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THE STABILITY OF ADDITIVE
(α, β)-FUNCTIONAL EQUATIONS∗

Ziying Lu1, Gang Lu1,†, Yuanfeng Jin2,† and Choonkil Park3

Abstract In this paper, we investigate the following (α, β)-functional equa-
tions

2f(x) + 2f(z) = f(x− y) + α−1f(α(x+ z)) + β−1f(β(y + z)), (0.1)

2f(x) + 2f(y) = f(x+ y) + α−1f(α(x+ z)) + β−1f(β(y − z)), (0.2)

where α, β are fixed nonzero real numbers with α−1 + β−1 6= 3. Using the
fixed point method and the direct method, we prove the Hyers-Ulam stability
of the (α, β)-functional equations (0.1) and (0.2) in non-Archimedean Banach
spaces.

Keywords Hyers-Ulam stability, additive (α, β)-functional equation, fixed
point method, direct method,non-Archimedean Banach space.
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1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam
[16] in 1940, concerning the stability of group homomorphisms. Let (G1, .) be a
group and let (G2, ∗) be a metric group with the metric d(., .). Given ε > 0, does
there exist a δ > 0, such that if a mapping h : G1 → G2 satisfies the inequality
d(h(x.y), h(x) ∗ h(y)) < δ for all x, y ∈ G1, then there exists a homomorphism
H : G1 → G2 with d(h(x), H(x)) < ε for all x ∈ G1? In the other words, Under what
condition does there exists a homomorphism near an approximate homomorphism?
The concept of stability for functional equation arises when we replace the functional
equation by an inequality which acts as a perturbation of the equation. In 1941,
Hyers [8] gave the first affirmative answer to the question of Ulam for Banach spaces.
Let f : E → E′ be a mapping between Banach spaces such that

‖f(x+ y)− f(x)− f(y)‖ ≤ δ
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for all x, y ∈ E, and for some δ > 0. Then there exists a unique additive mapping
T : E → E′ such that

‖f(x)− T (x)‖ ≤ δ

for all x ∈ E. In 1978, Rassias [15] proved the following theorem.

Theorem 1.1. Let f : E → E′ be a mapping from a normed vector space E into a
Banach space E′ subject to the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p) (1.1)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then there exists
a unique additive mapping T : E → E′ such that

‖f(x)− T (x)‖ ≤ 2ε

2− 2p
‖x‖p (1.2)

for all x ∈ E. If p < 0 then inequality (1.1) holds for all x, y 6= 0, and (1.2) for
x 6= 0. Also, if the function t 7→ f(tx) from R into E′ is continuous in t ∈ R for
each fixed x ∈ E, then T is R-linear.

In 1991, Gajda [7] answered the question for the case p > 1, which was raised
by Rassias. More generalizations and applications of the Hyers-Ulam stability to a
number of functional equations and mappings can be found in [5, 6, 10,11].

We recall a fundamental result in fixed point theory.
Let X be a set. A function d : X ×X → [0,∞] is called a generalized metric on

X if d satisfies

(1) d(x, y) = 0 if and only if x = y;

(2) d(x, y) = d(y, x) for all x, y ∈ X;

(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Theorem 1.2 ( [1, 3]). Let (X, d) be a complete generalized metric space and let
J : X → X be a strictly contractive mapping with Lipschitz constant L < 1. Then
for each given element x ∈ X, either

d(Jnx, Jn+1x) = +∞

for all nonnegative integers n or there exists a integer n0 such that

(1) d(Jnx, Jn+1x) < +∞,∀n ≥ n0;

(2) the sequence {Jnx} converges to a fixed point y∗ of J ;

(3) y∗ is the unique fixed point of J in the set Y = {y ∈ X|d(Jn0x, y) < +∞};
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .

In 1996, Isac and Rassias [9] were the first to provide applications of stability
theory of functional equations for the proof of new fixed point theorems with appli-
cations. By using fixed point method, the stability problems of several functional e-
quations have been extensively investigated by a number of authors (see [2,4,13,14]).

Throughout this paper, assume that X is a non-Archimedean normed space and
that Y is a non-Archimedean Banach space. Let α, β be fixed nonzero real numbers
with α−1 + β−1 6= 3.
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Definition 1.1. Let X be a vector space over a non-Archimedean scalar field k

with a valuation | · |. A function ‖ · ‖ : X → [0,∞) is a non-Archimedean norm if
it satisfies, for all r ∈ k, x, y ∈ X,

(1) ‖x‖ ≥ 0 if and only if x = 0,

(2) ‖rx‖ = |r|‖x‖,
(3) ‖x+ y‖ ≤ max{‖x‖, ‖y‖}(the strong triangle inequality).

Then (X, ‖ · ‖) is called a non-Archimedean normed space.

Definition 1.2. Let {xn} be a sequence in a non-Archimedean normed space X.

(1) {xn} converges to x ∈ X if, for any ε 0 there exists an integer N such that
‖xn−x‖ ≤ ε for all n ≥ N . Then the point x is called the limit of the sequence
{xn}, which is denoted by limn→∞ xn = x.

(2) {xn} is a Cauchy sequence if the sequence {xn+1 − xn} converges to zero.

(3) X is called a non-Archimedean Banach space if every Cauchy sequence in X
is convergent.

This paper is organized as follows. In Sections 2 and 3, we prove the Hyers-
Ulam stability of the additive (α, β)-functional equation (0.1) in non-Archimedean
Banach spaces by using the fixed point method and the direct method. In Sections 4
and 5, we prove the Hyers-Ulam stability of the additive (α, β)-functional equation
(0.2) in non-Archimedean Banach spaces by using the fixed point method and the
direct method.

2. Stability of the (α, β)-function equation (0.1): A
fixed point approach

We solve the (α, β)-function equation (0.1) in non-Archimedean Banach spaces.

Lemma 2.1. Let X and Y be vector spaces. If a mapping f : X → Y satisfies

2f(x) + 2f(z) = f(x− y) + α−1f(α(x+ z)) + β−1f(β(y + z)) (2.1)

for all x, y, z ∈ X, then f : X → Y is an additive mapping.

Proof. Assume the mapping f : X → Y satisfies (2.1). Letting x = y = z = 0,
we get

3f(0) = α−1f(0) + β−1f(0).

So f(0) = 0. Letting y = z = 0 in (2.1), we get

f(x) = α−1f(αx)

and so
f(αx) = αf(x)

for all x ∈ X.
Letting x = y = 0 in (2.1), we get

2f(z) = α−1f(αz) + β−1f(βz)
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and so
f(βz) = βf(z)

for all z ∈ X. Thus

2f(x) + 2f(z)

=f(x− y) + α−1f(α(x+ z)) + β−1f(β(y + z))

=f(x− y) + f(x+ z) + f(y + z).

(2.2)

for all x, y, z ∈ X. Letting y = 0 in (2.2), we get

f(x+ z) = f(x) + f(z)

for all x, z ∈ X. Thus f : X → Y is additive.
Using the fixed point method, we prove the Hyers-Ulam stability of the additive

(α, β)-functional equation (0.1) in non-Archimedean spaces.

Theorem 2.1. Let ϕ : X3 → [0,∞) be a function such that there exists an L < |2|
with

ϕ
(x

2
,
y

2
,
z

2

)
≤ L

|2|
ϕ(x, y, z) (2.3)

for all x, y, z ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and

‖2f(x) + 2f(z)− f(x− y)− α−1f(α(x+ z))− β−1f(β(y + z))‖
≤ϕ(x, y, z)

(2.4)

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such
that

‖f(x)−A(x)‖

≤ L

|2|(1− L)
max {ϕ (x, 0, x) , ϕ (2x, 0, 0) , ϕ (x, 0, 0) , ϕ (0, 0, x)}

(2.5)

for all x ∈ X.

Proof. Letting y = z = 0 in (2.4), we get

‖f(x)− α−1f(αx)‖ ≤ ϕ(x, 0, 0) (2.6)

for all x ∈ X.
Letting x = y = 0 in (2.4), we get

‖2f(z)− α−1f(αz)− β−1f(βz)‖ ≤ ϕ(0, 0, z) (2.7)

for all z ∈ X. It follows from (2.6) and (2.7) that

‖f(z)− β−1f(βz)‖
=
∥∥2f (z)− α−1f (αz)− β−1f (βz) + α−1f (αz)− f (z)

∥∥
≤ max

{∥∥2f (z)− α−1f (αx)− β−1f (βx)
∥∥ ,∥∥f (z)− α−1f (αz)

∥∥}
= max {ϕ (0, 0, z) , ϕ (z, 0, 0)}
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for all z ∈ X. Thus

‖2f(x) + 2f(z)− f(x− y)− f(x+ z)− f(y + z)‖
≤
∥∥2f(x) + 2f(z)− f(x− y)− α−1f(α(x+ z))− β−1f(β(y + z))

+α−1f(α(x+ z)) + β−1f(β(y + z))− f(x+ z)− f(y + z)
∥∥

≤max
{
‖2f(x) + 2f(z)− f(x− y)− α−1f(α(x+ z))− β−1f(β(y + z))‖,

‖α−1f(α(x+ z)− f(x+ z)‖, ‖β−1f(β(y + z))− f(y + z)‖
}

≤max{ϕ(x, y, z), ϕ(x+ z, 0, 0), ϕ(y + z, 0, 0), ϕ(0, 0, y + z)}

(2.8)

for all x, y, z ∈ X.
Replacing x, z by x

2 ,
x
2 and letting y = 0 in (2.8), we get∥∥∥f(x)− 2f

(x
2

)∥∥∥ ≤ max
{
ϕ
(x

2
, 0,

x

2

)
, ϕ (x, 0, 0) , ϕ

(x
2
, 0, 0

)
, ϕ
(

0, 0,
x

2

)}
≤ L

|2|
max {ϕ (x, 0, x) , ϕ (2x, 0, 0) , ϕ (x, 0, 0) , ϕ (0, 0, x)} (2.9)

for all x ∈ X.
Consider the set

S = {h : X → Y, h(0) = 0}

and introduce the generalized metric space on S:

d(g, h) =inf {µ ∈ R+ : ‖g(x)− h(x)‖
≤ µmax {ϕ (x, 0, x) , ϕ (2x, 0, 0) , ϕ (x, 0, 0) , ϕ (0, 0, x)} ,∀x ∈ X} .

It is easy to show that (S, d) is complete, for details, see [12].
Now we consider the linear mapping J : S → S such that

Jg(x) = 2g
(x

2

)
for all x ∈ X. Let g, h ∈ S be give such that d(g, h) = ε. Then

‖g(x)− h(x)‖ ≤ εmax {ϕ (x, 0, x) , ϕ (2x, 0, 0) , ϕ (x, 0, 0) , ϕ (0, 0, x)}

for all x ∈ X. Hence

‖Jg(x)− Jh(x)‖ =
∥∥∥2g

(x
2

)
− 2h

(x
2

)∥∥∥ ≤ ∥∥∥g (x
2

)
− h

(x
2

)∥∥∥
≤ εmax

{
ϕ
(x

2
, 0,

x

2

)
, ϕ (x, 0, 0) , ϕ

(x
2
, 0, 0

)
, ϕ
(

0, 0,
x

2

)}
≤ L

|2|
εmax {ϕ (x, 0, x) , ϕ (2x, 0, 0) , ϕ (x, 0, 0) , ϕ (0, 0, x)}

for all x ∈ X. So d(g, h) = ε implies that d(Jg, Jh) ≤ L
|2|ε. This means that

d(Jg, Jh) ≤ L

|2|
d(g, h)

for all g, h ∈ S. It follows from (2.9) that d(f, Jf) ≤ L
|2| .

By Theorem 1.2, there exists a mapping A : X → Y satisfying the following:
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(1) A is a fixed point of J , that is

A(x) = 2A
(x

2

)
(2.10)

for all x ∈ X. The mapping A is an unique fixed point of J in the set

M = {g ∈ S : d(g, h) < +∞}

This implies that A is an unique mapping satisfying (2.10) such that there
exists a µ ∈ (0,∞) satisfying

‖f(x)−A(x)‖ ≤ µmax {ϕ (x, 0, x) , ϕ (2x, 0, 0) , ϕ (x, 0, 0) , ϕ (0, 0, x)}

for all x ∈ X.

(2) d(J lf,A)→ 0 as l→∞. This implies

lim
n→∞

2nf
( x

2n

)
= A(x)

for all x ∈ X.

(3) d(f,A) ≤ 1
1−Ld(f, Jf), which implies

‖f(x)−A(x)‖ ≤ L

|2|(1− L)
max {ϕ (x, 0, x) , ϕ (2x, 0, 0) , ϕ (x, 0, 0) , ϕ (0, 0, x)}

for all x ∈ X.

It follows from (2.3) and (2.4) that

‖2A(x) + 2A(z)−A(x− y)− α−1A(α(x+ z))− β−1A(β(y + z))‖

= lim
n→∞

∥∥∥∥2n
(

2f
( x

2n

)
+ 2f

( z
2n

)
− f

(
x− y

2n

)
−α−1f

(
α
x+ z

2n

)
− β−1f

(
β
y + z

2n

))∥∥∥∥
= lim

n→∞

∥∥∥∥2f
( x

2n

)
+ 2f

( z
2n

)
− f

(
x− y

2n

)
−

α−1f

(
α
x+ z

2n

)
− β−1f

(
β
y + z

2n

)∥∥∥∥
≤ lim

n→∞
ϕ
( x

2n
,
y

2n
,
z

2n

)
≤ lim

n→∞

Ln

|2|n
ϕ (x, y, z) = 0

for all x ∈ X. So

2A(x) + 2A(z)−A(x− y)− α−1A(α(x+ z))− β−1A(β(y + z)) = 0

for all x ∈ X. By Lemma 2.1, the mapping A : X → Y is additive.

Theorem 2.2. Let ϕ : X3 → [0,∞) be a function such that there exists an L < |2|
with

ϕ(2x, 2y, 2z) ≤ |2|Lϕ(x, y, z)
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for all x, y, z ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and (2.4).
Then there exists a unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ 1

|2|(1− L)
max {ϕ (x, 0, x) , ϕ (2x, 0, 0) , ϕ (x, 0, 0) , ϕ (0, 0, x)}

for all x ∈ X.

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem
2.1.

Now we consider the linear mapping J : S → S such that

Jg(x) :=
1

2
g (2x)

for all x ∈ X.
It follows from (2.9) that∥∥∥∥f(x)− 1

2
f(2x)

∥∥∥∥ ≤ 1

|2|
max {ϕ(x, 0, x), ϕ (2x, 0, 0) , ϕ (x, 0, 0) , ϕ (0, 0, x)}

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 2.1.

3. Stability of the (α, β)-function equation (0.1): A
direct method

In this section, using the direct method, we prove the Hyers-Ulam stability of the
(α, β)-functional equation (2.1) in non-Archimedean spaces.

Theorem 3.1. Let ϕ : X3 → [0,∞) be a function and let f : X → Y be a mapping
satisfying f(0) = 0 and

lim
j→∞

|2|jϕ(
x

2j
,
y

2j
,
z

2j
) = 0 (3.1)

for all x, y, z ∈ X. Suppose that, for each x ∈ X, the limit

ψ(x) := lim
n→∞

max
0≤j≤n

{
|2|j max

{
ϕ
( x

2j+1
, 0,

x

2j+1

)
, ϕ
( x

2j
, 0, 0

)
,

ϕ
( x

2j+1
, 0, 0

)
, ϕ
(

0, 0,
x

2j+1

)}}
exists and

‖2f(x) + 2f(z)− f(x− y)− α−1f(α(x+ z))− β−1f(β(y + z))‖
≤ϕ(x, y, z)

(3.2)

for all x, y, z ∈ X. Then there exists an unique additive mapping A : X → Y such
that

‖f(x)−A(x)‖ ≤ ψ(x) (3.3)

for all x ∈ X.
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Proof. It follows from (2.9) that∥∥∥f(x)− 2f
(x

2

)∥∥∥ ≤ max
{
ϕ
(x

2
, 0,

x

2

)
, ϕ (x, 0, 0) , ϕ

(x
2
, 0, 0

)
, ϕ
(

0, 0,
x

2

)}
for all x ∈ X. Hence∥∥∥2lf

( x
2l

)
− 2mf

( x

2m

)∥∥∥
≤ max

l≤j<m

{∥∥∥2jf
( x

2j

)
− 2j+1f

( x

2j+1

)∥∥∥}
≤ max

l≤j<m

{
|2|j max

{
ϕ
( x

2j+1
, 0,

x

2j+1

)
, ϕ
( x

2j
, 0, 0

)
,

ϕ
( x

2j+1
, 0, 0

)
, ϕ
(

0, 0,
x

2j+1

)}}
(3.4)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (3.1)
that the sequence {|2|kf( x

2k
)} is Cauchy for all x ∈ X. Since Y is complete, the

sequence {|2|kf( x
2k

)} converges. So one can define the mappings A : X → Y by

A(x) = lim
k→∞

|2|kf(
x

2k
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m → ∞ in (3.4), we
get (3.3). By (3.1) and (3.2), we get

‖2A(x) + 2A(z)−A(x− y)− α−1A(α(x+ z))− β−1A(β(y + z))‖

= lim
n→∞

|2|n
∥∥∥∥2f

( x
2n

)
+ 2f

( z
2n

)
− f

(
x− y

2n

)
−

α−1f

(
α(x+ z)

2n

)
− β−1f

(
β(y + z)

2n

)∥∥∥∥
≤ lim

n→∞
|2|nϕ

( x
2n
,
y

2n
,
z

2n

)
= 0

for all x, y, z ∈ X. Therefore, the mapping A : X → Y satisfies (2.1). So A : X → Y
is additive.

To prove the uniqueness property of A, let T : X → Y be another mapping
satisfying (3.3). Then we have

‖A(x)− T (x)‖ = |2|j
∥∥∥A( x

2j

)
− T

( x
2j

)∥∥∥
≤|2|j max

{∥∥∥f ( x
2j

)
− T

( x
2j

)∥∥∥ ,∥∥∥f ( x
2j

)
−A

( x
2j

)∥∥∥}
≤|2|jψ

( x
2j

)
,

which tends to zero as j → ∞, we can conclude that A(x) = T (x) for all x ∈ X.
This proves the uniqueness of A.

Theorem 3.2. Let ϕ : X3 → [0,∞) be a function such that

lim
j→∞

1

|2|j
ϕ(2jx, 2jy, 2jz) = 0
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for all x, y, z ∈ X. Suppose that, for each x ∈ X, the limit

ψ(x) := lim
n→∞

max
0≤j≤n

{ 1

|2|j+1
max{ϕ

(
2jx, 0, 2jx

)
, ϕ
(
2j+1x, 0, 0

)
,

ϕ
(
2jx, 0, 0

)
, ϕ
(
0, 0, 2jx

)
}}

exists. Let f : X → Y be a mapping satisfying f(0) = 0 and (3.2). Then there
exists an unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ ψ(x)

for all x ∈ X.

Proof. It follows from (2.9) that∥∥∥∥f(x)− 1

2
f (2x)

∥∥∥∥ ≤ 1

|2|
max {ϕ (x, 0, x) , ϕ (2x, 0, 0) , ϕ (x, 0, 0) , ϕ (0, 0, x)}

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 3.1.

4. Stability of the (α, β)-function equation (0.2): A
fixed point approach

We solve the (α, β)-function equation (0.2) in non-Archimedean Banach spaces.

Lemma 4.1. Let X and Y be vector spaces. If a mapping f : X → Y satisfies

2f(x) + 2f(y) = f(x+ y) + α−1f(α(x+ z)) + β−1f(β(y − z)) (4.1)

for all x, y, z ∈ X, then f : X → Y is an additive mapping.

Proof. Assume a mapping f : X → Y satisfies (4.1). Letting x = y = z = 0, we
get

3f(0) = α−1f(0) + β−1f(0)

So f(0) = 0 . Letting y = z = 0 in (4.1), we get

f(x) = α−1f(αx).

and so
f(αx) = αf(x)

for all x ∈ X.
Letting x = z = 0 in (4.1), we get

f(y) = β−1f(βy)

and so
f(βy) = βf(y)

for all y ∈ X. Thus

2f(x) + 2f(y) = f(x+ y) + α−1f(α(x+ z)) + β−1f(β(y − z))
= f(x+ y) + f(x+ z) + f(y − z).

(4.2)
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for all x, y, z ∈ X. Letting z = 0 in (4.2), we get

f(x+ y) = f(x) + f(y)

for all x, y ∈ X. Thus f : X → Y is additive.
Using the fixed point method, we prove the Hyers-Ulam stability of the additive

(α, β)-functional equation (4.1) in non-Archimedean spaces.

Theorem 4.1. Let ϕ : X3 → [0,∞) be a function such that there exists an L < |2|
with

ϕ
(x

2
,
y

2
,
z

2

)
≤ L

|2|
ϕ(x, y, z)

for all x, y, z ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and

‖2f(x) + 2f(y)− f(x+ y)− α−1f(α(x+ z))− β−1f(β(y − z))‖ ≤ ϕ(x, y, z) (4.3)

for all x, y, z ∈ X. Then there exists a unique additive mapping A : X → Y such
that

‖f(x)−A(x)‖ ≤ L

|2|(1− L)
max {ϕ (x, x, 0) , ϕ (x, 0, 0) , ϕ (0, x, 0)}

for all x ∈ X.

Proof. Letting x = z = 0 in (4.3), we get

‖f(y)− β−1f(βy)‖ ≤ ϕ(0, y, 0) (4.4)

for all y ∈ X.
Letting y = z = 0 in (4.3), we get

‖f(x)− α−1f(αx)‖ ≤ ϕ(x, 0, 0) (4.5)

for all x ∈ X.
It follows from (4.4), (4.5) and (4.3) that

‖2f(x) + 2f(y)− f(x+ y)− f(x+ z)− f(y − z)‖ (4.6)

= ‖2f(x) + 2f(y)− f(x+ y)− α−1f(α(x+ z))− β−1f(β(y − z))
+α−1f(α(x+ z))− f(x+ z) + β−1f(β(y − z))− f(y − z)‖

≤ max{‖2f(x) + 2f(y)− f(x+ y)− α−2f(α(x+ z))− β−1f(β(y − z))‖,
‖α−1f(α(x+ z))− f(x+ z)‖, ‖β−1f(β(y − z))− f(y − z)‖}

≤ max{ϕ(x, y, z), ϕ(x+ z, 0, 0), ϕ(0, y − z, 0)}

for all x, y, z ∈ X.
Letting z = 0 and replacing x, y by x

2 ,
x
2 in (4.6), we get∥∥∥f(x)− 2f

(x
2

)∥∥∥ ≤ max
{
ϕ
(x

2
,
x

2
, 0
)
, ϕ
(x

2
, 0, 0

)
, ϕ
(

0,
x

2
, 0
)}

(4.7)

≤ L

|2|
max{ϕ (x, x, 0) , ϕ (x, 0, 0) , ϕ (0, x, 0)}

for all x ∈ X.
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Consider the set
S = {h : X → Y, h(0) = 0}

and introduce the generalized metric space on S:

d(g, h) = inf{µ ∈ R+ : ‖g(x)− h(x)‖ ≤ µmax{ϕ (x, x, 0) , ϕ (x, 0, 0) , ϕ (0, x, 0) ,∀x ∈ X}.

It is easy to show that (S, d) is complete (see [12]).
Now we consider the linear mapping J : S → S such that

Jg(x) = 2g
(x

2

)
for all x ∈ X.

The rest of the proof is similar to the proof of Theorem 2.1.

Theorem 4.2. Let ϕ : X3 → [0,∞) be a function such that there exists an L < |2|
with

ϕ(2x, 2y, 2z) ≤ |2|Lϕ(x, y, z)

for all x, y, z ∈ X. Let f : X → Y be a mapping satisfying f(0) = 0 and (4.3).
Then there exists an unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ 1

|2|(1− L)
max {ϕ (x, x, 0) , ϕ (x, 0, 0) , ϕ (0, x, 0)} .

Proof. Let (S, d) be the generalized metric space defined in the proof of Theorem
4.1.

Now we consider the linear mapping J : S → S such that

Jg(x) :=
1

2
g (2x)

for all x ∈ X.
It follows from (4.7) that∥∥∥∥f(x)− 1

2
f (2x)

∥∥∥∥ ≤ 1

|2|
max{ϕ(x, x, 0), ϕ(x, 0, 0, ϕ(0, x, 0)}

for all x ∈ X.
The rest of the proof is similar to the proof of Theorem 4.1.

5. Stability of the (α, β)-function equation (0.2): A
direct method

In this section, using the direct method, we prove the Hyers-Ulam stability of the
(α, β)-functional equation (0.2) in non-Archimedean spaces.

Theorem 5.1. Let ϕ : X3 → [0,∞) be a function and let f : X → Y be a mapping
satisfying f(0) = 0 and

lim
j→∞

|2|jϕ
( x

2j
,
y

2j
,
z

2j

)
= 0

for all x, y, z ∈ X. Suppose that, for each x ∈ X, the limit

ψ(x) := lim
n→∞

max
0≤j≤n

{
|2|j max

{
ϕ
( x

2j+1
,
x

2j+1
, 0
)
, ϕ
( x

2j+1
, 0, 0

)
, ϕ
(

0,
x

2j+1
, 0
)}}
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exists and

‖2f(x) + 2f(y)− f(x+ y)− α−1f(α(x+ z))− β−1f(β(y − z))‖ ≤ ϕ(x, y, z) (5.1)

for all x, y, z ∈ X. Then there exists an unique additive mapping A : X → Y such
that

‖f(x)−A(x)‖ ≤ ψ(x)

for all x ∈ X.

Proof. It follows from (4.7) that∥∥∥f(x)− 2f
(x

2

)∥∥∥ ≤ max
{
ϕ
(x

2
,
x

2
, 0
)
, ϕ
(x

2
, 0, 0

)
, ϕ
(

0,
x

2
, 0
)}

(5.2)

for all x ∈ X.
The rest of the proof is similar to the proofs of Theorems 3.1 and 4.1.

Theorem 5.2. Let ϕ : X3 → [0,∞) be a function such that

lim
j→∞

1

|2|j
ϕ(2jx, 2jy, 2jz) = 0

for all x, y, z ∈ X. Suppose that, for each x ∈ X, the limit

ψ(x) := lim
n→∞

max
0≤j≤n

{
1

|2|j+1
max

{
ϕ
(
2jx, 2jx, 0

)
, ϕ
(
2jx, 0, 0

)
, ϕ
(
0, 2jx, 0

)}}
exists. Let f : X → Y be a mapping satisfying f(0) = 0 and (5.1). Then there
exists an unique additive mapping A : X → Y such that

‖f(x)−A(x)‖ ≤ ψ(x)

for all x ∈ X.

Proof. It follows from (5.2) that∥∥∥∥f(x)− 1

2
f (2x)

∥∥∥∥ ≤ 1

|2|
max {ϕ (x, x, 0) , ϕ (x, 0, 0) , ϕ (0, x, 0)}

for all x ∈ X.
The rest of the proof is similar to the proofs of Theorems 3.2 and 4.2.
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