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MATRIX AND DOUBLE BAND MATRIX
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Abstract In this paper, we construct three new sequence spaces br,s0 (G),
br,sc (G) and br,s∞ (G) and mention some inclusion relations, where G is general-
ized difference matrix. Moreover, we give Schauder basis of the spaces br,s0 (G)
and br,sc (G). Afterward, we determine α−, β− and γ−duals of those spaces.
Finally, we characterize some matrix classes related to the space br,sc (G).
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1. Rudiments And Notations
The set of all real or complex valued sequences is symbolized with w. w is a vector
space under point-wise addition and scalar multiplication. A sequence space is
an arbitrary vector subspace of w. ℓ∞, c0, c and ℓp are symbolic of all bounded,
null, convergent and absolutely p-summable sequence spaces, respectively, where
1 ≤ p < ∞.

A K-space is a sequence space X provided each of the maps pn : X → C defined
by pn(x) = xn is continuous for all n ∈ N . A BK-space is a Banach space X
which has the property of K-space [11].

The sequence spaces ℓ∞, c0 and c are BK−spaces according to their usual sup-
norm defined by ∥x∥∞ = sup

k∈N
|xk| and ℓp is a BK− space with its p-norm defined

by

∥x∥ℓp =
( ∞∑

k=0

|xk|p
) 1

p

where 1 ≤ p < ∞.
Let A = (ank) be an infinite matrix with complex entries, X and Y be two

sequence spaces ,and x = (xk) ∈ w. Then, the A- transform of x is defined by

(Ax)n =

∞∑
k=0

ankxk (1.1)
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and is assumed to be convergent for all n ∈ N, the domain of A is defined by

XA =
{
x = (xk) ∈ w : Ax ∈ X

}
(1.2)

which is also a sequence space, and the class of all infinite matrices A is defined by

(X : Y ) =
{
A = (ank) : Ax ∈ Y for all x ∈ X

}
[23]. An infinite matrix A = (ank) is called a triangle provided the entries ank = 0

for k > n and ann ̸= 0 for all n, k ∈ N.
The spaces of all bounded and convergent series are defined by the matrix domain

of the summation matrix S = (snk) as follows:

bs = (ℓ∞)S and cs = cS

respectively, where S = (snk) is defined by

snk =

1 , 0 ≤ k ≤ n

0 , k > n

for all n, k ∈ N. Here and in what follows, unless stated otherwise,any term with
negative subscript is assumed to be zero and the summation without limits runs
from 0 to ∞.

The theory of matrix transformation has a great importance in the theory of
summability which was obtained by Cesàro, Norlund, Borel,.... As a consequence of
this, lots of authors have constructed new sequence spaces by taking advantage of
the matrix domains of infinite matrices. For example: (ℓ∞)Nq and cNq in [22], Xp

and X∞ in [19], c0(∆), c(∆) and ℓ∞(∆) in [15], c0(∆2), c(∆2) and ℓ∞(∆2) in [12],
er0, erc in [1], erp and er∞in [2] and [18], er0(∆) and erc(∆) and er∞(∆) in [3],er0(∆m),
erc(∆

m) and er∞(∆m) in [20], er0(B
(m)), erc(B

(m)) and er∞(B(m)) in [13], er0(∆, p),
erc(∆, p) and e∞(∆, p) in [14], cλ0 (Gm) and cλ(Gm) in [5], ℓλp(Gm) and ℓλ∞(Gm) in [6].

In this paper, we construct three new sequence spaces br,s0 (G), br,sc (G) and br,s∞ (G)
and mention some inclusion relations, where G is generalized difference matrix.
Moreover, we give Schauder basis of the spaces br,s0 (G) and br,sc (G). Afterward,
we determine α−, β− and γ−duals of those spaces. Finally, we characterize some
matrix classes related to the space br,sc (G).

2. Some New Sequence Spaces
In this part, we give some informations concerning previous studies of Binomial
matrix and Euler matrix, and construct three new sequence spaces br,s0 (G), br,sc (G)
and br,s∞ (G). Furthermore, we show that the sequence spaces br,s0 (G), br,sc (G) and
br,s∞ (G) are linearly isomorphic to the spaces c0, c and ℓ∞, respectively and mention
some inclusion relations.

To define sequence spaces, the Euler matrix was first used by Altay, Başar and
Mursaleen in [1] and [2]. They defined the Euler sequence spaces er0 and erc and er∞
as follows:

er0 =

{
x = (xk) ∈ w : lim

n→∞

n∑
k=0

(n
k

)
(1− r)n−krkxk = 0

}
,
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erc =

{
x = (xk) ∈ w : lim

n→∞

n∑
k=0

(n
k

)
(1− r)n−krkxk exists

}
and

er∞ =

{
x = (xk) ∈ w : sup

n∈N

∣∣∣ n∑
k=0

(n
k

)
(1− r)n−krkxk

∣∣∣ < ∞

}
.

Afterward, Altay and Polat defined the sequence spaces er0(∆) and erc(∆) and
er∞(∆) in [3] and improved Altay, Başar and Mursaleen’s work as follows:

er0(∆) =

{
x = (xk) ∈ w : lim

n→∞

n∑
k=0

(n
k

)
(1− r)n−krk(xk − xk−1) = 0

}
,

erc(∆) =

{
x = (xk) ∈ w : lim

n→∞

n∑
k=0

(n
k

)
(1− r)n−krk(xk − xk−1) exists

}
and

er∞(∆) =

{
x = (xk) ∈ w : sup

n∈N

∣∣∣ n∑
k=0

(n
k

)
(1− r)n−krk(xk − xk−1)

∣∣∣ < ∞

}
,

where ∆ is difference matrix.
Recently, Bişgin has defined the Binomial sequence spaces br,s0 , br,sc and br,s∞

in [7], [8], [9] and [10], and has generalized Altay, Başar and Mursaleen’s work as
follows:

br,s0 =

{
x = (xk) ∈ w : lim

n→∞

1

(r + s)n

n∑
k=0

(n
k

)
sn−krkxk = 0

}
,

br,sc =

{
x = (xk) ∈ w : lim

n→∞

1

(r + s)n

n∑
k=0

(n
k

)
sn−krkxk exists

}
and

br,s∞ =

{
x = (xk) ∈ w : sup

n∈N

∣∣∣ 1

(r + s)n

n∑
k=0

(n
k

)
sn−krkxk

∣∣∣ < ∞

}
,

where the Binomial matrix Br,s = (br,snk) is defined by

br,snk =

 1
(s+r)n

(
n
k

)
sn−krk, 0 ≤ k ≤ n

0, k > n

for all n, k ∈ N,r, s ∈ R and s.r > 0. Unless stated otherwise, we henceforth suppose
that s.r > 0.

Here, we would like to touch on a point, if we take s + r = 1 , we obtain the
Euler sequence spaces er0 , erc , and er∞.

Afterward, Meng and Song defined the Binomial difference sequence spaces
br,s0 (∆), br,sc (∆) and br,s∞ (∆) in [17](in case of m = 1) and improved Bişgin’s work
as follows:

br,s0 (∆) =

{
x = (xk) ∈ w : lim

n→∞

1

(r + s)n

n∑
k=0

(n
k

)
sn−krk(xk − xk−1) = 0

}
,
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br,sc (∆) =

{
x = (xk) ∈ w : lim

n→∞

1

(r + s)n

n∑
k=0

(n
k

)
sn−krk(xk − xk−1) exists

}
and

br,s∞ (∆) =

{
x = (xk) ∈ w : sup

n∈N

∣∣∣ 1

(r + s)n

n∑
k=0

(n
k

)
sn−krk(xk − xk−1)

∣∣∣ < ∞

}
.

Now, we define the sequence spaces br,s0 (G), br,sc (G) and br,s∞ (G) by

br,s0 (G) =

{
x = (xk) ∈ w : lim

n→∞

1

(r + s)n

n∑
k=0

(n
k

)
sn−krk(uxk + vxk−1) = 0

}
,

br,sc (G) =

{
x = (xk) ∈ w : lim

n→∞

1

(r + s)n

n∑
k=0

(n
k

)
sn−krk(uxk + vxk−1) exists

}
and

br,s∞ (G) =

{
x = (xk) ∈ w : sup

n∈N

∣∣∣ 1

(r + s)n

n∑
k=0

(n
k

)
sn−krk(uxk + vxk−1)

∣∣∣ < ∞

}
,

where G = (gnk) is generalized difference matrix and is defined by

gnk =


u , k = n

v , k = n− 1

0 , otherwise

for all n, k ∈ N and u, v ∈ R \ {0}. Here, if we take u = 1 and v = −1, we obtain
the difference matrix ∆.

By considering the notation of (1.2) we can redefine the sequence spaces br,s0 (G),
br,sc (G) and br,s∞ (G), by the matrix domain of the generalized difference matrix G as
follows:

br,s0 (G) = (br,s0 )G, br,sc (G) = (br,sc )G and br,s∞ (G) = (br,s∞ )G. (2.1)
Moreover, by defining a triangle matrix Hr,s,u,v = (hr,s,u,v

nk ) = Br,sG such that

hr,s,u,v
nk =


sn−k−1rk

(r+s)n

[
us

(
n
k

)
+ vr

(
n

k+1

)]
, 0 ≤ k ≤ n

0 , k > n

for all n, k ∈ N , the sequence spaces br,s0 (G), br,sc (G), and br,s∞ (G) can be rearranged
by means of the Hr,s,u,v = (hr,s,u,v

nk ) matrix as follows:

br,s0 (G) = (c0)Hr,s,u,v , br,sc (G) = cHr,s,u,v and br,s∞ (G) = (ℓ∞)Hr,s,u,v . (2.2)

In this way ,for a given arbitrary sequence x = (xk), the Hr,s,u,v−transform of
x is defined by

yk = (Hr,s,u,vx)k =
1

(r + s)k

k∑
i=0

(k
i

)
sk−iri(uxi + vxi−1) (2.3)
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for all k ∈ N, or, by considering another representation , the sequence y = (yk) can
rewritten as follows:

yk = (Hr,s,u,vx)k =
1

(r + s)k

k∑
i=0

[
us

(
k

i

)
+ vr

(
k

i+ 1

)]
sk−i−1rixi (2.4)

for all k ∈ N.

Theorem 2.1. The sequence spaces br,s0 (G), br,sc (G), and br,s∞ (G) are BK−spaces
in accordance with their norms defined by

∥x∥br,s0 (G) = ∥x∥br,sc (G) = ∥x∥br,s∞ (G) = ∥(Hr,s,u,vx)k∥∞ = sup
k∈N

|(Hr,s,u,vx)k|.

Proof. we know already that the spaces c0 , c and ℓ∞ are BK-spaces with the norm
∥x∥∞ = sup

k∈N
|xk|, Hr,s,u,v = (hr,s,u,v

nk ) is a triangle matrix and the state (2.2) holds.

If we connect these results with Theorem 4.3.12 of Wilansky [23], we obtain that
the sequence spaces br,s0 (G), br,sc (G), and br,s∞ (G) are BK−spaces. This completes
the proof of the theorem.

Theorem 2.2. The sequence spaces br,s0 (G), br,sc (G), and br,s∞ (G) are linearly iso-
morphic to the sequence spaces c0, c and ℓ∞ , respectively, namely, br,s0 (G) ∼= c0 ,
br,sc (G) ∼= c and br,s∞ (G) ∼= ℓ∞.

Proof. To keep away from the usage of similar statements, the proof of theorem
is given for only the sequence space br,s0 (G). For this purpose, we should show
the existence of a linear bijection between the spaces br,s0 (G) and c0 .Consider the
transformation L defined by L : br,s0 (G) −→ c0, L(x) = Hr,s,u,vx. Then, according
to definition of the transformation L , it is obvious that L(x) = Hr,s,u,vx ∈ c0 for
all x ∈ br,s0 (G). Moreover, it is trivial that L is linear and x = 0 whenever L(x) = 0.
Therefore, L is injective.

For a given arbitrary sequence y = (yk) ∈ c0, we define the sequence x = (xn)
by

xn =
1

u

n∑
k=0

[
n∑

i=k

(
i

k

)(
− v

u

)n−i

(−s)i−k(r + s)kr−i

]
yk

for all n ∈ N. Then, we get

(Hr,s,u,vx)n =
1

(r + s)n

n∑
k=0

(n
k

)
sn−krk(uxk + vxk−1)

=
1

(r + s)n

n∑
k=0

(n
k

)
sn−krk

k∑
j=0

(
k

j

)
(−s)k−j(r + s)jr−kyj

= yn

for all n ∈ N , that is

lim
n→∞

(Hr,s,u,vx)n = lim
n→∞

yn = 0.

Therefore, we obtain that x = (xk) ∈ br,s0 (G) and L(x) = y , namely L is
surjective. Furthermore, we have for every x ∈ br,s0 (G) that

∥L(x)∥∞ = ∥Hr,s,u,vx∥∞ = ∥x∥br,s0 (G).
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So, L is norm preserving. Consequently, L is a linear bijection. This fact shows us
that the sequence spaces br,s0 (G) and c0 are linearly isomorphic. This completes the
proof.

Theorem 2.3. The inclusions ĉ0 ⊂ br,s0 (G), ĉ ⊂ br,sc (G) and ˆℓ∞ ⊂ br,s∞ (G) are
strict, where ĉ0, ĉ and ˆℓ∞ are defined in [16].

Proof. To avoid the repetition of similar expression, we give the proof of theorem
for only the inclusion ˆℓ∞ ⊂ br,s∞ (G).

For a given arbitrary sequence x = (xk) ∈ ˆℓ∞, we have that

∥x∥br,s∞ (G) = ∥Hr,s,u,vx∥∞

= sup
n∈N

∣∣∣ 1

(r + s)n

n∑
k=0

(n
k

)
sn−krk(uxk + vxk−1)

∣∣∣
≤ sup

n∈N
|uxn + vxn−1|. sup

n∈N

∣∣∣ 1

(r + s)n

n∑
k=0

(n
k

)
sn−krk

∣∣∣
= ∥x∥ ˆℓ∞

.

This means that x = (xk) ∈ br,s∞ (G), namely the inclusion ˆℓ∞ ⊂ br,s∞ (G) holds.

Now we define a sequence x = (xk) such that xk = 1
u

k∑
i=0

(
− v

u

)k−i(− s+r
r

)i for all

k ∈ N. Then Gx = ((−s+ r

r
)k) /∈ ℓ∞ but Hr,s,u,vx = ((− r

r + s
)k) ∈ ℓ∞. As a

consequence, x = (xk) ∈ br,s∞ (G)\ ˆℓ∞. This shows that the inclusion ˆℓ∞ ⊂ br,s∞ (G) is
strict. This completes the proof.

Theorem 2.4. The inclusions br,s0 (G) ⊂ br,sc (G) ⊂ br,s∞ (G) strictly hold.

Proof. It is well known that every null sequence is also convergent and every con-
vergent sequence is also bounded.So, the inclusions br,s0 (G) ⊂ br,sc (G) ⊂ br,s∞ (G) hold.

Now we define two sequences x = (xk) and y = (yk) such that xk =
1−

(
− v

u

)k+1

u+v

and yk = 1
u

k∑
i=0

(
− v

u

)k−i( − r+2s
r

)i for all k ∈ N. Then we can observe that

Hr,s,u,vx = e ∈ c\c0 and Hr,s,u,vy =
(
(−1)k

)
∈ ℓ∞\c, namely x = (xk) ∈

br,sc (G)\br,s0 (G)and y = (yk) ∈ br,s∞ (G)\br,sc (G). These two facts show that the
inclusions br,s0 (G) ⊂ br,sc (G) ⊂ br,s∞ (G) are strict. This completes the proof.

Theorem 2.5. c ⊂ br,s0 (G) strictly holds, whenever u+ v = 0.

Proof. It is obvious that Gx ∈ c0 whenever x ∈ c. Also, the Binomial matrix is
regular when r.s > 0. If we combine these two facts, we obtain that Br,sGx ∈ c0
whenever x ∈ c, namely x ∈ br,s0 (G) whenever x ∈ c. So , the inclusion c ⊂ br,s0 (G)

holds. Now we define a sequence x = (xk) such that xk = (−1)k
[
1−

(
v
u

)k+1

u−v

]
for

allk ∈ N. Then, we can see that x = (xk) /∈ c but Hr,s,u,vx = ((
s− r

s+ r
)k) ∈ c0,

that is x ∈ br,s0 (G). This result shows that the inclusion c ⊂ br,s0 (G) is strict. This
completes the proof.
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3. The Schauder Basis And α−, β− and γ−Duals
In this part, we give the Schauder basis of the Binomial difference sequence spaces
br,s0 (G) and br,sc (G). Moreover we determine α−, β− and γ− duals of the sequence
spaces br,s0 (G) , br,sc (G) and br,s∞ (G) .

A sequence u = (uk) in the sequence space X is called a Schauder basis for a
normed space (X, ∥.∥X) if, for every x = (xk) ∈ X there exists a unique sequence
(λk) of scalars such that x =

∑
k

λkuk; i.e. such that

lim
n→∞

∥∥∥x−
n∑

k=0

λkuk

∥∥∥
X

−→ 0.

Theorem 3.1. Let ξk = (Hr,s,u,vx)k for all k ∈ N. For all fixed k ∈ N, con-

sider the sequences d = (dk) defined by dk =
1−

(
− v

u

)k+1

u+v and d(k)(r, s, u, v) ={
d
(k)
n (r, s, u, v)

}
n∈N

defined by

d(k)n (r, s, u, v) =


0, 0 ≤ n < k,

1
u

n∑
i=k

(i
k

)(
− v

u

)n−i
(−s)i−k(r + s)kr−i, k ≤ n.

Then the following hold:
(a) The Schauder basis of the sequence space br,s0 (G) is the sequence {d(k)(r, s, u, v)}k∈N

and all x = (xk) ∈ br,s0 (G) can be uniquely written

x =
∑
k

ξkd
(k)(r, s, u, v).

(b) The Schauder basis of the sequence space br,sc (G) is the set
{
d, d(0)(r, s, u, v),

d(1)(r, s, u, v), . . .
}

and all x = (xk) ∈ br,sc (G) can be uniquely written

x = ld+
∑
k

[ξk − l]d(k)(r, s, u, v),

where l = lim
k→∞

(Hr,s,u,vx)k.

Proof. One can easily see that Hr,s,u,vd(k)(r, s, u, v) = e(k) ∈ c0 for all k ∈ N,
where e(k) is a sequence with 1 in the k th place and zeros elsewhere. Then we
conclude that the inclusion {d(k)(r, s, u, v)} ⊂ br,s0 (G) holds .

Let x = (xk) ∈ br,s0 (G). We write

x[m] =

m∑
k=0

ξkd
(k)(r, s, u, v)

for all m ∈ N. Then, by applying the matrix Hr,s,u,v = (hr,s,u,v
nk ) to x[m], we get

Hr,s,u,vx[m] =

m∑
k=0

ξkH
r,s,u,vd(k)(r, s, u, v) =

m∑
k=0

(Hr,s,u,vx)ke
(k)
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and

{Hr,s,u,v(x− x[m])}n =

0 , 0 ≤ n ≤ m

(Hr,s,u,vx)n , n > m

for all n,m ∈ N. For every ϵ > 0 there exist m0 = m
(ϵ)
0 ∈ N such that

|(Hr,s,u,vx)m| < ϵ

2

for all m0 ≤ m. On account of this

∥x− x[m]∥br,s0 (G) = sup
m≤n

∣∣∣(Hr,s,u,vx)n| ≤ sup
m0≤n

∣∣∣(Hr,s,u,vx)n

∣∣∣ ≤ ϵ

2
< ϵ

for all m0 ≤ m. This gives us that

x =
∑
k

ξkd
(k)(r, s, u, v).

Now, we should show the uniqueness of this representation. We suppose that
there exist an another representation of x = (xk) such that

x =
∑
k

µkd
(k)(r, s, u, v).

Then, by the continuity of the transformation, L defined in the proof of theorem
2.2 , we have

(Hr,s,u,vx)n =
∑
k

µk

[
Hr,s,u,vd(k)(r, s, u, v)

]
n
=

∑
k

µke
(k)
n = µn

for all n ∈ N. This equality is in contradiction with the fact that (Hr,s,u,vx)n = ξn
for all n ∈ N. Therefore, all x = (xk) ∈ br,s0 (G) has a unique representation.

(b) From the part (a) we know that
{
d(k)(r, s, u, v)

}
⊂ br,s0 (G) and also Hr,s,u,vd =

e ∈ c. Thus, the inclusion {d, d(k)(r, s, u, v)} ⊂ br,sc (G) clearly holds. Given an ar-
bitrary x = (xk) ∈ br,sc (G), we constract a sequence y = (yk) such that y = x − ld
, where l = lim

k→∞
ξk. Then it is clear that y = (yk) ∈ br,s0 (G) and by the part

(a) y = (yk) has a unique representation. This leads us to x = (xk) has a unique
representation of the form

x = ld+
∑
k

[ξk − l]d(k)(r, s, u, v).

This completes the proof of the theorem.
If we combine Theorem 2.1 and Theorem 3.1, we can give the next corollary.

Corollary 3.1. The sequence spaces br,s0 (G) and br,sc (G) are separable.

A set defined by

M(X,Y ) =
{
a = (ak) ∈ w : ax = (akxk) ∈ Y for all x = (xk) ∈ X

}
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is called the multiplier space of the sequence spaces X and Y . Then, the α−, β− and
γ−duals of the sequence space X are defined by the aid of the notion of multiplier
space such that

Xα = M(X, ℓ1), Xβ = M(X, cs) and Xγ = M(X, bs),

respectively.
Now, we continue with to quote lemma from Stieglitz and Tietz [21] which are

needed in the next.
sup
K∈F

∑
n

∣∣∣ ∑
k∈K

ank

∣∣∣ < ∞, (3.1)

sup
n∈N

∑
k

|ank| < ∞, (3.2)

lim
n→∞

∑
k

|ank| =
∑
k

| lim
n→∞

ank|, (3.3)

lim
n→∞

ank = µk for all k ∈ N, (3.4)

lim
n→∞

∑
k

ank = µ, (3.5)

where F represents the set of all finite subsets of N.

Lemma 3.1 ( [21]). Let A = (ank) be an infinite matrix. Then the following
statements hold:

(i) A = (ank) ∈ (c0 : ℓ1) = (c : ℓ1) = (ℓ∞ : ℓ1) ⇔ (3.1) holds
(ii) A = (ank) ∈ (c0 : ℓ∞) = (c : ℓ∞) = (ℓ∞ : ℓ∞) ⇔ (3.2) holds

(iii) A = (ank) ∈ (c0 : c) ⇔ (3.2) and (3.4) hold
(iv) A = (ank) ∈ (c : c) ⇔ (3.2), (3.4) and (3.5) hold
(v) A = (ank) ∈ (ℓ∞ : c) ⇔ (3.3) and (3.4) hold

(vi) A = (ank) ∈ (c : c0) ⇔ (3.2), (3.4) and (3.5) hold with µk = 0,∀k ∈ N and
µ = 0

Theorem 3.2. The α- dual of the Binomial sequence spaces br,s0 (G) , br,sc (G) and
br,s∞ (G) is the set

dr,s,u,v1 =

{
a=(ak)∈w : sup

K∈F

∑
n

∣∣∣ ∑
k∈K

1

u

n∑
i=k

(
i

k

)(
− v

u

)n−i

(−s)i−k(r+s)kr−ian

∣∣∣<∞

}
.

Proof. For given a = (an) ∈ w, by bearing in mind the sequence that is defined
in the proof of Theorem 2.2, we can write

anxn=

n∑
k=0

[ 1
u

n∑
i=k

(
i

k

)(
− v

u

)n−i

(−s)i−k(r+s)kr−ian

]
yk=

n∑
k=0

ur,s,u,v
nk yk=(Ur,s,u,vy)n

for all n ∈ N. Then, ax = (anxn) ∈ ℓ1 whenever x = (xk) ∈ br,s0 (G) , br,sc (G)
or br,s∞ (G) if and only if Ur,s,u,vy ∈ ℓ1 whenever y = (yk) ∈ c0 , c or ℓ∞. This
shows us that a = (an) ∈

{
br,s0 (G)

}α

=
{
br,sc (G)

}α

=
{
br,s∞ (G)

}α

if and only if
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Ur,s,u,v ∈ (c0 : ℓ1) = (c : ℓ1) = (ℓ∞ : ℓ1). By combining this result and Lemma 3.1
(i), we deduce that

a=(an)∈
{
br,s0 (G)

}α

⇔ sup
K∈F

∑
n

∣∣∣∑
k∈K

1

u

n∑
i=k

(
i

k

)(
− v

u

)n−i

(−s)i−k(r+s)kr−ian

∣∣∣<∞.

This means that
{
br,s0 (G)

}α

=
{
br,sc (G)

}α

=
{
br,s∞ (G)

}α

= dr,s,u,v1 . This completes
the proof of theorem.

Theorem 3.3. Let four sets dr,s,u,v2 , dr,s,u,v3 , dr,s,u,v4 and dr,s,u,v5 be given as follows:

dr,s,u,v2 =

{
a = (ak) ∈ w : sup

n∈N

∑
k

|vr,s,u,vnk | < ∞

}
,

dr,s,u,v3 =
{
a = (ak) ∈ w : lim

n→∞
vr,s,u,vnk exists for all k ∈ N

}
,

dr,s,u,v4 =

{
a = (ak) ∈ w : lim

n→∞

∑
k

|vr,s,u,vnk | =
∑
k

| lim
n→∞

vr,s,u,vnk |

}
and

dr,s,u,v5 =

{
a = (ak) ∈ w : lim

n→∞

∑
k

vr,s,u,vnk exists

}
,

where the matrix V r,s,u,v = (vr,s,u,vnk ) is defined by means of the sequence a = (an)
by

vr,s,u,vnk =


1
u

n∑
i=k

i∑
j=k

(
j
k

)(
− v

u

)i−j

(−s)j−k(r + s)kr−jai , 0 ≤ k ≤ n

0 , k > n

for all n, k ∈ N. Then, the following hold:

(i)
{
br,s0 (G)

}β

= dr,s,u,v2 ∩ dr,s,u,v3 ;

(ii)
{
br,sc (G)

}β

= dr,s,u,v2 ∩ dr,s,u,v3 ∩ dr,s,u,v5 ;

(iii)
{
br,s∞ (G)

}β

= dr,s,u,v3 ∩ dr,s,u,v4 ;

(iv)
{
br,s0 (G)

}γ

=
{
br,sc (G)

}γ

=
{
br,s∞ (G)

}γ

= dr,s,u,v2 .

Proof. Because of the parts (ii), (iii) and (iv) of theorem can be proved by using
a similar way, we give the proof of theorem for only the part (i). Let a = (an) ∈ w
be given. Then by taking into account the sequence x = (xk) defined in the proof
of Theorem 2.2 , we obtain

n∑
k=0

akxk =

n∑
k=0

[ 1
u

k∑
i=0

k∑
j=i

(
j

i

)(
− v

u

)k−j

(−s)j−i(r + s)ir−jyi

]
ak

=

n∑
k=0

[ 1
u

n∑
i=k

i∑
j=k

(
j

k

)(
− v

u

)i−j

(−s)j−k(r + s)kr−jai

]
yk = (V r,s,u,vy)n
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for all n, k ∈ N. Then, ax = (anxn) ∈ cs whenever x = (xk) ∈ br,s0 (G) if and only
if V r,s,u,vy ∈ c whenever y ∈ c0. This result show us that a = (ak) ∈

{
br,s0 (G)

}β

if and only if V r,s,u,v ∈ (c0 : c). By combining this result and Lemma 3.1 (iii), we
deduce that a = (ak) ∈

{
br,s0 (G)

}β

if and only if

sup
n∈N

∑
k

|vr,s,u,vnk | < ∞

and
lim
n→∞

vr,s,u,vnk exists, for all k ∈ N

namely,
{
br,s0 (G)

}β

= dr,s,u,v2 ∩ dr,s,u,v3 . This completes the proof of theorem.

4. The Matrix Transformations
In this part, we characterize some matrix classes related to the Binomial difference
sequence space br,sc (G).

Now we give a lemma which is needed in the next corollaries.

Lemma 4.1 ( [4]). Let X,Y be any two sequence spaces, A be an infinite matrix
and E be a triangle matrix. Then, A ∈ (X : YE) ⇔ EA ∈ (X : Y ).

For simplicity of notation, we use the equalities below throughout the section 4.

dr,s,u,vnk =
1

u

∞∑
i=k

i∑
j=k

(
j

k

)(
− v

u

)i−j

(−s)j−k(r + s)kr−jani

for all n, k ∈ N.

Theorem 4.1. A ∈ (br,sc (G) : ℓ∞) if and only if

sup
n∈N

∑
k

∣∣∣dr,s,u,vnk

∣∣∣ < ∞, (4.1)

dr,s,u,vnk exist for all n, k ∈ N, (4.2)

sup
m∈N

∑
k

∣∣∣ 1
u

m∑
i=k

i∑
j=k

(
j

k

)(
− v

u

)i−j

(−s)j−k(r + s)kr−jani

∣∣∣ < ∞ ( m ∈ N), (4.3)

lim
m→∞

1

u

m∑
i=k

i∑
j=k

(
j

k

)(
− v

u

)i−j

(−s)j−k(r + s)kr−jani exist for all m ∈ N. (4.4)

Proof. Assume that A ∈ (br,sc (G) : ℓ∞). Then, it is clear that Ax exists and be-
longs to ℓ∞ for every x = (xk) ∈ br,sc (G).This leads us to {ank}k∈N ∈

{
br,sc (G)

}β

for
all n ∈ N. By combining this fact and Theorem 3.3 (ii), we conclude that the con-

ditions (4.2), (4.3) and (4.4) hold. If we consider the fact that x =
(

1−
(
− v

u

)k+1

u+v

)
∈

br,sc (G) and Ax ∈ ℓ∞ for all x ∈ br,sc (G), one can see that the condition (4.1) holds.
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On the contrary assume that the conditions (4.1)-(4.4) hold.Let us take an ar-
bitrary x = (xk) ∈ br,sc (G) and take into account the equality

m∑
k=0

ankxk =

m∑
k=0

[ 1
u

k∑
i=0

k∑
j=i

(
j

i

)(
− v

u

)k−j

(−s)j−i(r + s)ir−jyi

]
ank,

m∑
k=0

ankxk =
1

u

m∑
k=0

m∑
i=k

[ i∑
j=k

(
j

k

)(
− v

u

)i−j

(−s)j−k(r + s)kr−j
]
aniyk (4.5)

for all m,n ∈ N. Under our assumption if we take limit (4.5) side by side as m → ∞
we obtain that ∑

k

ankxk =
∑
k

dr,s,u,vnk yk (4.6)

for all n ∈ N.Also by taking sup-norm (4.6) side by side, we have

∥Ax∥∞ ≤ sup
n∈N

∑
k

|dr,s,u,vnk ||yk| ≤ ∥y∥∞. sup
n∈N

∑
k

|dr,s,u,vnk | < ∞.

Therefore Ax ∈ ℓ∞, namely A ∈ (br,sc (G) : ℓ∞). This completes the proof of
theorem.

Theorem 4.2. A ∈ (br,sc (G) : c) if and only if the conditions (4.1) - (4.4) hold, and

lim
n→∞

∑
k

dr,s,u,vnk = λ, (4.7)

lim
n→∞

dr,s,u,vnk = λk for all k ∈ N. (4.8)

Proof. Assume that A ∈ (br,sc (G) : c). It is known that the inclusion c ⊂ ℓ∞
holds. By combining the fact and Theorem 4.1, we deduce that the conditions
(4.1)–(4.4) hold. Also it is obvious that Ax exists and belongs to c for all x =

(xk) ∈ br,sc (G). Under this fact, if we choose two sequences x =
(

1−
(
− v

u

)k+1

u+v

)
and

x = d(k)(r, s, u, v) , we obtain that the conditions (4.7) and (4.8) hold, where the
sequence x = d(k)(r, s, u, v) is defined in the Theorem 3.1.

On the contrary, for a given x = (xk) ∈ br,sc (G), assume that the conditions
(4.1)–(4.4), (4.7) and (4.8) hold. Then by considering Theorem 3.3 (ii), one can say
that {ank}k∈N ∈

{
br,sc (G)

}β

for all n ∈ N. This implies that Ax exists. From the
conditions (4.1) and (4.8), we deduce that

m∑
k=0

|λk| ≤ sup
n∈N

∑
k

|dr,s,u,vnk | < ∞

for every m ∈ N. This shows us that (λk) ∈ ℓ1. So the series
∑
k

λkyk absolute
converges.

Now, we substitute ank − λk instead of ank in the condition (4.6). Then, we
have

∑
k

(ank−λk)xk =
∑
k

1

u

∞∑
i=k

k∑
j=i

(
j

i

)(
− v

u

)k−j

(−s)j−i(r+s)ir−j (ani−λi)yk (4.9)
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for all n ∈ N. If we combine (4.9) and Lemma 3.1 (vi), we obtain

lim
n→∞

∑
k

(ank − λk)xk = 0. (4.10)

Lastly, if we unite the condition (4.10) and the fact (λkyk) ∈ ℓ1, we conclude
that Ax ∈ c ,that is A ∈ (br,sc (G) : c). This completes the proof of theorem.

Now we can give some more results by taking into account the Lemma 4.1.

Corollary 4.1. Let us take E = (enk) instead of A = (ank) in the needed ones in
Theorems 4.1 and 4.2, where E = (enk) is defined by

enk = ank − an+1,k

for all n, k ∈ N. Then, the necessary and sufficient conditions in order for A = (ank)
to belong to any one of the classes (br,sc (G) : ℓ∞(∆)) and (br,sc (G) : c(∆)) are
obtained.

Corollary 4.2. Let us take Zσ,µ = (zσ,µnk ) instead of A = (ank) in the needed ones
in Theorems 4.1 and 4.2, where Zσ,µ = (zσ,µnk ) is defined by

zσ,µnk =
1

(σ + µ)n

n∑
j=0

(n
j

)
µn−jσjajk

for all n, k ∈ N, where σ, µ ∈ R and σ.µ > 0 Then, the necessary and sufficient
conditions in order for A = (ank) to belong to any one of the classes (br,sc (G) : bσ,µ∞ )
and (br,sc (G) : bσ,µc ) are obtained.

Corollary 4.3. Let us take S = (snk) instead of A = (ank) in the needed ones in
Theorems 4.1 and 4.2, where S = (snk) is defined by

snk =

n∑
j=0

ajk

for all n, k ∈ N. Then, the necessary and sufficient conditions in order that A =
(ank) belongs to any of the classes (br,sc (G) : bs) and (br,sc (G) : cs) are obtained.

5. Conclusion
Since the double band matrix G reduces, in the special case u = 1, v = −1, to the
usual difference matrix ∆; our results are more general and more comprehensive
than the corresponding results of Bişgin [7–10] and Meng and Song [17](in case of
m = 1).
Acknowledgements. We would like to express our thanks to the anonymous re-
viewers for their valuable comments.
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