥L(Z) ≤
M

|λ|
for λ ∈ Σπ/2+σ̃, (2.1)

then S is called sectorial.
(2) For two banach spaces X and Y satisfying Z = X ⊕ Y, set S+ := S|X and

S− := S|Y , if the following four conditions hold:
(i) iR ⊂ ρ(S);
(ii) X and Y are S-invariant, i.e.,S(D(S) ∩ X ) ⊂ X and S(D(S) ∩ Y) ⊂ Y;
(iii) σ(S+) ⊂ {λ ∈ C : ℜλ < 0}, σ(S−) ⊂ {λ ∈ C : ℜλ > 0};
(iv) S+ and −S− are densely defined and sectorial operators on X and Y

respectively,
then S is called sectorially dichotomous with respect to the decomposition
Z = X ⊕ Y.
From Definition 2.1(2), we know that, there exists a bounded projection P :

Z → X such that the sectorially dichotomous operator S can be reduced with
respect to Z = X ⊕ Y, where X = R(P ) and Y = Ker(P ) . Namely, S admits the

block matrix representation S =

(
S+ 0
0 S−

)
, S+ and S− have the form of

S+z = Sz, ∀z ∈ D(S+) := {z ∈ D(S) ∩ X : Sz ∈ X},

and
S−z = Sz, ∀z ∈ D(S−) := {z ∈ D(S) ∩ Y : Sz ∈ Y}.

Besides, D(S) = D(S+)⊕D(S−), S is also densely defined on Z.
For the sectorially dichotomous operator S and a constant α ∈ (0, 1), α-fractional

power of −S+, S− and S can be defined and the relationship among them can also
be obtained, see [10]. We denote (−S+)

α and (S−)
α by the α-fractional powers of

−S+ and S−, respectively, and denote

Xα := D((−S+)
α), Yα := D((S−)

α), Zα := D(Sα)

by Banach spaces with norm ∥x∥Xα = ∥(−S+)
αx∥X , ∥y∥Yα = ∥(S−)

αy∥Y and ∥z∥Zα =
∥Sαz∥Z respectively. Moreover, Zα = Xα ⊕ Yα and D(S) ↪→ Zα ↪→ Z. Note that
Z0 = Z, X0 = X and Y0 = Y. Let ∥ · ∥Z as ∥z∥Z = ∥x+ y∥Z = max{∥x∥X , ∥y∥Y}
for x ∈ X , y ∈ Y and z ∈ Z.

Furthermore, from the sections 2.5 and 2.6 in [23], the following results hold.

Lemma 2.1. S+ and −S− generate uniformly exponentially stable, strongly con-
tinuous, analytic semigroups {T+(t)}t≥0 and {T−(−t)}t≥0 on X and Y respectively,
where T+(t) := etS+ and T−(−t) := e−tS− . Furthermore, there are real numbers
β+ < 0 < β− and some positive constants M+

0 ,M−
0 ,M+

α ,M−
α such that

∥T+(t)∥L(X ) ≤ M+
0 eβ+t, ∥T−(−t)∥L(Y) ≤ M−

0 e−β−t (2.2)

for t ≥ 0, and

∥T+(t)∥L(X ,Xα) ≤ M+
α t−αeβ+t, ∥T−(−t)∥L(Y,Yα) ≤ M−

α t−αe−β−t (2.3)

for t > 0.
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In particular, by the spectral mapping theorem [13, Corollary 4.3.12], T+(t) and
T−(−t) are contraction semigroups, i.e., ∥T+(t)∥L(X ) ≤ 1 and ∥T−(−t)∥L(Y) ≤ 1 for
t ≥ 0. Throughout this paper, we set

M̂+
k = sup

t>0
∥tkSk

+T+(t)∥L(X ), M̂−
k = sup

t>0
∥tkSk

−T−(−t)∥L(Y),

and
M̂+

α = sup
t>0

∥tα(−S+)
αT+(t)∥L(X ), M̂−

α = sup
t>0

∥tαSα
−T−(−t)∥L(Y),

From [19, Proposition 2.1.1(iii)], [27, Theorem 1.12], we have that M̂±
k < ∞, M̂±

α <
∞ for every k ∈ N ∪ {0} and α ∈ [0, 1).

In the following, we give the definitions of some dichotomous solutions and
invariant manifolds for the system (1.4).

Definition 2.2. A function z(t) : [t1, t2] → Zα is called dichotomous solution
of system (1.4) for −∞ < t1 < t2 < ∞, if it satisfies the following three conditions:

(i) z(t) ∈ C0([t1, t2],Zα) ∩ C1((t1, t2),Zα);
(ii) x(t) ∈ D(S+), y(t) ∈ D(S−) and z(t) ∈ O for t ∈ (t1, t2);
(iii) x(t) and y(t) satisfy the first and second equation in (1.4), respectively, for all

t ∈ (t1, t2),
moreover, x(t1) = x1, y(t2) = y2,

where z(t) = x(t) + y(t), x(t) ∈ Xα, y(t) ∈ Yα, and O ⊂ Zα is an open set.

From Definition 2.2, the dichotomous solution z(t) of system (1.4) satisfies the
following dichotomous system of integral equations:{

x(t) = T+(t− t1)x1 +
∫ t

t1
T+(t− s)F (z(s)) ds,

y(t) = T−(t− t2)y2 −
∫ t2
t

T−(t− s)G(z(s)) ds.
(2.4)

If the limits of the integrals in (2.4) exist, we obtain a dichotomous solution on I =
R. In order to distinguishing some asymptotic behaviors of dichotomous solution
clearly, two infinitely long dichotomous solutions deserve to be introduced similar
to ElBily [12].

Definition 2.3. (1) We say that z ∈ C0([t1,∞),Zα) is an infinitely long for-
ward dichotomous solution if for all t1 ≤ t̂1 < t2 < ∞, the restric-
tion z|[t̂1,t2] ∈ C0([t̂1, t2],Zα) is a dichotomous solution. If z(t1) = ζ =

(x1, y(t1;x1)), we write the infinitely long forward dichotomous solution z as
z(·; t1, ζ).

(2) We say that z ∈ C0((−∞, t2],Zα) is an infinitely long backward dichoto-
mous solution if for all −∞ < t1 < t̂2 ≤ t2, the restriction z|[t1,t̂2] ∈
C0([t1, t̂2],Zα) is a dichotomous solution. If z(t2) = ζ = (x(t2; y2), y2), we
write the infinitely long backward dichotomous solution z as z(·; t2, ζ).

The stable set W s(0) and the unstable set Wu(0) of the equilibrium z = 0 are
defined as

W s(0) ={ζ ∈ Zα : z(·; t1, ζ) is defined for t ∈ [t1,∞) and lim
t→∞

z(t; t1, ζ) = 0},

Wu(0) ={ζ ∈ Zα : z(·; t2, ζ) is defined for t ∈ (−∞, t2] and lim
t→−∞

z(t; t2, ζ) = 0}.
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It is trivial to check that W s(0) and Wu(0) are both invariant to Zα. The purpose
of this paper is to show that W s(0) and Wu(0) are indeed manifolds, before that,
we give the definitions of global stable and unstable manifolds.

Definition 2.4. (1) Let hs : Xα → Yα be Ck,γ with hs(0) = 0, in addition,
Dxh

s(0) = 0 for k ≥ 1, such that W s(0) = {(x, y) : y = hs(x), x ∈ Xα}. Then
W s(0) is called a Ck,γ global stable manifold if W s(0) is invariant under the
infinitely long forward dichotomous solution of (1.4), i.e., (x1, h

s(x1)) ∈ W s(0),
then z(t; t1, ζ) ∈ W s(0) and ζ = x1 + hs(x1), where k ∈ N ∪ {0} and γ ∈ [0, 1].

(2) Let hu : Yα → Xα be Ck,γ with hu(0) = 0, in addition, Dyh
u(0) = 0 for

k ≥ 1, such that Wu(0) = {(x, y) : x = hu(y), y ∈ Yα}. Then Wu(0) is called
a Ck,γ global unstable manifold if Wu(0) is invariant under the infinitely
long backward dichotomous solution of (1.4), i.e., (hu(y2), y2) ∈ Wu(0), then
z(t; t2, ζ) ∈ Wu(0) and ζ = hu(y2) + y2, where k ∈ N ∪ {0} and γ ∈ [0, 1].

In addition, we introduce two lemmas by Chow and Lu [7, Lemma 2.1] and
Henry [16, Lemma 6.1.6] respectively, which can be used to study Ck,γ smoothness
of invariant manifolds.

Lemma 2.2 (Lemma 2.1, [7]). Let X, Y be Banach spaces and U be an open
subset of X. Assume that f : U → X is locally Lipschitz continuous. Then f is
continuously differentiable if and only if for every x0 ∈ U

∥f(x+∆)− f(x)− f(x0 +∆) + f(x0)∥Y = o(∥∆∥X)

as (x,∆) → (x0, 0).

Lemma 2.3 (Lemma 6.1.6, [16]). Let X, Y be Banach spaces and U be an open
subset of X. Then a closed bounded ball in Ck,γ(U,Y)(0 < γ ≤ 1, k ∈ N ∪ {0}) is
also a closed bounded subset in C0(U,Y).

Lemma 2.3 tells us that, a sequence {un} ⊂ Ck,γ(U,Y) and a map u : U → Y

such that ∥un − u∥C0(U,Y) → 0 as n → ∞, then u ∈ Ck,γ(U,Y).
To study the existence and Ck,γ smoothness of invariant manifolds, we give

further hypothesis for the nonlinear map H of the system (1.4).
(H) Let F (z(t)) =: P+H(z(t)), G(z(t)) =: P−H(z(t)), and O ⊂ Zα be an open
subset. F (0) = G(0) = 0.

(1) F (·) ∈ C0,1(O,X ) and G(·) ∈ C0,1(O,Y) if k = 0 and γ = 1.

(2) F (·) ∈ Ck,γ(O,X ) and G(·) ∈ Ck,γ(O,Y) if k ≥ 1 and γ ∈ [0, 1]. Moreover,
DzF (0) = DzG(0) = 0.

3. Global stable and unstable manifolds
In this section, we give the global stable and unstable manifolds theorem as follows.

Theorem 3.1. Assume that hypothesis (H) is satisfied for system (1.4), and
∥F∥k,γ , ∥G∥k,γ are sufficiently small. Then,

(i) W s(0) is a unique Ck,γ global stable manifold of system (1.4). And the infinitely
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long forward dichotomous solution on W s(0) take the form

x(t) = T+(t− t1)x1 +

∫ t

t1

T+(t− s)F (x(s), hs(x(s))) ds,

y(t) = hs(x(t)) = −
∫ ∞

t

T−(t− s)G(x(s), hs(x(s))) ds.

(3.1)

for −∞ < t1 ≤ t < ∞.
(i) Wu(0) is a unique Ck,γ global unstable manifold of system (1.4). And the

infinitely long backward dichotomous solution on Wu(0) take the form

x(t) = hu(y(t)) =

∫ t

−∞
T+(t− s)F (hu(y(s)), y(s)) ds,

y(t) = T−(t− t2)y2 −
∫ t2

t

T−(t− s)G(hu(y(s)), y(s)) ds.

(3.2)

for −∞ < t ≤ t2 < ∞.

To prove the Theorem 3.1, we first give some lemmas in the following.

Lemma 3.1. Assume that the nonlinear terms F (z(t)) and G(z(t)) of system (1.4)
on arbitrary finite time interval [t1, t2] satisfy the hypothesis (H-1). Then there is
a unique dichotomous solution z(t) for any z̃ ∈ D(S)

α, where D(S)
α is the closure

of D(S) in Zα.

Proof. Let

E ≜
{
u ∈ C0

(
[t1, t2];Z

)
: u1(t1) = (−S+)

αx1, u2(t2) = (S−)
αy2.

}
,

where u(t) = u1(t) + u2(t), u1(t) ∈ X and u2(t) ∈ Y. Obviously, E is a non-empty
closed subset of C0

(
[t1, t2];Z

)
in the uniform C0 norm, so it is a complete metric

space with the induced metric dE(u, v) = max
t∈[t1,t2]

∥u(t)− v(t)∥Z .

We define a mapping Ψ : E → E as follows:

(Ψu)(t) =T+(t− t1)S
αx1 +

∫ t

t1

SαT+(t− s)F (S−αu(s))ds

+ T−(t− t2)S
αy2 −

∫ t2

t

SαT−(t− s)G(S−αu(s))ds,

(3.3)

that is,

(Ψu1)(t) = T+(t− t1)(−S+)
αx1 +

∫ t

t1

(−S+)
αT+(t− s)F (S−αu(s))ds, (3.4)

(Ψu2)(t) = T−(t− t2)(S−)
αy2 −

∫ t2

t

(S−)
αT−(t− s)G(S−αu(s))ds. (3.5)

Now we check the well-definedness of mapping Ψ firstly, so we consider the
formulas (3.4) and (3.5).
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From [1, Corollary 3.7.21], we know that
T+(t− t1)(−S+)

αx1 ∈ C0([t1, t2];X ) ∩ C∞((t1, t2];X ),

T−(t− t2)(S−)
αy2 ∈ C0([t1, t2];Y) ∩ C∞([t1, t2);Y).

On the other hand, we claim that there exists constants β1, β2 ∈ (0, 1−α) such
that

Fα(t) :=

∫ t

t1

(−S+)
αT+(t− s)F (S−αu(s))ds ∈ C0,β1([t1, t2];X ), (3.6)

and

Gα(t) := −
∫ t2

t

(S−)
αT−(t− s)G(S−αu(s))ds ∈ C0,β2([t1, t2];Y), (3.7)

which implies that
(Ψu)(t) ∈ C0([t1, t2];Z) ∩ C0,β3((t1, t2);Z), (3.8)

where β3 = min{β1, β2}.
Indeed, the continuity of u(t) and the hypothesis (H-1) follow that F (S−αu(t))

and G(S−αu(t)) are bounded on [t1, t2], there exist two positive constants N1 and
N2 such that

∥F (S−αu(t))∥X ≤ N1, ∥G(S−αu(t))∥Y ≤ N2. (3.9)
for t ∈ [t1, t2]. Besides, assume that there exists β1, β2 and h0 such that β1, β2 ∈
(0, 1−α), h0 ∈ (0, 1) and t, t+h0 ∈ [t1, t2]. We discuss that whether (3.6) and (3.7)
hold in two cases of α.

If α ∈ (0, 1), by [23, Theorem 2.6.13(d)], there exists positive constants C+
β1

,
C−

β2
, M̂+

α+β1
and M̂−

α+β2
such that

∥(T+(h0)− I)(−S+)
αT+(t− s)∥L(X ) ≤ C+

β1
hβ1

0 ∥(−S+)
α+β1T+(t− s)∥L(X )

≤ C+
β1
hβ1

0 M̂+
α+β1

(t− s)−α−β1 ,
(3.10)

and
∥(I − T−(−h0))(S−)

αT−(t+ h0 − s)∥L(Y) ≤C−
β2
hβ2

0 ∥(S−)
α+β2T−(t+ h0 − s)∥L(Y)

≤C−
β2
hβ2

0 M̂−
α+β2

(s− t− h0)
−α−β2 .

(3.11)
Then,

∥Fα(t+ h0)−Fα(t)∥X

≤∥
∫ t

t1

(T+(h0)− I)(−S+)
αT+(t− s)F (S−αu(s))ds∥X

+ ∥
∫ t+h0

t

(−S+)
αT+(t+ h0 − s)F (S−αu(s))ds∥X

≤C+
β1
M̂+

α+β1
N1h

β1

0

∫ t

t1

(t− s)−α−β1ds+ M̂+
α N1

∫ t+h0

t

(t+ h0 − s)−αds

=
C+

β1
M̂+

α+β1
N1

1− α− β1
(t− t1)

1−α−β1hβ1

0 +
M̂+

α N1

1− α
h1−α
0

≤

(
C+

β1
M̂+

α+β1

1− α− β1
(t2 − t1)

1−α−β1 +
M̂+

α

1− α

)
N1h

β1

0

(3.12)
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and

∥Gα(t+ h0)− Gα(t)∥Y

≤∥
∫ t2

t+h0

(T−(−h0)− I)(S−)
αT−(t+ h0 − s)G(S−αu(s))ds∥Y

+ ∥
∫ t+h0

t

(S−)
αT−(t− s)G(S−αu(s))ds∥Y

≤C−
β2
M̂−

α+β2
N2h

β2

0

∫ t2

t+h0

(s− t− h0)
−α−β2ds+ M̂−

α N2

∫ t+h0

t

(s− t)−αds

=
C−

β2
M̂−

α+β2
N2

1− α− β2
(t2 − t− h0)

1−α−β2hβ2

0 +
M̂−

α N2

1− α
h1−α
0

≤

(
C−

β2
M̂−

α+β2

1− α− β2
(t2 − t1)

1−α−β2 +
M̂−

α

1− α

)
N2h

β2

0 .

(3.13)

If α = 0, we have

∥F0(t+ h0)−F0(t)∥X

≤∥
∫ t

t1

ds

∫ t+h0−s

t−s

S+T+(τ)F (u(s))dτ∥X + ∥
∫ t+h0

t

T+(t+ h0 − s)F (u(s))ds∥X

≤M̂+
1 N1

∫ t

t1

ds

∫ t+h0−s

t−s

1

τ
dτ + M̂+

0 N1h0

≤M̂+
1 N1

∫ t

t1

ds

(t− s)β1

∫ t+h0−s

t−s

1

τ1−β1
dτ + M̂+

0 N1h0

≤M̂+
1 N1

∫ t

t1

ds

(t− s)β1

∫ h0

0

1

τ1−β1
dτ + M̂+

0 N1h0

≤

(
M̂+

1 (t2 − t1)
β1

β1(1− β1)
+ M̂+

0

)
N1h

β1

0

(3.14)
and

∥G0(t+ h0)− G0(t)∥Y

≤∥
∫ t2

t+h0

ds

∫ s−t

s−t−h0

−S−T−(−τ)G(u(s))dτ∥Y + ∥
∫ t+h0

t

T−(t− s)G(u(s))ds∥Y

≤M̂−
1 N2

∫ t2

t+h0

ds

∫ s−t

s−t−h0

1

τ
dτ + M̂−

0 N2h0

≤M̂−
1 N2

∫ t2

t+h0

ds

(s− t− h0)β2

∫ s−t

s−t−h0

1

τ1−β2
dτ + M̂−

0 N2h0

≤M̂−
1 N2

∫ t2

t+h0

ds

(s− t− h0)β2

∫ h0

0

1

τ1−β2
dτ + M̂−

0 N2h0

≤

(
M̂−

1 (t2 − t1)
β2

β2(1− β2)
+ M̂−

0

)
N2h

β2

0 .

(3.15)
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Therefore, (3.6) holds by the estimations (3.12) and (3.14), and (3.7) follows
from the estimations (3.13) and (3.15).

Hence, Ψ maps E into itself. In the following, we show that Ψ is a contraction
map on E , which prove that Ψ has a unique fixed point on E .

Indeed, for u, v ∈ E ,

∥(Ψu)(t)− (Ψv)(t)∥Z

=max

{
∥
∫ t

t1

(−S+)
αT+(t− s)[F (S−αu(s))− F (S−αv(s))]ds∥X ,

∥
∫ t2

t

(S−)
αT−(t− s)[G(S−αu(s))−G(S−αv(s))]ds∥Y

}
≤max

{
M̂+

α ∥F∥0,1
1− α

(t− t1)
1−α,

M̂−
α ∥G∥0,1
1− α

(t2 − t)1−α

}
dE(u, v).

By induction, we have

dE(Ψ
nu,Ψnv) ≤ R(n)dE(u, v),

where R(n) = 1
n!

(
max{M̂+

α ∥F∥0,1,M̂
−
α ∥G∥0,1}(t2−t1)

1−α

1−α

)n

. R(n) < 1 if n is large
enough, one can apply the extension of the contraction mapping theorem to Ψ on
E to obtain that there exists a unique fixed point u ∈ E of the mapping Ψ, that is,
Ψu = u.

From (3.8) and the fact that the composition of C0,β3 functions is a C0,β3 func-
tion, we know that F (S−αu(t)) and G(S−αu(t)) are uniformly β3-Hölder continuous
in t on (t1, t2). Let we consider the following linear non-homogeneous system for
t ∈ (t1, t2): 

dx(t)
dt = S+x(t) + f(t),

dy(t)
dt = S−y(t) + g(t),

x(t1) = x1, y(t2) = y2,

(3.16)

where f(t) = F (S−αu(t)) and g(t) = G(S−αu(t)) are continuous in t. By [23,
Corollary 4.3.3], the linear non-homogeneous system (3.16) has a unique solution
pair (x, y), where x ∈ C0([t1, t2];X ) ∩ C1((t1, t2);X ) and y ∈ C0([t1, t2];Y) ∩
C1((t1, t2);Y) is given respectively by

x(t) = T+(t− t1)x1 +

∫ t

t1

T+(t− s)F (S−αu(s)) ds, (3.17)

and
y(t) = T−(t− t2)y2 −

∫ t2

t

T−(t− s)G(S−αu(s)) ds. (3.18)

It remains to show that

z(t) = x(t) + y(t) = S−αu(t), t ∈ (t1, t2), (3.19)

which proves that the function z(t) is a dichotomous solution of the system (1.4), and
z ∈ C0((t1, t2);Zα)∩C1((t1, t2);Zα). Especially, z ∈ C0([t1, t2];Z)∩C1((t1, t2);Z)
is obvious when α = 0.
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Indeed, for t ∈ (t1, t2), each term of (3.17) and (3.18) is in D(S) and is also in
D(Sα), then operating on both sides of (3.17) and (3.18) with Sα and adding them
we obtain

Sα(x(t) + y(t)) =T+(t− t1)(−S)αx1 +

∫ t

t1

(−S)αT+(t− s)F ((−S)−αu(s)) ds

+ T−(t− t2)(−S)αy2 −
∫ t2

t

(−S)αT−(t− s)G((−S)−αu(s)) ds

=u(t).
(3.20)

This proves the formula (3.19).
Concerning the continuity of x with values in Xα for α ∈ (0, 1) up to t = t1, from

[19, Lemma 7.1.1], the function t 7→ x(t)− T+(t− t1)x1 belongs to C0([t1, t2],Xα),
while t 7→ T+(t − t1)x1 belongs to C0([t1, t2],Xα) if and only if x1 ∈ D(S+)

α.
Therefore, x ∈ C0([t1, t2],Xα) if and only if x1 ∈ D(S+)

α, where D(S+)
α is the

closure of D(S+) in Xα. The similar argument follows the continuity of y with
values in Yα for α ∈ (0, 1) up to t = t2. Thus, z ∈ C0([t1, t2],Zα) if and only if
z̃ ∈ D(S)

α.
At last, the uniqueness of z(t) follows from the uniqueness for solution of linear

inhomogeneous system (3.16) and fixed point of the mapping Ψ.

Lemma 3.2. (i) z(t) ∈ Zα, t ≥ t1 is an infinitely long forward dichotomous
solution of system (1.4) if and only if z(t) satisfies the integral equation

z(t) = T+(t− t1)x1+

∫ t

t1

T+(t−s)F (z(s))ds−
∫ ∞

t

T−(t−s)G(z(s))ds (3.21)

and x1 ∈ D(S+)
α.

(ii) z(t) ∈ Zα, t ≤ t2 is an infinitely long backward dichotomous solution of system
(1.4) if and only if z(t) satisfies the integral equation

z(t) = T−(t− t2)y2−
∫ t

t2

T−(t−s)G(z(s))ds+

∫ t

−∞
T+(t−s)F (z(s))ds (3.22)

and y2 ∈ D(S−)
α.

Proof.

(i) Since z(t), t ≥ t1 is an infinitely long forward dichotomous solution of (1.4),
by the definition 2.3, for each t2 ∈ (t1,∞), we have

y(t) = T−(t− t2)y2 −
∫ t2

t

T−(t− s)G(z(s))ds.

Let t2 → ∞, from the estimation (2.2), we obtain

y(t) = −
∫ ∞

t

T−(t− s)G(z(s))ds.

Since
x(t) = T+(t− t1)x1 +

∫ t

t1

T+(t− s)F (z(s))ds,
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then from z(t) = x(t) + y(t), we obtain (3.21). By Lemma 3.1, x1 ∈ D(S+)
α

is obvious.
For converse part, Let z(t) = x(t) + y(t), where

x(t) = T+(t− t1)x1 +

∫ t

t1

T+(t− s)F (z(s))ds,

and
y(t) = −

∫ ∞

t

T−(t− s)G(z(s))ds.

Since the right side of (3.21) is continuously differentiable, differentiate
(3.21) with respect to t, we will have{

dx(t)
dt = S+x(t) + F (z(t)),

dy(t)
dt = S−y(t) +G(z(t)).

Moreover, for any t2 ∈ (t1,∞),

y(t) =− T−(t− t2)

∫ ∞

t2

T−(t2 − s)G(z(s))ds−
∫ t2

t

T−(t− s)G(z(s))ds

=T−(t− t2)y(t2)−
∫ t2

t

T−(t− s)G(z(s))ds.

From above, x(t1) = x1, y(t2) = y2. In particular, for each [t̂1, t2] ⊂ [t1,∞),
z(t) satisfies the Definition 2.2. The statement follows.

(ii) Evidenced by the same token for the case that z(t), t ≤ t2, is bounded.

In the following, set

θ+k,γ := M+
α ∥F∥k,γ

∫ ∞

0

µ−αeζµdµ, θ−k,γ := M−
α ∥G∥k,γ

∫ ∞

0

µ−αeζµdµ,

for α ∈ (0, 1) and ζ < 0. Note that θ+k,γ , θ
−
k,γ < ∞ since

∫∞
0

µ−αeζµdµ converges.
Moreover, take β ∈ (−η, 0), where η = min{−β+, β−}.

Lemma 3.3. Assume that max{θ+0,1, θ
−
0,1} < 1 holds. Then, for each x1 ∈ Xα,

the integral equation (3.21) has a unique solution z(t) in Cβ([t1,∞),Zα) such that
∥z∥Cβ

< ∞.

Proof. Fix x1 ∈ Xα, and define the operator Tx1 on the Banach space Cβ([t1,∞),Zα)
as

(Tx1
z)(t) = T+(t− t1)x1+

∫ t

t1

T+(t−s)F (z(s))ds−
∫ ∞

t

T−(t−s)G(z(s))ds (3.23)

for t ≥ t1. Obviously, (Tx1
z)(t) ∈ Zα is a continuous function in t for all z ∈

Cβ([t1,∞),Zα). We shall show that Tx1
is a contraction in Cβ([t1,∞),Zα), then

the contraction mapping theorem yields the integral equation (3.21) has a unique
solution z(t) in Cβ([t1,∞),Zα) such that ∥z∥Cβ

< ∞.
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Since F (0) = G(0) = 0, we have

∥(Tx1
z)(t)∥Zα ≤max

{
M+

0 eβ+(t−t1)∥x1∥Xα +

∫ t

t1

M+
α ∥F∥0,1(t−s)−αeβ+(t−s)∥z(s)∥Zα ds,∫ ∞

t

M−
α ∥G∥0,1(s− t)−αe−β−(s−t)∥z(s)∥Zα ds

}
.

Then,

∥Tx1
z∥Cβ

≤ sup
t≥t1

max
{
M+

0 e(β+−β)te−β+t1∥x1∥Xα

+M+
α ∥F∥0,1

∫ t

t1

(t− s)−αe(β+−β)(t−s)∥z∥Cβ
ds,

M−
α ∥G∥0,1

∫ ∞

t

(s− t)−αe(β−β−)(s−t)∥z∥Cβ
ds
}

≤M+
0 e−βt1∥x1∥Xα + ∥z∥Cβ

< ∞.

Hence, Tx1 maps Cβ([t1,∞),Zα) into itself.
Furthermore, for any z, ẑ ∈ Cβ([t1,∞),Zα), we have

∥Tx1z − Tx1 ẑ∥Cβ
≤ sup

t≥0
max

{
M+

α ∥F∥0,1
∫ t

t1

(t− s)−αe(β+−β)(t−s)ds,

M−
α ∥G∥0,1

∫ ∞

t

(s− t)−αe(β−β−)(s−t)ds
}
∥z − ẑ∥Cβ

<∥z − ẑ∥Cβ
.

Thus, Tx1 : Cβ([t1,∞),Zα) → Cβ([t1,∞),Zα) is a contraction. The proof is com-
plete.

Hence, from the lemma 3.2, if x1 ∈ D(S+)
α, the fixed point z(t) of Tx1

in the
lemma 3.3 is the unique infinitely long forward dichotomous solution to system
(1.4) in Cβ([t1,∞),Zα) such that P+z(t1) = x1. Obviously, ∥z∥Cβ

< ∞ implies
∥z(t)∥Zα → 0 as t → ∞. In the following we will show that all these inifinitely long
forward dichotomous solutions lie on the graph of a map hs : Xα → Yα. Prior to
this, a generalized Gronwall’s inequality with singular kernel will be given, which
generalizes the case α = 1/2 in [15, Lemma 6,p.33] to α = [0, 1).

Lemma 3.4. Let ϕ ∈ L∞(t1, t2) and ϕ ≥ 0. Assume that there exist a > 0 and
α ∈ [0, 1) such that ϕ satisfies

ϕ(t) ≤ ϕ(t1) + a

∫ t

t1

(t− s)−αϕ(s)ds, t ∈ [t1, t2].

Then there exists K0 > 1 such that ϕ(t) ≤ K0ϕ(t1) on [t1, t2].

Proof. Let ϕ∗(t) := ess sup
s∈[t1,t]

ϕ(s). For s ∈ [t1, t], ε is small such that 1 − α −



386 L. Deng & D. Xiao

aε1−α > 0, we have

ϕ(s) ≤ϕ(t1) + a

∫ s−ε

t1

(s− τ)−αϕ(τ)dτ + a

∫ s

s−ε

(s− τ)−αϕ(τ)dτ

≤ϕ(t1) +
a

εα

∫ s

t1

ϕ(τ)dτ +
aε1−α

1− α
ϕ∗(s)

≤ϕ(t1) +
a

εα

∫ t

t1

ϕ∗(τ)dτ +
aε1−α

1− α
ϕ∗(t).

Thus,
(
1− aε1−α

1−α

)
ϕ∗(t) ≤ ϕ(t1) +

a
εα

∫ t

t1
ϕ∗(τ)dτ . By the classical Gronwall’s in-

equality, we get ϕ(t) ≤ K0ϕ(t1), where K0 = 1−α
1−α−aε1−α exp

(
a(1−α)

εα(1−α)−aε (t2 − t1)
)
.

The following lemma give the existence of global stable manifold of system (1.4).

Lemma 3.5. Assume hypothesis (H-1) holds for system (1.4) and such that

θ−0,1 max{1, κ}KM+
0 ≤ κ, max{θ+0,1, θ

−
0,1[1 + (1 + κ)K1θ

+
0,1]} < 1

for some positive constants K,K1, κ. Then there exists a unique C0,1 global stable
manifold.

Proof. Let κ > 0 be an arbitrary given number. Define a space Γ for the Lipschitz
function hs:

Γ = {hs|hs ∈ C0,1(Xα,Yα), h
s(0) = 0, ∥hs∥0,1 ≤ κ}, (3.24)

where ∥hs∥0,1 ≤ κ implies ∥hs(x)∥Yα ≤ κ∥x∥Xα and ∥hs(x)−hs(x̂)∥Yα ≤ κ∥x−x̂∥Xα for
x, x̂ ∈ Xα. Γ is complete metric space endowed with the induced metric dΓ(hs, ĥs) ≜
sup
x∈Xα

{∥hs(x)− ĥs(x)∥Yα}.

Define the Lyapunov-Perron operator L on the Lipschitz function hs in Γ as
follows:

L(hs)(x1) = −
∫ ∞

t1

T−(t1 − s)G(x(s), hs(x(s)))ds, (3.25)

where x(t) = x(t; t1, x1, h
s) is the unique solution of the following system{

dx(t)
dt = S+x(t) + F (x(t), hs(x(t))), t ≥ t1,

x(t1) = x1 ∈ D(S+)
α
.

(3.26)

Since S+ is the infinitesimal generator of strongly continuous and analytic semi-
group {T+(t)}t≥0, from the hypothesis (H-1), x(t) is well defined for all t ≥ t1, and
x(t) has the of form

x(t) = T+(t− t1)x1 +

∫ t

t1

T+(t− s)F (x(s), hs(x(s)))ds. (3.27)

On the one hand, by (3.27) and Lemma 3.4, there exists a K > 1 such that

∥x(t)∥Xα ≤ KM+
0 eβ(t−t1)∥x1∥Xα , (3.28)
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Then the integral on the right side of (3.25) converges. Indeed, it follows from

∥L(hs)(x1)∥Yα ≤
∫ ∞

t1

M−
α ∥G∥0,1 max{1, κ}(s− t1)

−αe−β−(s−t1)∥x(s)∥Xα ds

≤ θ−0,1 max{1, κ}KM+
0 ∥x1∥Xα .

(3.29)

On the other hand, let x1, x̂1 ∈ D(S+)
α, and set x(t) = x(t; t1, x1, h

s), x̂(t) =
x(t; t1, x̂1, h

s). From (2.2) and (2.3), we have

∥x(t)− x̂(t)∥Xα ≤M+
0 eβ+(t−t1)∥x1 − x̂1∥Xα

+max{1, κ}M+
α ∥F∥0,1

∫ t

t1

(t− s)−α∥x(s)− x̂(s)∥Xα ds.

By the lemma 3.4, it yields that

∥x(t)− x̂(t)∥Xα ≤ KM+
0 eβ(t−t1)∥x1 − x̂1∥Xα . (3.30)

In addition, we use the notation x(t, hs) to signifies the dependence of x(t) on
hs. For hs, ĥs ∈ Γ,

∥x(t, hs)− x(t, ĥs)∥Xα

≤
∫ t

t1

∥T+(t− s)∥L(X ,Xα)

[
∥F (x(s, hs), hs(x(s, hs)))− F (x(s, hs), ĥs(x(s, hs)))∥X

+ ∥F (x(s, hs), ĥs(x(s, hs)))− F (x(s, hs), ĥs(x(s, ĥs)))∥X
+ ∥F (x(s, hs), ĥs(x(s, ĥs)))− F (x(s, ĥs), ĥs(x(s, ĥs)))∥X

]
ds

≤
∫ t

t1

M+
α ∥F∥0,1(t− s)−αeβ+(t−s)

[
dΓ(h

s, ĥs) + (1 + κ)∥x(s, hs)− x(s, ĥs)∥Xα
]
ds,

then by Lemma 3.4, there exists a constant K1 > 1 such that

∥x(t, hs)− x(t, ĥs)∥Xα ≤ K1θ
+
0,1dΓ(h

s, ĥs). (3.31)

If hs is a fixed point of L in Γ, then the graph of hs is the global stable manifold.
In the follows, we prove L is a contraction map in Γ. First we show that L(Γ) ⊂ Γ.

Choose ∥G∥0,1 such that θ−0,1max{1, κ}KM+
0 ≤κ, by (3.29), we have ∥L(hs)(x1)∥Yα

≤ κ∥x1∥Xα . Furthermore, we have

∥L(hs)(x1)− L(hs)(x̂1)∥Yα

≤
∫ ∞

t1

M−
α ∥G∥0,1 max{1, κ}(s− t1)

−αe−β−(s−t1)∥x(s)− x̂(s)∥Xα ds ≤ κ∥x1 − x̂1∥Xα .

Besides, since hs(0) = 0 and G(0) = 0, from the (3.25), L(hs)(x1) ∈ Yα and
L(hs)(0) = 0 are obvious. Thus, L(Γ) ⊂ Γ.

Furthermore, for hs, ĥs ∈ Γ, by (3.31) and assume θ−0,1[1 + (1 + κ)K1θ
+
0,1] < 1,
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we obtain

∥L(hs)(x1)− L(ĥs)(x1)∥Yα

≤
∫ t

t1

∥T−(t1 − s)∥L(Y,Yα)

[
∥G(x(s, hs), hs(x(s, hs)))−G(x(s, hs), ĥs(x(s, hs)))∥Y

+ ∥G(x(s, hs), ĥs(x(s, hs)))−G(x(s, hs), ĥs(x(s, ĥs)))∥Y
+ ∥G(x(s, hs), ĥs(x(s, ĥs)))−G(x(s, ĥs), ĥs(x(s, ĥs)))∥Y

]
ds

≤
∫ t

t1

M+
α ∥G∥0,1(s− t1)

−αe−β−(s−t1)
[
dΓ(h

s, ĥs) + (1 + κ)∥x(s, hs)− x(s, ĥs)∥Xα
]
ds

<dΓ(h
s, ĥs).

(3.32)
Hence, L is a contraction map in Γ, then Banach fixed point theorem follows that
there exists a unique fixed point hs of L(hs) = hs in Γ. From the lemma 3.3, (3.27)
and (3.25), all infinitely long forward dichotomous solutions of the system (1.4) with
∥z∥Cβ

< ∞ are contained in the graph of hs defined by

hs(x1) = −
∫ ∞

t1

T−(t1 − s)G(x(s), hs(x(s)))ds. (3.33)

This means that W s(0) = {(x(t), y(t)) : y(t) = hs(x(t)), x(t) ∈ Xα}.
To prove that W s(0) = {(x(t), y(t)) : y(t) = hs(x(t)), x(t) ∈ Xα} is C0,1 global

stable manifold, it remains to prove the invariance of W s(0). Let x(t), t ≥ t1, be
a solution for (3.26), (x1, h

s(x1)) ∈ W s(0) then denote y(t) := hs(x(t)) for t ≥ t1.
This defines a curve (x(t), y(t)) ∈ W s(0), t ≥ t1, through the point (x1, h

s(x1)) ∈
W s(0), it suffices to prove y(t) satisfies

dy(t)

dt
= S−y(t) +G(x(t), hs(x(t))), t ∈ [t1, t2]. (3.34)

for all t2 ∈ (t1,∞). And the equation (3.34) indeed has a unique solution y(t) which
remains bounded as t2 → ∞, namely

y(t) = −
∫ ∞

t

T−(t− s)G(x(s), hs(x(s)))ds.

Thus, z(t) = x(t) + hs(x(t)) is the unique infinitely long forward dichotomous
solution of the system (1.4) with z(t1) = x1 + hs(x1).

The proof is complete.
In the following, we shall focus on the smoothness of hs obtained in Lemma 3.5.

Lemma 3.6. For the ill-posed system (1.4), assume in addition to the hypoth-
esises of Lemma 3.5 that Hypothesis (H-2) holds for k = 1 and γ = 0, and
(1 + κ)K2θ

−
1,0θ

+
1,0 < 1 for some positive constants K2. Then there exists a unique

C1 global stable manifold.

Proof. By Lemma 3.5, we obtain a unique C0,1 global stable manifold charac-
terized by the graph of hs ∈ Γ, where hs and Γ refers to (3.33) and (3.24) re-
spectively. we shall proceed to prove that hs is C1 provided F and G are C1 and
(1 + κ)K2θ

−
1,0θ

+
1,0 < 1 for some positive constants K2.
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Defined

λ(hs, x0) = lim sup
(x1,∆)→(x0,0)

∥hs(x1 +∆)− hs(x1)− hs(x0 +∆) + hs(x0)∥Yα
∥∆∥Xα

. (3.35)

By Lemma 2.2, we need to prove λ(hs, x0) = 0 for every x0 ∈ D(S+)
α.

Here we use the notation x(t, x1, h
s) to represent the solution of (3.26). By

(3.27) and the Taylor expression, we have

x(t, x1 +∆, hs)− x(t, x1, h
s)− x(t, x0 +∆, hs) + x(t, x0, h

s)

=

∫ t

t1

T+(t− s)
{
DxF (x(s, x0, h

s), hs(x(s, x0, h
s)))[x(s, x1 +∆, hs)− x(s, x1, h

s)

− x(s, x0 +∆, hs) + x(s, x0, h
s)] +DhsF (x(s, x0, h

s), hs(x(s, x0, h
s)))

[h(x(s, x1 +∆, hs))− h(x(s, x1, h
s))− h(x(s, x0 +∆, hs)) + h(x(s, x0, h

s))]

+R2(x)
}
ds (3.36)

where R2(x) represents the sum of higher order Taylor expressions of F in (3.36)
at the point (x(s, x0, h

s), hs(x(s, x0, h
s))).

By Lemma 3.4, there exists a K2 > 1 such that

∥x(t, x1 +∆, hs)− x(t, x1, h
s)− x(t, x0 +∆, hs) + x(t, x0, h

s)∥Xα
≤K2[θ

+
1,0∥∆∥Xα sup

t≥t1

[λ(hs, x(t, x0, h
s))] + o(∥∆∥Xα )] (3.37)

as (x1,∆) → (x0, 0).
Then, similarly as (3.36), by (3.30), (3.33), (3.37) and the Taylor expression,

∥hs(x1 +∆)− hs(x1)− hs(x0 +∆) + hs(x0)∥Yα

≤
∫ ∞

t1

M−
α ∥G∥1(s− t1)

−αe−β−(s−t1)(1 + κ)

×
{
∥x(s, x1 +∆, hs)− x(s, x1, h

s)− x(s, x0 +∆, hs) + x(s, x0, h
s)∥Xα

+ 2κ∥x(s, x0 +∆, hs)− x(s, x0, h
s)∥Xα

}
ds+ o(∥∆∥Xα )

≤(1 + κ)K2θ
+
1,0θ

−
1,0∥∆∥Xα sup

t≥t1

[λ(hs, x(t, x0, h
s))] + o(∥∆∥Xα )

(3.38)

as (x1,∆) → (x0, 0), and it yields

λ(hs, x0) ≤ (1 + κ)K2θ
+
1,0θ

−
1,0 sup

t≥t1

λ(hs, x(t, x0, h
s)) < ∞. (3.39)

Because x(t, x(s, x0, h
s), hs) = x(t+ s, x0, h

s) for t+ s ≥ t1, we have

sup
t≥t1

λ(hs, x(t, x0, h
s)) ≤ (1 + κ)K2θ

+
1,0θ

−
1,0 sup

t≥t1

λ(hs, x(t, x0, h
s)).

Since (1+κ)K2θ
+
1,0θ

−
1,0<1, then supt≥t1 λ(h

s, x(t, x0, h
s))=0. By (3.39), λ(hs, x0)=

0. Thus, hs is C1. Moreover, by (3.33), Dhs(0) = 0.
The proof is complete.
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Remark 3.1. With the same arguments as Lemma 3.6 and Lemma 2.2, the con-
clusion of Lemma 3.6 can be improved to the Ck(k ≥ 2) case provided in addition
to the existence of Ck−1,1 global stable manifold that F and G are Ck along with
sufficiently small ∥F∥k and ∥G∥k. While we omit the details and shift attention to
the Ck,γ(k ≥ 1, γ ∈ (0, 1]) smoothness later.

Lemma 3.7. For the ill-posed system (1.4), assume in addition to the hypothesises
of Lemma 3.5 that β+ < (1 + γ)β and hypothesis (H-2) holds for γ ∈ (0, 1] with
sufficiently small ∥F∥k,γ and ∥G∥k,γ . Then there exists a unique Ck,γ global stable
manifold.

Proof. Set Γk = {hs ∈ Γ ∩ Ck,γ(Xα,Yα) : Dhs(0) = 0, ∥hs∥k,γ ≤ κ} for k ≥ 1,
where Γ refers to (3.24). By Lemma 3.5, we obtain a unique C0,1 global stable
manifold characterized by the graph of hs ∈ Γ, where hs refers to (3.33). In the
following, we shall continue to prove hs is Ck,γ for γ ∈ (0, 1]. From (3.25) and
Lemma 2.3, it suffices to show L(Γk) ⊂ Γk in the C0 norm.

Step I : Prior to this, we need to prove that x(t) defined by (3.27) is Ck,γ in x1

and satisfies the estimates on the derivatives up to order k and Hölder derivatives
of Dk

x1
x(t).

Now we define the space

Lβ =

{
ϕ : R×D(S+)

α
→ Xα|ϕ(t1, ξ) = ξ,∀ξ ∈ D(S+)

α
, ϕ(·, ξ) ∈ C1(R),

ϕ(t, ·) ∈ Ck,γ
(
D(S+)

α)
, ∥ϕ(t, ·)∥C0(Xα,Xα) ≤ KM+

0 eβ(t−t1),

∥Di
ξϕ(t, ·)∥C0(Xα,Xα) ≤ KM+

0 eβ(t−t1), i = 1, · · · , k,

Hγ(D
k
ξϕ(t, ·)) ≤ KM+

0 eβ(t−t1)

}
,

(3.40)

where K,M+
0 refer to (3.28). Obviously, Lβ is a complete metric space with respect

to the induced metric dL(ϕ, ϕ̂) ≜ ∥ϕ− ϕ̂∥Cβ
.

For any x ∈ Lβ , define

[Tx](t, x1) = T+(t− t1)x1 +

∫ t

t1

T+(t− s)F (x(s, x1), h
s(x(s, x1)))ds. (3.41)

To prove that x(t) which defined by (3.27) is Ck,γ in x1 provided hs ∈ Γk, it suffices
to prove T is a contraction map in Lβ . We first prove that T(Lβ) ⊂ Lβ .

Obviously, [Tx](t1, x1) = x1. For any x ∈ Lβ , [Tx] being C1 in t and Ck,γ in
x1 follow from the fact that, for any l ∈ N and γ ∈ (0, 1], the composition of Cl,γ

functions is a Cl,γ function. Moreover, by (3.28), we know that ∥[Tx]∥C0(Xα,Xα) ≤
KM+

0 eβ(t−t1).
Differentiating (3.41) in x1, it yields

Dx1
[Tx](t, x1) =T+(t− t1) +

∫ t

t1

T+(t− s)
[
DxF (s, x1)Dx1

x(s, x1)

+DhsF (s, x1)Dxh
s(x(s, x1))Dx1

x(s, x1)
]
ds,

(3.42)

where F (s, x1) := F (x(s, x1), h
s(x(s, x1))). Note that the integral in (3.42) con-

verges. Indeed, since x ∈ Lβ and hs ∈ Γk, choose ∥F∥1,γ so small that θ+1,0 ≤
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K−1
K(1+κ) , we have

∥Dx1 [Tx]∥C0(Xα,Xα)

≤ M+
0 eβ+(t−t1) +

∫ t

t1

M+
α (t− s)−αeβ+(t−t1)∥F∥1(1 + κ)KM+

0 eβ(s−t1)ds

≤ [1 +M+
α ∥F∥1K(1 + κ)

∫ t

t1

(t− s)−αe(β+−β)(t−s)ds]M+
0 eβ(t−t1)

≤ KM+
0 eβ(t−t1).

Furthermore, for 2 ≤ i ≤ k,

Di
x1
[Tx](t, x1) =

∫ t

t1

T+(t− s)
[
DxF (s, x1)D

i
x1
x(s, x1)

+DhsF (s, x1)Dxh
s(x(s, x1))D

i
x1
x(s, x1) +Ri(s, x1)

]
ds,

(3.43)

where Ri(s, x1) is a sum of monomials whose factors are derivatives of F and of hs

up to order i and of x up to order i − 1. Note that (3.43) is well-defined because
[Tx] is Ck,γ in x1 and the integral in (3.43) converges. Moreover, by choosing ∥F∥i
sufficiently small, we can obtain

∥Di
x1
[Tx]∥C0(Xα,Xα) ≤ KM+

0 eβ(t−t1).

The only thing that remains to prove to ensure that T(Lβ) ⊂ Lβ is the estimate
on Hγ(D

k
x1
[Tx]). For all x1, x̂1 ∈ D(S+)

α, x ∈ Lβ and hs ∈ Γk, we have

Dk
x1
[Tx](t, x1)−Dk

x̂1
[Tx](t, x̂1)

≤
∫ t

t1

T+(t− s)
[
DxF (s, x1)D

k
x1
x(s, x1)−DxF (s, x̂1)D

k
x̂1
x(s, x̂1)

+DhsF (s, x1)Dxh
s(x(s, x1))D

k
x1
x(s, x1)−DhsF (s, x̂1)Dxh

s(x(s, x̂1))D
k
x̂1
x(s, x̂1)

+Ri(s, x1)−Ri(s, x̂1)
]
ds. (3.44)

Each difference terms in the right side of (3.44) contain the factors Dx1
x(s, x1)

and Dx̂1
x(s, x̂1), we use the triangle inequality to estimate (3.44) in the C0 norm

and assume β+ < (1 + γ)β and ∥F∥k,γ being sufficiently small, then we can obtain
Hγ(D

k[Tx]) ≤ KM+
0 eβ(t−t1).

This finishes the verification of T(Lβ) ⊂ Lβ .
In addition, for any x, x̂ ∈ Lβ , we have

∥[Tx](t, x1)− [Tx̂](t, x1)∥Xα

≤∥
∫ t

t1

T+(t− s)[F (x(s, x1), h
s(x(s, x1)))− F (x̂(s, x1), h

s(x̂(s, x1)))]∥Xα

≤
∫ t

t1

M+
α (t− s)−αeβ+(t−s)∥F∥1 max{1, κ}∥x(s, x1)− x̂(s, x1)∥Xα ds

≤max{1, κ}θ+1,0eβt1dL(x, x̂).

(3.45)

Since θ+1,0 ≤ K−1
K(1+κ) , we have θ+1,0 ≤ 1

max{1,κ} then it follows that dL([Tx], [Tx̂]) <

dL(x, x̂). Thus, the contraction mapping theorem yields that T has a fixed point x
on Lβ .
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Step II : Now we prove that L(Γk) ⊂ Γk.
Since x ∈ Lβ and hs ∈ Γk, L(hs) is Ck,γ in x1. This is again a result that the

composition of Ck,γ functions is a Ck,γ functions. Differentiable L(hs)(x1) with
respect to x1, we have

Dx1
L(hs)(x1) =−

∫ ∞

t1

T−(t1 − s)
[
DxG(s, x1)Dx1

x(s, x1)

+DhsG(s, x1)Dxh
s(x(s, x1))Dx1

x(s, x1)
]
ds,

(3.46)

where we use the notation G(s, x1) to signifies G(x(s, x1), h
s(x(s, x1))). Choose

∥G∥1 small such that θ−1,0 ≤ κ
(1+κ)KM+

0

, it yields

∥Dx1
L(hs)∥ ≤

∫ ∞

t1

M−
α (s− t1)

−αe−β−(s−t1)∥G∥1,γ(1 + κ)KM+
0 eβ(s−t1)ds ≤ κ.

Besides, Dx1L(h
s)(0) = 0.

Furthermore, for 2 ≤ i ≤ k,

Di
x1
L(hs)(x1) =−

∫ ∞

t1

T−(t1 − s)
[
DxG(s, x1)D

i
x1
x(s, x1)

+DhsG(s, x1)Dxh
s(x(s, x1))D

i
x1
x(s, x1) + R̂i(x1)

]
ds,

(3.47)

R̂i(x1) is a sum of monomials whose factors are derivatives of G and x up to order
i− 1 and hs up to i. Note that all the terms in R̂i(x1) contain at least one factor
which is a derivative of G. Hence, assuming ∥G∥i is sufficiently small, we can obtain
∥Di

x1
L(hs)∥ ≤ κ.

In addition, for x1, x1 ∈ D(S+)
α,

Dk
x1
[L(hs)](x1)−Dk

x̂1
[L(hs)](x̂1)

≤
∫ t

t1

T+(t− s)
[
DxG(s, x1)D

k
x1
x(s, x1)−DxG(s, x̂1)D

k
x̂1
x(s, x̂1)

+DhsG(s, x1)Dxh
s(x(s, x1))D

k
x1
x(s, x1)−DhsG(s, x̂1)Dxh

s(x(s, x̂1))D
k
x̂1
x(s, x̂1)

+ R̂i(x1)− R̂i(x̂1)
]
ds.

(3.48)
Each difference terms in the right side of (3.48) contain the factors Dx1

x(s, x1)
and Dx̂1

x(s, x̂1), we use the triangle inequality to estimate (3.48) in the C0 norm
and assume β+ < (1 + γ)β and ∥G∥k,γ being sufficiently small, then we can obtain
Hγ(D

k
x1
[L(hs)]) ≤ κ. Thus, L(Γk) ⊂ Γk.

By Lemma 2.3, Γk is a non-empty closed subset of Γ(⊂ C0(Xα,Yα)) in the C0

norm, and since L has a fixed point hs in Γ, L(Γk) ⊂ Γk implies that the fixed point
hs of L also lies in Γk and is therefore of class Ck,γ . Thus, W s(0) is the unique
global stable manifold.

The proof is complete.
We are now in the position to prove Theorem 3.1.

Proof of Theorem 3.1.

(i) From Lemma 3.1, Lemma 3.2, Lemma 3.3 and lemma 3.5, for each x1 ∈
D(S+)

α, there is a unique point ζ = (x1, h
s(x1)) such that system (1.4) has a
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unique infinitely long forward dichotomous solution z(t; t1, ζ) ∈ Cβ([t1,∞),Zα)
which defined by

z(t) =T+(t− t1)x1 +

∫ t

t1

T+(t− s)F (x(s), hs(x(s)))ds

−
∫ ∞

t

T−(t− s)G(x(s), hs(x(s)))ds

(3.49)

for t ≥ t1, and lim
t→∞

z(t; t1, ζ) = 0. Then, Lemma 3.5, Lemma 3.6 and Lemma
3.7 follow that W s(0) = {(x(t), y(t)) : y(t) = hs(x(t)), x(t) ∈ Xα} contains
z(t; t1, ζ), and is the unique Ck,γ global stable manifold of system (1.4), where
hs is defined by (3.33). Moreover, x(t) and y(t) on W s(0) have the form (3.1).

(ii) In order to obtain a unique global unstable manifold for system (1.4), we begin
by considering (2.4) which written in the following form:{

x(t) = eS+(t−t1)x1 +
∫ t

t1
eS+(t−s)F (z(s)) ds,

y(t) = eS−(t−t2)y2 −
∫ t2
t

eS−(t−s)G(z(s)) ds
(3.50)

for −∞ < t1 ≤ t ≤ t2 < ∞.
Let τ = −t, τ1 = −t2 and τ2 = −t1. Set x̃(τ) := x(−τ), ỹ(τ) := y(−τ) and

z̃(τ) := z(−τ). Then z(t)(= x(t) + y(t)) : [t1, t2] → Zα is the dichotomous
solution of (3.50) if and only if z̃(τ)(= x̃(τ) + ỹ(τ)) : [τ1, τ2] → Zα is the
dichotomous solution of the following system{

x̃(τ) = e(−S+)(τ−τ2)x̃(τ2)−
∫ τ2
τ

e(−S+)(τ−s)(−F )(z̃(s)) ds,

ỹ(τ) = e(−S−)(τ−τ1)ỹ(τ1) +
∫ τ

τ1
e(−S−)(τ−s)(−G)(z̃(s)) ds

(3.51)

for −∞ < τ1 ≤ τ ≤ τ2 < ∞, where (−F )(z̃) := −F (z̃) and (−G)(z̃) := −G(z̃).
By Theorem 3.1(1), system (3.51) exists a Ck,γ unique global stable manifold
W s(0) = {(ỹ(τ), x̃(τ)) : x̃(τ) = hs(ỹ(τ)), ỹ(τ) ∈ Yα}, where

hs(ỹ(τ1)) = −
∫ ∞

τ1

e(−S+)(τ1−s)(−F )(hs(ỹ(s)), ỹ(s)) ds.

This implies that system (1.4) has a Ck,γ unique global unstable manifold
Wu(0) = {(x(t), y(t)) : x(t) = hu(y(t)), y(t) ∈ Yα}, where

hu(y2) =

∫ t2

−∞
T+(t2 − s)F (hu(y(s)), y(s)) ds.

Moreover, for each y2 ∈ D(S−)
α, there is a unique point ζ = (hu(y2), y2) such

that system (1.4) has a unique infinitely long backward dichotomous solution
z(t; t2, ζ) ∈ C−β((−∞, t2],Zα) which defined by

z(t) =T−(t− t2)y2 −
∫ t2

t

T−(t− s)G(hu(y(s)), y(s)) ds

+

∫ t

−∞
T+(t− s)F (hu(y(s)), y(s)) ds

for t ≤ t2, and lim
t→−∞

z(t; t2, ζ) = 0. In addition, x(t) and y(t) on Wu(0) has
the form (3.2).

The proof is complete.
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4. Elliptic equations in infinite cylindrical domain
Consider the elliptic equation with Dirichlet boundary condition on ∂Ω

uxx +∆yu+ f(y, u, ux,∇yu) = 0, (x, y, u) ∈ R× Ω× Rm,

u(x, y) = 0, x ∈ R, y ∈ ∂Ω
(4.1)

in infinite cylindrical domain R × Ω, where Ω is an open and bounded subset of
Rn with smooth boundary ∂Ω, ∇y is the gradient in the y-variable and ∆y is the
Laplace operator in the y-variable. The function (y, u, v, w) 7−→ f(y, u, v, w) is
defined in Ω × V, and has value in Rm, where V ⊂ Rm × Rm × Rmn is an open
subset and it is also the higher order term of (u, v, w).

Assume that f is globally Lipschitz continuous with respect to (u, v, w). Pre-
cisely, we assume that there exists a K0 > 0 such that

|f(y, u1, v1, w1)−f(y, u2, v2, w2)|Rm ≤ K0(|u1−u2|Rm + |v1−v2|Rm + |w1−w2|Rmn)
(4.2)

for (u1, v1, w1), (u2, v2, w2) ∈ V.
Based on the idea from Kirchgässner [18], we consider (4.1) as an evolution

equation by treating the unbounded spatial variable x as time variable. We first
transfer the problem of elliptic equation (4.1) to a abstract semilinear problem.

Let A := −∆y. Then A is a closed operator on X := L2(Ω) with dense domain
X1 := D(A) = H2(Ω)∩H1

0 (Ω), and it is positive, symmetric with compact inverse.
Moreover, σ(A) = {λn : n ∈ Z+} is a discrete set that λn ≥ λn−1 > 0 and λn → ∞
as n → ∞, the corresponding eigenfunctions {en : n ∈ Z+} of A can be chosen
to form an orthonormal basis for X, and in terms of this basis the operator A can
be represented by Au =

∑∞
n=1 λ(u, en)en, where (·, ·) be a inner product on X. In

particular, −A is sectorial on X.
Based on the choice of X and the properties of A, by [24, Exercise 3.10, p87],

we know that the fractional power A−α/2(0 < α ≤ 1) can be defined as A−α/2u =∑∞
n=1 λ

−α/2(u, en)en. Then Aα/2 can be defined as Aα/2 := (A−α/2)−1,

Aα/2u =

∞∑
n=1

λα/2(u, en)en, (4.3)

and
Xα/2 := D(Aα/2) = {u : ∥Aα/2u∥X < +∞}

is a Hilbert space when endowed with the inner product

(u1, u2)α/2 := (Aα/2u1, A
α/2u2),

which gives rise to a corresponding norm ∥u∥D(Aα/2) = ∥Aα/2u∥X . Note that
Xα2/2 ⊂ Xα1/2 if 0 < α1 < α2 ≤ 1. In particular, D(A1/2) = H1

0 (Ω), σ(A1/2) =
{
√
λn : n ∈ Z+} and −A1/2 is the infinitesimal generator of a strongly continuous

and analytic semigroup
{
e−A1/2t

}
t≥0

on X.
Set Z := X×X endowed with the norm ∥z∥Z = max{∥z1∥X , ∥z2∥X} for z1 ∈ X,

z2 ∈ X and z = (z1, z2)
T ∈ Z. By utilizing the factorized method in [5, section

2], we can write the linear part of equation (4.1) on Z into the following abstract
linear equation

dz(x)

dx
= Sz(x), x ∈ R, z(x) ∈ Z, (4.4)
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where z = (p, q)T, p(x), q(x) ∈ X and

p := −v +A1/2u, q := v +A1/2u. (4.5)

Besides,

S =

(−A1/2 0

0 A1/2

)
(4.6)

with D(S) = X1/2 ×X1/2. Obviously, D(S) = Z and σ(S) = σ(−A1/2) ∪ σ(A1/2).
Thus, S is a densely defined and hyperbolic bisectorial operator on Z. Furthermore,
we have the following lemma.

Lemma 4.1. The operator S of equation (4.4) is sectorially dichotomous on Z.

Proof. For z ∈ Z, there exist two bounded and complementary projections P+ :
(p, q)T 7→ (p, 0)T and P− : (p, q)T 7→ (0, q)T, which refer to [11, Appendix A.7],
such that

Z = Zp
+ ⊕Zq

−,

where Zp
+ = {z ∈ Z : q = 0} = X × {0} and Zq

− = {z ∈ Z : p = 0} = {0} ×X.
Since D(S) = [D(S)∩Zp

+]⊕ [D(S)∩Zq
−], S map D(S)∩Zp

+ and D(S)∩Zq
− into

Zp
+ and Zq

− respectively, then Zp
+ and Zq

− are S-invariant.
By decomposition of Z, S can be reduced to the block matrix representation

S =
( S+ 0

0 S−

)
, where

S+ := S|Z+
=

(−A1/2 0

0 0

)
, S− := S|Z− =

(
0 0

0 A1/2

)
.

Obviously, D(S+) = D(S) ∩ Zp
+, D(S−) = D(S) ∩ Zq

−. Specifically,

D(S+) = X1/2 × {0}, D(S−) = {0} ×X1/2.

Moreover, σ(S) = σ(S+) ∪ σ(S−), σ(S+) = σ(−A1/2) and σ(S−) = σ(A1/2).
Besides, since S+ and −S− are sectorial operators on Zp

+ and Zq
−, respectively,

D(S+) = Zp
+, D(S−) = Zq

−.

S+ generates strongly continuous and analytic semigroup

{(
e−A1/2t 0

0 0

)}
t≥0

on Zp
+ and −S− generates strongly continuous and analytic semigroup

{(
0 0

0 e−A1/2t

)}
t≥0

on Zq
−, both are uniformly exponentially stable. Hence, S is sectorially dichotomous

on Z.
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Based on the Lemma 4.1, we can constrcut the fractional power Sα and obtain
its domain. The propery of A follows that sectorial operator −S+ is also positive,
symmetric with compact inverse, and the corresponding eigenfunctions {ên : n ∈
Z+} of −S+ can be chosen to form an orthonormal basis for X1/2 × {0}. Thus,
by [24, Exercise 3.10, p87], we can define fractional power (−S+)

α as

(−S+)
αû =

∞∑
n=1

λα/2(û, ên)ên.

By (4.3), we can rewrite (−S+)
α as

(
Aα/2 0

0 0

)
. (S−)

α =

(
0 0

0 Aα/2

)
can be defined

in the same way above. From above, we can define the fractional power

Sα :=

(
(−S+)α 0

0 (S−)α

)
(4.7)

for α ∈ (0, 1), along with D(Sα) = D((−S+)
α) ⊕ D((S−)

α) = Xα/2 × Xα/2,
D((−S+)

α) = Xα/2 × {0} and D((S−)
α) = {0} × Xα/2. Moreover, D(S+) ⊂

D((−S+)
α) ⊂ Zp

+ and D(S−) ⊂ D((S−)
α) ⊂ Zq

−. Therefore, we can define

Zα := D(Sα) with the norm ∥z∥α = ∥Sαz∥Z

for α ∈ (0, 1).
Let Ô be the open subset in Zα consisting of all the variables such that the

range of (u, ux,∇y) is contained in V. From (4.2), set v = ux and the function

f̃ : Ô → X, f̃(u, v)(y) = f(y, u(y), v(y),∇yu(y)).

So f̃ is continuous, and (4.2) follows that f̃ satisfies

∥f̃(û, v̂)− f̃(u, v)∥X ≤ K0 ·max{∥û− u∥Xα/2 , ∥v̂ − v∥Xα/2} (4.8)

for (û, v̂), (u, v) ∈ Ô.
Combining with (4.4), the whole equation (4.1) on Z can be written as the

following abstract semilinear equation
dz

dx
= Sz +H(x, z), x ∈ R, z(x) ∈ Z, (4.9)

where H(z) =

(
f̃(u, v)

−f̃(u, v)

)
,
(
u

v

)
=

1

2

(
A−1/2 A−1/2

−I I

)(
p

q

)
, z = (p, q)T. Thus, H(z)

is well defined in Zα, with values in Z. Moreover, ∥H(ẑ)−H(z)∥Z ≤ K0∥ẑ − z∥α
for ẑ, z ∈ Ô, and H(0) = 0.

We now state the following results for (4.1) as follows.

Theorem 4.1. Assume that system (4.1) satisfies the condition (4.2) with a suffi-
ciently small K0. Then,

(i) for each [x1, x2] and (u(x1, ·), ux(x1, ·)), (u(x2, ·), ux(x2, ·)) ∈ H1
0 (Ω)× L2(Ω)

such that p(x1), q(x2) ∈ Xα/2, then system (4.1) has a unique solution u(x, y) :
[x1, x2]×Ω → Rm, such that u, ux ∈ C([x1, x2]×Ω,Rm) and uxx ∈ C((x1, x2)×
Ω,Rm), where p and q refer to (4.5).
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(ii) There is a unique infinite dimensional C0,1 global stable manifold Ws in
H1

0 (Ω)×L2(Ω) such that any solution of (4.1) with initial condition (u, ux) ∈
Ws satisfies ∥u(x, ·)∥H1

0 (Ω) → 0 and ∥ux(x, ·)∥L2(Ω) → 0 as x → ∞.
(iii) There is a unique infinite dimensional C0,1 global unstable manifold Wu in

H1
0 (Ω)×L2(Ω) such that any solution of (4.1) with initial condition (u, ux) ∈

Wu satisfies ∥u(x, ·)∥H1
0 (Ω) → 0 and ∥ux(x, ·)∥L2(Ω) → 0 as x → −∞.

Proof. Let p = (p, 0)T and q = (0, q)T. Based on the discussion above, equation
(5.3) can be transformed into the following semilinear system:{

d
dxp = S+p+ P+H(z),
d
dxq = S−q + P−H(z),

(4.10)

where z = p+ q ∈ Zp
+ ⊕Zq

− = Z, p ∈ Zp
+ and q ∈ Zq

−. Under the hypothesises of f
in (4.2), P±H(z) in (4.10) satisfy the hypothesis (H-1).

(i) For each [x1, x2], by (4.5), take (u(x1, y), ux(x1, y)), (u(x2, y), ux(x2, y)) ∈
H1

0 (Ω)× L2(Ω) in (4.1) such that p(x1), q(x2) ∈ Xα/2, which is equivalent to
that we choose the dichotomous initial condition

(p(x1), q(x2)) := {(p(x1), 0)
T, (0, q(x2))

T} ∈ Zα (4.11)

on [x1, x2] for (4.10). Note that the closure of D(S) in Zα is Zα.
Hence, Lemma 3.1 yields that, system (4.10) with the above dichotomous

initial condition (4.11) has a unique dichotomous solution z(x) on Zα, x ∈
[x1, x2] such that p, q ∈ C([t1, t2], X

α/2) and p, q ∈ C1((t1, t2), X
α/2). It

follows that elliptic equation (4.1) has a local solution u(x, y) : [x1, x2]×Ω →
Rm such that u, ux ∈ C([x1, x2]× Ω,Rm) and uxx ∈ C((x1, x2)× Ω,Rm).

(ii) From Lemma 3.5, under the condition (4.11), it follows that system (4.10) has
a unique infinite dimensional C0,1 global stable manifold W s(0) given by the
graph of C0,1 map

hs : Xα → Yα, q = hs(p), (4.12)
where Xα = Xα/2 × {0} and Yα = {0} ×Xα/2. Besides, we take K0 so small
such that ∥hs∥0,1 < 1. In fact, the map hs can be viewed as a map from Xα/2

to itself, and q = hs(p).
Corresponding to (u, ux)-coordinates, Xα and Yα can be written as

Xα = {(2A1/2u, 0), u ∈ X1/2}, Yα = {(0, 2A1/2u), u ∈ X1/2}. (4.13)

Note that the above statement (i) follows that A1/2u ∈ Xα/2 ⊂ X in (4.13).
Thus, hs can be represented by a C0,1 map

h̃s : X1/2 → X1/2, h̃s(u) = (2A1/2)−1hs(2A1/2u). (4.14)

Moreover, by (4.14) and direct calculation, ∥h̃s(u1)−h̃s(u2)∥X1/2 ≤ ∥hs∥0,1∥u1−
u2∥X1/2 , it implies that ∥h̃s∥0,1 ≤ ∥hs∥0,1 < 1.

Let z0 = (p0, h
s(p0)), p0 = 2A1/2u0, be a point on the stable manifold

of system (4.10) as given by (4.12). By
(
u

v

)
=

1

2

(
A−1/2 A−1/2

−I I

)(
p

q

)
, and

(4.14), z0 in the (u, ux)-coordinates is given by

u = u0 + h̃s(u0), ux = A1/2(−u0 + h̃s(u0)). (4.15)
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Then global Lipschitz inverse function theorem follows that there exists a C0,1

map ĥs ≜ (I + h̃s)−1 : X1/2 → X1/2 such that u0 = ĥs(u).
Since the composition of C0,1 functions is a C0,1 function, there exists a

C0,1 map h
s such that

h
s
: X1/2 → X, ux = h

s
(u) = A1/2(−ĥs(u) + h̃s(ĥs(u))). (4.16)

Hence, system (4.1) has a unique infinite dimensional C0,1 global stable man-
ifold Ws = {(u, hs

(u)), u ∈ H1
0 (Ω)} in H1

0 (Ω) × L2(Ω), where h
s refers to

(4.16). Moreover, any solution of (4.1) with initial condition (u, ux) ∈ Ws

satisfies ∥u(x, ·)∥H1
0 (Ω) → 0 and ∥ux(x, ·)∥L2(Ω) → 0 as x → ∞.

(iii) The assertions about the C0,1 global unstable manifold follows from those
about the C0,1 global stable manifolds by reversing the direction of “time”
variable x.
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