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1. Introduction

In 1940, S.M. Ulam [15] raised the question concerning the stability of group homo-
morphisms: Let G be a group and let G′ be a metric group with the metric d(·, ·).
Given ε > 0, does there exist a δ > 0 such that if a mapping f : G → G′ satisfies
the inequality

d(f(xy), f(x)f(y)) < δ

for all x, y ∈ G, then there exists a homomorphism F : G→ G′ with d(f(x), F (x)) <
ε for all x ∈ G? D.H. Hyers [3] has solved the problem of Ulam for the case of
additive mappings in 1941. The result was generalized by T. Aoki [1] in 1950, by
Th.M. Rassias [12] in 1978, by J.M. Rassias [9] in 1992, and by P. Gǎvruta [2]
in 1994. Over the past few decades, many mathematicians have published the
generalized Hyers–Ulam stability results of various functional equations [4, 8, 13].

Now, we recall some basic definitions and remarks of modular spaces with mod-
ular functions, which are primitive notions corresponding to norms or metrics, as
in the followings [6, 7, 14,16].

Definition 1.1. Let χ be a real linear space.

(a) A function ρ : χ→ [0,∞] is called a modular if for arbitrary x, y ∈ χ,

(1) ρ(x) = 0 if and only if x = 0,

(2) ρ(αx) = ρ(x) for every scalar α with |α| = 1,

(3) ρ(αx+ βy) ≤ ρ(x) + ρ(y) for any scalars α, β, where α+ β = 1 and α, β ≥ 0,
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(b) alternatively, if (3) is replaced by

(3)’ ρ(αx + βy) ≤ αρ(x) + βρ(y) for every scalars α, β, where α + β = 1 and
α, β ≥ 0,

then we say that ρ is a convex modular. Now, we extend the properties (3) and (3)’
in real fields to complex scalar field acting on the space χ, as follows :

(4) ρ(αx+ βy) ≤ ρ(x) + ρ(y) for α, β ∈ C with |α|+ |β| = 1,

(4)’ ρ(αx+ βy) ≤ |α|ρ(x) + |β|ρ(y) for α, β ∈ C with |α|+ |β| = 1.

We remark a modular ρ defines a corresponding modular space, i.e., the linear
space χρ given by

χρ = {x ∈ χ : ρ(λx)→ 0 as λ→ 0}.

Let ρ be a convex modular. Then, the modular space χρ can be equipped with a
norm called the Luxemburg norm, defined by

‖x‖ρ = inf{λ > 0 : ρ
(x
λ

)
≤ 1}.

If ρ is a modular on χ, we note that ρ(tx) is an increasing function in t ≥ 0 for
each fixed x ∈ χ, that is, ρ(ax) ≤ ρ(bx) whenever 0 ≤ a < b. In addition, if ρ is a
convex modular on χ, then ρ(αx) ≤ αρ(x) for all x ∈ χ and 0 ≤ α ≤ 1. Moreover,
we see that ρ(αx) ≤ |α|ρ(x) for all x ∈ χ and |α| ≤ 1.

Remark 1.1. (a) In general, we note that ρ
(∑n

i=1 αixi
)
≤
∑n
i=1 αiρ(xi) for all

xi ∈ χ and αi ≥ 0 (i = 1, · · · , n) whenever 0 <
∑n
i=1 αi ≤ 1 [6].

(b) Consequently, we lead to ρ
(∑n

i=1 αixi
)
≤
∑n
i=1 |αi|ρ(xi) for all xi ∈ χ and

0 <
∑n
i=1 |αi| ≤ 1, where αi ∈ C.

Definition 1.2. Let χρ be a modular space and let {xn} be a sequence in χρ.
Then,

(1) {xn} is ρ-convergent to x ∈ χρ and write xn
ρ−→ x if ρ(xn−x)→ 0 as n→∞.

(2) {xn} is called ρ-Cauchy in χρ if ρ(xn − xm)→ 0 as n,m→∞.

(3) A subset K of χρ is called ρ-complete if and only if any ρ-Cauchy sequence is
ρ-convergent to an element in K.

They say that the modular functional ρ has the Fatou property if and only
if ρ(x) ≤ lim infn→∞ ρ(xn) whenever the sequence {xn} is ρ-convergent to x. A
modular ρ is said to satisfy the ∆2-condition if there exists κ > 0 such that ρ(2x) ≤
κρ(x) for all x ∈ χρ.

In 2014, G. Sadeghi [14] has established generalized Hyers–Ulam stability via
the fixed point method of a generalized Jensen functional equation f(rx + sy) =
rg(x) + sh(y) in convex modular spaces with the Fatou property satisfying the ∆2-
condition with 0 < κ ≤ 2. In [16], the authors have presented the generalized Hyers–
Ulam stability of quadratic functional equations via the extensive studies of fixed
point theory in the framework of modular spaces whose modulars are convex, lower
semicontinuous but do not satisfy any relatives of ∆2-conditions (see also [5, 7]).
Recently, the authors [6] have investigated stability theorems of functional equations
in modular spaces without using the Fatou property and ∆2-condition.
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Now, we introduce the concept of convex modular algebras. We say that χρ
is called a convex modular algebra if the fundamental space χ is an algebra with
convex modular ρ subject to ρ(ab) ≤ ρ(a)ρ(b) for all a, b ∈ χ. A subset K of a convex
modular algebra χρ is called ρ-complete if and only if any ρ-Cauchy sequence in
K is ρ-convergent to an element in K. In addition, a convex modular algebra
χρ is a convex modular ∗-algebra if the convex modular ρ satisfies ρ(z∗) = ρ(z)
for all z ∈ χρ. We say that a linear mapping f is called a Lie ∗-derivation if
f([x, y]) = [f(x), y] + [x, f(y)] and f(z∗) = f(z)∗ for all vectors x, y, z, where
[a, b] = ab− ba.

Now, we consider a mapping f : X → Y satisfying the following functional
equation

∑
1≤i1<···<im≤n

1≤kl(6=ij ,∀j∈{1,··· ,m})≤n

f

(∑m
j=1 xij

m
+

n−m∑
l=1

xkl

)
=
n−m+ 1

n

(
n

m

) n∑
i=1

f(xi) (1.1)

for all x1, · · · , xn ∈ X, where n,m ∈ N are fixed integers with n ≥ 2, 1 ≤ m ≤ n,
which has been introduced in [11].

In this article, we first investigate generalized Hyers–Ulam stability via direct
method of the equation (1.1) using necessarily ∆µ-condition without using the Fatou
property in ρ-complete convex modular algebras, where the modular ρ is said to
satisfy ∆µ-condition if there exists κ > 0 such that ρ(µx) ≤ κρ(x) for all x ∈ χρ,
µ := n−m+1, and then present alternatively generalized Hyers–Ulam stability via
direct method of the equation (1.1) in ρ-complete convex modular algebras without
using both the Fatou property and ∆2-condition.

2. Generalized Hyers–Ulam Stability of Eq. (1.1)

Throughout the paper, χρ will be denoted by ρ-conplete convex modular ∗-algebras.
In this section, we investigate the stability results of Lie ∗-derivation associated with
the equation (1.1). First of all, we introduce the following lemma which has been
presented [11].

Lemma 2.1. Let X and Y be linear spaces. For each m with 1 ≤ m ≤ n, a
mapping f : X → Y satisfies the equation (1.1) for all n ≥ 2 if and only if f − f(0)
is Cauchy additive, where f(0) = 0 if m < n.

For notational convenience, we let the difference operators Dλf of equation (1.1)
and LDf(x, y) of Lie derivation as follows:

Dλf(x1, · · · , xn) :=
∑

1≤i1<···<im≤n

1≤kl(6=ij ,∀j∈{1,··· ,m})≤n

f

(∑m
j=1 λxij

m
+

n−m∑
l=1

λxkl

)

−n−m+ 1

n

(
n

m

)
λ

n∑
i=1

f(xi),

LDf(x, y) := f([x, y])− [f(x), y]− [x, f(y)]

for all x, y in a linear space X and λ ∈ Λ := {λ ∈ C : |λ| = 1}.
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We observe that if the modular ρ satisfies the ∆µ-condition, then κ ≥ 1 for
nontrivial modular ρ, and κ ≥ µ for nontrivial convex modular ρ, where µ :=
n−m+ 1 ≥ 2. See references [6, 16].

Now, we present a generalized Hyers–Ulam stability of the equation (1.1) using
necessarily ∆µ-condition without Fatou property, where µ := n−m+ 1 ≥ 2.

Theorem 2.1. Let χρ be a ρ-complete convex modular ∗-algebra with ∆µ-condition.
Suppose there exist two functions ϕ1 : χn+1

ρ → [0,∞), ϕ2 : χ2
ρ → [0,∞) for which a

mapping f : χρ → χρ satisfies the following combined functional inequalities

ρ(Dλf(x1, · · · , xn) + f(z∗)− f(z)∗) ≤ ϕ1(x1, · · · , xn, z), (2.1)

ρ(LDf(x, y)) ≤ ϕ2(x, y),

such that

Ψ(x1, · · · , xn, z) :=

∞∑
j=1

κ2j

µj
ϕ1(

x1
µj
, · · · , xn

µj
,
z

µj
) < ∞, (2.2)

lim
s→∞

κ2sϕ2(
x

µs
,
y

µs
) = 0

for all x1, · · · , xn, x, y, z ∈ χρ and λ ∈ Λ. Then there exists a unique Lie ∗-
derivation F1 : χρ → χρ satisfying the equation (1.1) and

ρ(f(x)− F1(x)) ≤ κ(
n
m

)
µ2

Ψ(x, · · · , x, 0) (2.3)

for all x ∈ χρ.

Proof. First, we remark that since
∑∞
j=1

κ2j

µj ϕ1(0, · · · , 0) = Ψ(0, · · · , 0) <∞ and

ρ(Dλf(0, · · · , 0)) ≤ ϕ1(0, · · · , 0), we lead to ϕ1(0, · · · , 0) = 0, Dλf(0, · · · , 0) = 0
and so f(0) = 0. Putting xi = x, z = 0 and λ = 1 in (2.7), we obtain

ρ(D1f(x, · · · , x)) = ρ(

(
n

m

)
f(µx)−

(
n

m

)
µf(x)) ≤ φ1(x, · · · , x, 0), (2.4)

which yields

ρ(f(µx)− µf(x)) ≤ 1(
n
m

)φ1(x, · · · , x, 0), (2.5)

ρ
(
µf
(x
µ

)
− f(x)

)
≤ 1(

n
m

)φ1(x
µ
, · · · , x

µ
, 0
)

for all x ∈ χρ. Using the convexity of the modular ρ and ∆µ-condition, one obtains
the following inequality

ρ
(
f(x)− µsf

( x
µs

))
≤ ρ

( s−1∑
j=0

1

µj+1

(
µ2j+1f

( x
µj

)
− µ2j+2f

( x

µj+1

)))

≤
s−1∑
j=0

κ2j+1(
n
m

)
µj+1

ϕ1

( x

µj+1
, · · · , x

µj+1
, 0
)

=

s∑
j=1

κ2j−1(
n
m

)
µj
ϕ1

( x
µj
, · · · , x

µj
, 0
)
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≤ 1(
n
m

)
κ

s∑
j=1

κ2j

µj
ϕ1

( x
µj
, · · · , x

µj
, 0
)

for all x ∈ χρ. Now, replacing x by µ−tx in above inequality, we have

ρ
(
µtf
( x
µt

)
− µs+tf

( x

µs+t

))
≤ κtρ

(
f
( x
µt

)
− µsf

( x

µs+t
, 0
))

≤ κt
1(
n
m

)
κ

s∑
j=1

κ2j

µj
ϕ1

( x

µj+t
, · · · , x

µj+t
, 0
)

≤ κtµt

κ2t
(
n
m

)
κ

s∑
j=1

κ2(j+t)

µj+t
ϕ1

( x

µj+t
, · · · , x

µj+t
, 0
)

=
µt

κt
(
n
m

)
κ

s+t∑
j=t+1

κ2j

µj
ϕ1

( x
µj
, · · · , x

µj
, 0
)

which converges to zero as t → ∞ by the assumption (2.2). Thus, the sequence
{µsf( xµs )} is ρ-Cauchy for all x ∈ χρ and so it is ρ-convergent in χρ since the space
χρ is ρ-complete. Thus, we may define a mapping F1 : χρ → χρ as

F1(x) := ρ− lim
s→∞

µsf
( x
µs

)
⇐⇒ lim

s→∞
ρ
(
µsf

( x
µs

)
− F1(x)

)
= 0,

for all x ∈ χρ.
Claim 1 : F1 is an additive mapping with the estimation (2.3) near f . By

∆µ-condition without using the Fatou property, we can see the following inequality

ρ(f(x)− F1(x)) ≤ 1

µ
ρ
(
µf(x)− µ · µsf

( x
µs

)
+ µ · µsf

( x
µs

)
− µF1(x)

)
≤ κ

µ
ρ
(
f(x)− µsf

( x
µs

))
+
κ

µ
ρ
(
µsf

( x
µs

)
− F1(x)

)
≤ κ

µ
· 1(

n
m

)
µ

s∑
j=1

κ2j

µj
ϕ1

( x
µj
, · · · , x

µj
, 0
)

+
κ

µ
ρ
(
µsf

( x
µs

)
− F1(x)

)
which yields the approximation (2.3) by taking s→∞. Now, setting (x1, · · · , xn, z) :=
(x1

µs , · · · , xn

µs , 0) in (2.1) and multiplying the resulting inequality by µs, we get

ρ(µsDλf(µ−sx1, · · · , µ−sxn) ≤ κsϕ1(µ−sx1, · · · , µ−sxn, 0)

≤ κsϕ1(µ−sx1, · · · , µ−sxn, 0) · κ
s

µs

=
κ2s

µs
ϕ1(µ−sx1, · · · , µ−sxn, 0)

which tends to zero as s→∞ for all x1, · · · , xn ∈ χρ. Thus, it follows from Remark
1.1 (b) that

ρ(
1

R
DλF1(x1, · · · , xn)) (2.6)

= ρ
( 1

R
DλF1(x1, · · · , xn)− µs

R
Dλf

(x1
µs
, · · · , λxn

µs

)
+
µs

R
Dλf

(x1
µs
, · · · , xn

µs

))
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≤ 1

R

∑
1≤i1<···<im≤n

1≤kl( 6=ij ,∀j∈{1,··· ,m})≤n

ρ
(
µsf

(∑m
j=1 λ

xij

µs

m
+

n−m∑
l=1

λ
xkl
µs

)

−F1

(∑m
j=1 λxij

m
+

n−m∑
l=1

λxkl

))
+
n−m+ 1

Rn

(
n

m

) n∑
i=1

ρ
(
µsf

( xi
µs

)
− F1(xi)

)
+

κ2s

µsR
ϕ1

(x1
µs
, · · · , xn

µs
, 0
)

for all x1, · · · , xn ∈ χρ, λ ∈ Λ and all positive integers s, where R :=
(
n
m

)
(n −

m + 2) + 2 is a fixed real number. Taking the limit as s → ∞, one obtains
ρ( 1
RDλF1(x1, · · · , xn)) = 0, and thus DλF1(x1, · · · , xn) = 0 for all x1, · · · , xn ∈ χρ.

Hence F1 : χρ → χρ satisfies the equation (1.1), and so it is additive.
Claim 2: F1 is a linear mapping. By (2.6), we have DλF1(x, · · · , x) = 0, which

yields F1(λx) = λF1(x) for all x ∈ χρ and λ ∈ Λ. Next, for any λ = λ1 + iλ2 ∈ C
where λ1, λ2 ∈ R, let γ1 := λ1 − [λ1] and γ2 := λ2 − [λ2], where [λ] denotes the
greatest integer part of λ less than or equal to λ. Then one can find unit complex
numbers γi,1, γi,2 ∈ Λ such that γi =

λi,1+λi,2

2 (i = 1, 2). So, it follows that

F1(λx) = F1(λ1x) + iF1(λ2x)

= ([λ1]F1(x) + F1(γ1x)) + i([λ2]F1(x) + F1(γ2x))

=
(

[λ1]F1(x) +
1

2
F1(γ1,1x+ γ1,2x)

)
+ i
(

[λ2]F1(x) +
1

2
F1(γ2,1x+ γ2,2x)

)
=
(

[λ1]F1(x) +
1

2
F1(γ1,1x) +

1

2
F1(γ1,2x)

)
+i
(

[λ2]F1(x) +
1

2
F1(γ2,1x) +

1

2
F1(γ2,2x)

)
= λ1F1(x) + iλ2F1(x) = λF1(x)

for all x ∈ χρ. Hence F1 is a linear mapping.
Claim 3: F1 is a Lie ∗-derivation. From the last inequality in (2.2) and the last

condition in (2.1), one obtains that

ρ
(1

4
LDF1(x, y)

)
= ρ

(1

4
LDF1(x, y)− µ2sLDf(µ−sx, µ−sy)

4
+ µ2sLDf(µ−sx, µ−sy)

4

)
≤ 1

4
ρ
(
F1([x, y])− µ2sf(µ−2s[x, y])

)
+

1

4
ρ
(
µs[x, f(µ−sy)]− [x, F1(y)]

)
+

1

4
ρ
(
µs[f(µ−sx, y]− [F1(x), y]

)
+

1

4
ρ
(
µ2sLDf(µ−sx, µ−sy)

)
≤ 1

4
ρ
(
F1([x, y])− µ2sf(µ−2s[x, y])

)
+

1

4
ρ
(
µs[x, f(µ−sy)]− [x, F1(y)]

)
+

1

4
ρ
(
µs[f(µ−sx), y]− [F1(x), y]

)
+
κ2s

4
ϕ2

(
µ−sx, µ−sy

)
for all x, y ∈ χρ, from which LDF1(x, y) = 0 by taking s → ∞ and so F1 is a Lie
derivation. In addition, we get the following inequality

ρ
(1

3

(
F1(z∗)− F1(z)∗

))
≤ 1

3
ρ
(
F1(z∗)− µsf

( z∗
µs

))
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+
1

3
ρ
(
µsf

( z
µs

)∗
−F1(z)∗

)
+

1

3
ρ
(
µsf

( z∗
µs

)
−µsf

( z
µs

)∗)
≤ 1

3
ρ
(
F1(z∗)− µsf

( z∗
µs

))
+

1

3
ρ
(
µsf

( z
µs

)∗
− F1(z)∗

)
+
κs

3
ϕ1

(
0, · · · , 0, z

µs

)
· κ

s

µs

for all vector z. Taking s→∞, one concludes F1 is a Lie ∗-derivation.
Claim 4: F1 is unique. To show the uniqueness of F1, let’s assume that there

exists a Lie ∗-derivation G1 : χρ → χρ which satisfies the approximation (2.3). Since
F1 and G1 are additive mappings, we see from the equality µsF1(µ−sx) = F1(x)
and µsG1(µ−sx) = G1(x) that

ρ(G1(x)− F1(x)) = ρ
(µs+1

µ

(
G1

( x
µs

)
− f

( x
µs

))
+
µs+1

µ

(
f
( x
µs

)
− F1

( x
µs

)))
≤ κs+1

µ
ρ
(
G1

( x
µs

)
− f

( x
µs

))
+
κs+1

µ
ρ
(
f
( x
µs

)
− F1

( x
µs

))
≤ ks+1

µ
· 2κ(

n
m

)
µ2

∞∑
j=1

κ2j

µj
ϕ1

( x

µj+s
, · · · , x

µj+s
, 0
)
· κ

s

µs

≤ 2κ2(
n
m

)
µ3

∞∑
j=s+1

κ2j

µj
ϕ1

( x
µj
, · · · , x

µj
, 0
)

which tends to zero as s→∞ for all x ∈ χρ. Hence the mapping F1 is a unique Lie
∗-derivation satisfying the estimation (2.3) near f .

Remark 2.1. In Theorem 2.1 if χρ is a Banach ∗-algebra with norm ρ, and so
ρ(µx) = µρ(x), κ := µ, then we see from (2.1) and (2.2) that there exists a unique
Lie ∗-derivation F1 : χρ → χρ, defined as F1(x) = lims→∞ µsf( xµs ), x ∈ χρ, which

satisfies the equation (1.1) and

ρ(f(x)− F1(x)) ≤ 1

µ
(
n
m

) ∞∑
j=1

µjϕ1

( x
µj
, · · · , x

µj
, 0
)

for all x ∈ χρ, which is exactly the approximation in Theorem [11].

As a corollary of Theorem 2.1, we obtain the following stability result of the
equation (1.1), which generalizes stability result on Banach ∗-algebras.

Corollary 2.1. Suppose χρ is a Banach ∗-algebra with norm ‖ · ‖ and κ = 2. For
given real numbers θi, ϑ ≥ 0, ri > 1(i = 1, · · · , n + 1), a + b > 2, if a mapping
f : χρ → χρ satisfies

‖Dλf(x1, · · · , xn) + f(z∗)− f(z)∗‖ ≤
n∑
i=1

θi‖xi‖ri + ϑ‖z‖rn+1 ,

‖LDf(x, y)‖ ≤ ϑ‖x‖a‖y‖b

for all x1, · · · , xn, x, y, z ∈ χρ and λ ∈ Λ, then there exists a unique Lie ∗-derivation
F1 : χρ → χρ such that

‖f(x)− F1(x)‖ ≤ 1(
n
m

) n∑
i=1

θi
µri − µ

‖x‖ri
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for all x ∈ χρ.

In the following, we present a generalized Hyers–Ulam stability via direct method
of the equation (1.1) in modular ∗-algebra without using both Fatou property and
∆µ-condition, where µ := n−m+ 1 > 2.

Theorem 2.2. Suppose that a mapping f : χρ → χρ satisfies

ρ(Dλf(x1, · · · , xn) + f(z∗)− f(z)∗) ≤ φ1(x1, · · · , xn, z), (2.7)

ρ(LDf(x, y)) ≤ φ2(x, y)

and φ1 : χn+1
ρ → [0,∞),φ2 : χ2

ρ → [0,∞) are mappings such that

Φ(x1, · · · , xn, z) :=

∞∑
j=0

φ1(µjx1, · · · , µjxn, µjz)
µj

<∞, (2.8)

lim
s→∞

φ2(µsx, µsy)

µ2s
= 0

for all x1, · · · , xn, x, y, z ∈ χρ, λ ∈ Λ. Then there exists a unique Lie ∗-derivation
F2 : χρ → χρ which satisfies the equation (1.1) and

ρ(f(x)− F2(x)) ≤ 1(
n
m

)
µ

Φ(x, · · · , x, 0) (2.9)

for all x ∈ χρ.

Proof. It follows from the similar way as in (2.5) that

ρ
(
f(x)− µf

(x
µ

))
≤ 1(

n
m

)ϕ1

(x
µ
, · · · , x

µ
, 0
)

for all x ∈ χρ. Since
∑s−1
j=0

1
µj+1 ≤ 1, we prove the following functional inequality

ρ
(
f(x)− f(µsx)

µs

)
= ρ

[ s−1∑
j=0

(f(µjx)

µj
− f(µj+1x)

µj+1

)]
(2.10)

= ρ
[ s−1∑
j=0

1

µj+1

(
µf(µjx)− f(µj+1x)

)]

≤
s−1∑
j=0

1

µj+1
ρ
(
µf(µjx)− f(µj+1x)

)

≤ 1(
n
m

)
µ

s−1∑
j=0

φ1(µjx, · · · , µjx, 0)

µj

for all x ∈ χρ by Remark (a).
Now, replacing x by µtx in (2.10), we have

ρ
(f(µtx)

µt
− f(µs+tx)

µs+t

)
≤ 1(

n
m

)
µ

s+t−1∑
j=t

φ1(µjx, · · · , µjx, 0)

µj
(2.11)
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which converges to zero as t → ∞ by the assumption (2.8). Thus the above in-

equality implies that the sequence { f(µ
sx)
µs } is ρ-Cauchy for all x ∈ χρ and so it is

ρ-convergent in χρ since the space χρ is ρ-complete. Thus, we may define a mapping
F2 : χρ → χρ as

F2(x) := ρ− lim
s→∞

f(µsx)

µs
⇐⇒ lim

s→∞
ρ
(f(µsx)

µs
− F2(x)

)
= 0,

for all x ∈ χρ.
Claim 1: F2 is an additive mapping satisfying the approximation (2.9). In fact, if

we put (x1, · · · , xn, z) := (µsx1, · · · , µsxn, 0) in (2.7), and then divide the resulting
inequality by µs, one obtains

ρ
(Dλf(µsx1, · · · , µsxn)

µs

)
≤ ρ(Dλf(µsx1, · · · , µsxn))

µs
≤ φ1(µsx1, · · · , µsxn, 0)

µs
→ 0

which tends to zero as s → ∞, for all x1, · · · , xn ∈ χρ. Thus, for a fixed positive
real R :=

(
n
m

)
(n−m+ 2) + 2, we figure out by use of Remark 1.1 (b).

ρ
( 1

R
DλF2(x1, · · · , xn)

)
= ρ
( 1

R
DλF2(x1, · · · , xn)− Dλf(µsx1, · · · , µsxn)

R · µs
+
Dλf(µsx1, · · · , µsxn)

R · µs
)

≤ 1

R

∑
1≤i1<···<im≤n

1≤kl(6=ij ,∀j∈{1,··· ,m})≤n

ρ
( 1

µs
f
(∑m

j=1 µ
sλxij

m
+

n−m∑
l=1

λµsxkl

)

−F2

(∑m
j=1 λxij

m
+

n−m∑
l=1

λxkl

))
+
n−m+ 1

Rn

(
n

m

) n∑
i=1

ρ
(f(µsxi)

µs
− F2(xi)

)
+

1

R

φ1(µsx1, · · · , µsxn, 0)

µs

for all x1, · · · , xn ∈ χρ, λ ∈ Λ and all positive integers s. Taking the limit as
s → ∞, one obtains ρ( 1

RDλF2(x1, · · · , xn)) = 0, and so DλF2(x1, · · · , xn) = 0 for
all x1, · · · , xn ∈ χρ. Hence, taking λ = 1 in DλF2(x1, · · · , xn) = 0, we conclude
that F2 satisfies the equation (1.1) and so it is additive by Lemma 2.1.

On the other hand, since
∑s
i=0

1
µi+1 + 1

µ ≤ 1, (µ > 2) for all s ∈ N, it follows

from (2.5) and Remark 1.1 (a) that

ρ(f(x)− F2(x))

= ρ

(
s∑
i=0

1

µi+1

(
µf(µix)− f(µi+1x)

)
+
f(µs+1x)

µs+1
− F2(µx)

µ

)

≤ 1(
n
m

)
µ

s∑
i=0

1

µi
φ1(µix, · · · , µix) +

1

µ
ρ
(f(µs · µx)

µn
− F2(µx)

)
,

without applying the Fatou property of the modular ρ for all x ∈ χρ and all s ∈ N,
from which we obtain the approximation of f by the additive mapping F2 as follows

ρ(f(x)− F2(x)) ≤ 1(
n
m

)
µ

∞∑
i=0

1

µi
φ1(µix, · · · , µix, 0) =

1(
n
m

)
µ

Φ(x, · · · , x, 0)
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for all x ∈ χρ by taking s→∞ in the last inequality.
Claim 2: F2 is a Lie ∗-derivation. It follows from the same proof of Theorem

2.1 that the mapping F2 is a linear mapping. From the second inequality in (2.8)
and the second condition in (2.7), we arrive at

ρ
(1

4
LDF2(x, y)

)
= ρ

(1

4
LDF2(x, y)− LDf(µsx, µsy)

4 · µ2s
+
LDf(µsx, µsy)

4 · µ2s

)
≤ 1

4
ρ
(
F2

(
[x, y]

)
−
f
(
µ2s[x, y]

)
µ2n

)
+

1

4
ρ
( [x, f(µsy)]

µs
− [x, F2(y)]

)
+

1

4
ρ
( [f(µsx), y]

µs
− [F2(x), y]

)
+

1

4
ρ
(LDf(µsx, µsy)

µ2s

)
for all x, y ∈ χρ, which tends to zero as s tends to ∞. Therefore, one obtains
ρ( 1

4LDF2(x, y)) = 0, and so F2 is a Lie derivation. On the other hand, we observe
from (2.8) that

ρ
(1

4

(
F2(z∗)− F2(z)∗

))
≤ 1

4
ρ
(
F2(z∗)− f(µsz∗)

µs

)
+

1

4
ρ
(
F2(z)∗ − f(µsz)∗

µs

)
+

1

4
ρ
(f(µsz∗)− f(µsz)∗

µs

)
+

1

4
ρ
( 1

µs

(
n

m

)
(n−m)f(0)

)
≤ 1

4
ρ
(
F2(z∗)− f(µsz∗)

µs

)
+

1

4
ρ
(
F2(z)∗ − f(µsz)∗

µs

)
+

1

4

φ1(0, · · · , 0, µsz)
µs

+
1

4µs
ρ
((n

m

)
(n−m)f(0)

)
which tends to zero as s→∞ for all vector z. Thus F2 is a Lie ∗-derivation.

Claim 3: F2 is unique. To show the uniqueness of F2, let’s assume there exists a
Lie ∗-derivation G2 : χρ → χρ which satisfies the inequality (2.9) for all x ∈ χρ, but
suppose F2(x0) 6= G2(x0) for some x0 ∈ χρ. Then there exists a positive constant
ε > 0 such that ε < ρ(F2(x0) − G2(x0)). For such given ε > 0, it follows from
the convergence of series (2.8) that there is a positive integer n0 ∈ N such that

2

(n
m)µ

∑∞
j=n0

φ1(µ
jx0,··· ,µjx0,0)

µj < ε. Since F2 and G2 are additive mappings, we see

from the equality F2(µn0x0) = µn0F2(x0) and G2(µn0x0) = µn0G2(x0) that

ε < ρ(F2(x0)−G2(x0))

= ρ
(F2(µn0x0)− f(µn0x0)

µn0
+
f(µn0x0)−G2(µn0x0)

µn0

)
≤ 1

µn0
ρ
(
F2(µn0x0)− f(µn0x0)

)
+

1

µn0
ρ
(
f(µn0x0)−G2(µn0x0)

)
≤ 1

µn0

2(
n
m

)
µ

∞∑
j=0

φ1(µj+n0x0, · · · , µj+n0x0, 0)

µj

=
2(
n
m

)
µ

∞∑
j=n0

φ1(µjx0, · · · , µjx0, 0)

µj
< ε,

which leads a contradiction. Hence the mapping F2 is a unique Lie ∗-derivation near



Approximate Lie ∗-derivations on ρ-complete convex modular algebras 775

f satisfying the approximation (2.9) on the ρ-complete convex modular ∗-algebra
χρ.

As a corollary of Theorem 2.2, we obtain the following stability result of (m,n)-
Cauchy-Jensen functional equation (1.1) associated with Lie ∗-derivation on the
Banach ∗-algebra χρ, which may be considered as ρ = ‖ · ‖.

Corollary 2.2. Suppose χρ is a Banach ∗-algebra with norm ‖·‖. For given positive
real numbers θi, ϑ ≥ 0, ri < 1(i = 1, · · · , n + 1), and a + b < 2, suppose that a
mapping f : χρ → χρ satisfies

‖Dλf(λx1, · · · .λxn) + f(z∗)− f(z)∗‖ ≤
n∑
i=1

θi‖xi‖ri + θn+1‖z‖rn+1 ,

‖LDf(x, y)‖ ≤ ϑ‖x‖a‖y‖b

for all x1, · · · , xn, x, y, z ∈ χρ and λ ∈ Λ. Then there exists a unique Lie ∗-
derivation F2 : χρ → χρ such that

‖f(x)− F2(x)‖ ≤ 1(
n
m

) n∑
i=1

θi
µ− µri

‖x‖ri

for all x ∈ χρ.
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