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Abstract In this paper, we develop an optimal execution strategy for em-
ployee stock options by means of the fluid model, in which a voluntary turnover
is considered. We show that the value function is the viscosity solution of the
Hamilton-Jacobi-Bellman variational inequality and prove the uniqueness of
the viscosity solution. Finally, we present numerical illustrative examples and
numerical solutions of optimal strategies which are computed by the finite
difference method.
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1. Introduction

An employee stock option ( ESO) is an individually awarded call option on the
common stock of a company, granted by the company to an employee as a part of
the employee’s remuneration package. The objective of ESOs is to give employees
an incentive to improve a company’s market value by benefitting themselves from
a higher market price of the company’s shares [1].

Employee stock options are characterized by the following differences from
standardized exchange-traded financial options. (i) ESOs are non-transferable. Em-
ployees are not allowed to sell their employee stock options. They can exercise the
options if the circumstances are appropriate. (ii) Unlike exchange-traded options,
ESOs are considered to be a private contract between the employer and the em-
ployee. (iii) ESOs are usually characterized by a long holding period, or, a maturity
far from their issuance. (iv) ESOs are usually characterized by a vesting period.
During the vesting period, the options cannot be exercised (The vesting period can
e.g. be as long as four years.). (v) ESOs are American-style options. Once vested,
ESOs can be exercised at any time before expiration. (vi) ESOs have a departure
risk. Employees will lose a part or the total value of the unexecuted ESOs, if they
are laid off or leave the company voluntarily.
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Due to the wide use of employee stock options, there exists a large amount of re-
search on their features, valuation and execution strategies, respectively. Research
has e.g. been done on the effects of the non-tradability, hedging restrictions and
early exercise. Hull and White (2004) [13] discuss practical issues in valuing em-
ployee stock options by means of the binomial method. Referring to the likelihood
of an early exercise, Cvitanic, Wiener and Zapatero (2008) [10] derive an analytic
formula for the price of an ESO. León and Vaello-Sebastià (2009) [15] value typical
long-dated American style ESOs with the volatility of the underlying asset assumed
to be time-varying under a GARCH framework. Monyios and Ng(2011) [17] fo-
cus on American-style feature of ESOs to maximize the expected discounted payoff
over all stopping times. Henderson et al. (2012) [12] use a utility-based valuation
approach to study strategies of managing a portfolio which contains ESOs with
different strikes and maturities, respectively. Chang et al. (2015) [5] provide em-
pirical evidence on the positive effect of non-executive employee stock options on
corporate innovation. Chong et al. (2015) [6] extend the approach of option pricing
for executive stock options (ESOs) on the basis of stochastic volatility (SV) models.
Kyng et al. (2016) [14] extend the exercise multiple approach of Hull and White
(2004) [13] and use exit probabilities obtained from empirically determined multiple
decrement or life tables to model involuntary early exercise or forfeiture.

Other research has focused on the repricing and vesting feature. Brenner et
al. (2000) [3] deal with properties of repriceable ESOs and develop a correspond-
ing valuation model. By using the utility maximization approach, Corrado et al.
(2001) [7] extend this model such that multiple times of repricing are allowed. By
means of these methods, Leung and Kwok (2008) [16] study various repricing mech-
anisms based on some forms of Brownian functionals of the stock price process. In
their model, the firms exercise repricing only when the stock price falls below some
target barrier level for a certain period of time. Wu et al. (2016) [20] conduct a
more general fair value estimation based on attaching performance targets to option
vesting. Callaghan et al.(2016) [4] show that firms do retain managers when they
reprice their options compared to when they do not.

In contrast to the previously mentioned valuation models for stand-alone ESOs,
Bian et al.(2015) [2] assume the number of options to be continuous. Bian et al.
adopt a fluid model to characterize the exercise process and restrict the exercise
rate not to exceed an upper boundary. They aim thus to maximize the overall
discounted exercise return instead of pursuing on utility maximization.

Following [2], we develop in this paper an optimal execution strategy for em-
ployee stock options with a term of resignation. More precisely, we use control
variable to indicate the execution rate during the employment and use stopping
time to indicate the time of voluntary turnovers. Although the ESOs can be ex-
ecuted all at once at leaving time, the corresponding payoff from exercising the
option will be restricted by the resetting strike price and a penalty factor. Using
the Dynamic Programming Principle (DPP) of [18], the Hamilton-Jacobi-Bellman
variational inequality(HJBVI) is established. The strategy and the payoff of ESOs
are obtained from the solution of this equation.

In general, the HJBVI equation method is an appropriate choice for a continuous
execution strategy model, because the target (i.e. the value function) of the model is
always a combination of a stochastic control problem and an optimal stopping prob-
lem. However, the HJBVI equation is usually not well-posed, and the value function
is often not smooth enough to satisfy the preconditions of the HJBVI equation in
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the classical sense. Therefore, it makes sense to ask for a weak solution such that
the value function is unique even though it is not smooth. Such a weak solution is
called viscosity solution [8] [9]. More properties of the weak solutions are discussed
by Soner(1997) [19]. In this paper, the existence and the comparison principle are
proved by using the DPP and the contradiction method. The uniqueness of the
solution will be obtained, too.

This paper is organized as follows. In Section 2, we rigorously establish the
mathematical model for the optimal execution strategy of an ESO with a limited
execution rate. We show that the value function is the viscosity solution of the
HJBVI equation. In Section 3, the comparison principle of the viscosity solutions is
proved, which allows to draw the conclusion of the uniqueness. In Section 4, some
numerical illustrative examples are analyzed and discussed.

2. Problem Formulation

We choose firstly an infinite time horizon to approximate the life period of the
ESO, because the life period can generally be as long as e.g. four years. Let Xt

denote the stock price at time t and follow the stochastic differential equation

dXt = µXtdt+ σXtdBt, t ∈ [0,+∞) X(0) = x , x ∈ (0,+∞) (2.1)

with positive µ and σ, where Bt is a standard Brownian motion.
We denote the number of ESOs yet held at time t by Y (t). Then Y (t) satisfies

the following first-order differential equation

dYt = −ltdt, t ∈ [0,+∞), Y (0) = y, y ∈ [0,+∞), (2.2)

where l ∈ [0, l̃] is the ratio of execution, and the constant l̃ is the upper boundary
of l. The vesting period is not considered in our model.

We deal thus with (Xt, Yt) at any time t, t ≥ 0, with the corresponding space
Q̄ = R+ × R̄+, where R̄+ = [0,+∞).

Definition 2.1. A control l is said to be admissible with respect to the initial val-
ues (x, y) ∈ Q̄ if (i) l is an Ft = σ{Xs : s < t} adapted, (ii) l ∈ [0, l̃] for all t ≥ 0 ,
(iii) For arbitrary l, (X(t), Y (t)) ∈ Q̄, when t ≥ 0.

We use L = L (x, y) to denote the set of all admissible controls.

In this model, the vesting period is not contained. The employee can thus
exercise the ESOs at any time t with a ratio of execution lt, and the corresponding
payoff is lt(Xt −K1)

+ with K1 being the initial strike price. Moreover, we assume
that once the employee quits the firm voluntarily, the ESOs will be exercised all at
once with a constant stopping penalization c and a resetting strike price K2, where
c ∈ (0, 1). Consequently, the payoff of the ESOs can be expressed as

J(x, y; τ, l) = E[

∫ τ∧κ

0

e−ρtlt(Xt −K1)
+dt+ ce−ρ(τ∧κ)Yτ∧κ(Xτ∧κ −K2)

+], (2.3)

where
κ = inf

0≤s≤∞
{s |Ys ≤ 0},
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ρ means the continuously market rate of return for discounting. τ is the leaving
time (i.e., early exercise time or optimal stopping time, τ ∈ T ), and T is the set
of all stopping times in [0,+∞). Let A := T × L .

To maximize the present value (2.3), we define the value function as follows:

W (x, y) = sup
(τ,l)∈A (x,y)

J(x, y; τ, l), (x, y) ∈ Q̄. (2.4)

We discuss now some properties of (2.4) for deducing the existence and uniqueness
of the viscosity solution.

Lemma 2.1. The value function W (x, y) (2.4) satisfies a quadratic growth in Q.
This means that there exists a finite positive constant Cp such that for any (x, y) in
Q holds

|W (x, y)| ≤ Cp(1 + x2 + y2). (2.5)

Proof. We replace the optimal control l by the optimal control l̃ in (2.4) and get

|W (x, y)| ≤ l̃

ρ− µ
x+

1

2
c(y2 + x2)

≤ Cp(1 + x2 + y2).

Remark 2.1. In the following, finite positive constants are always denoted by Cp.

Lemma 2.2. Assume ρ > µ. Then the following assertions hold:
(a) For each x, W (x, y) is non-decreasing in y.
(b) W (x, y) is continuous in (x, y) ∈ Q̄.

Proof. (a) Note that for 0 ≤ y1 ≤ y2, A (x, y1) ⊂ A (x, y2). Then l ∈ A (x, y1)
implies (τ, l) ∈ A (x, y2). We have

W (x, y2) ≥ J(x, y2; τ, l)

≥ J(x, y1; τ, l)

for any x. This implies W (x, y2) ≥ W (x, y1).

(b) Note that

Xi,t = xi exp(

∫ t

0

µ− 1

2
σ2ds+σBt), (i = 1, 2).

Then we have A (x1, y, z) = A (x2, y) for any x1 ≥ 0, x2 ≥ 0 and y ∈ R̄ .

For any (τ, l) ∈ A (x1, y) = A (x2, y) holds

|J(x2, y; τ, l)− J(x1, y; τ, l)|

=E[

∫ τ∧κ

0

e−ρtlt(X1,t −K1)
+dt−

∫ τ∧κ

0

e−ρtlt(X2,t −K1)
+dt]

+ cE[e−ρ(τ∧κ)Yτ∧κ(X1,τ∧κ −K2)
+ − e−ρ(τ∧κ)Yτ∧κ(X2,τ∧κ −K2)

+],

(2.6)
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where

E[

∫ τ∧κ

0

e−ρtlt(X1,t −K1)
+dt−

∫ τ∧κ

0

e−ρtlt(X2,t −K1)
+dt]

≤ l̃E[

∫ τ∧κ

0

e−ρt |x1 − x2| e(µ−
1
2σ

2)t+σBtdt]

≤ l̃ |x1 − x2|
ρ− µ

,

(2.7)

and

cE[e−ρ(τ∧κ)Yτ∧κ(X1,τ∧κ −K2)
+ − e−ρ(τ∧κ)Yτ∧κ(X2,τ∧κ −K2)

+]

≤ y · E[e−ρ(τ∧κ) |x1 − x2| e(µ−
1
2σ

2)(τ∧κ)+σBτ∧κ ]

≤ cy · |x1 − x2| .
(2.8)

According to

|W (x2, y)−W (x1, y)|
≤ sup

(τ,l)

|J(x2, y; τ, l)− J(x1, y; τ, l)| , (2.9)

the inequality (2.6)− (2.8) implies the continuity of W (x, y) with respect to x.

Next we show that W (x, y) is continuous in y. Referring again to (a), it suffices
now to show that for 0 ≤ y1 ≤ y2 < +∞, W (x, y1) ≤ W (x, y2). Let (τ2, l2) ∈
A (x, y1), such that

y2 =

∫ ∞

0

l2,sds, and W (x, y2) ≤ J(x, y2; τ2, l2)+ |y2−y1| .

Let κi = inf{t > 0 :
∫ t

0
li,sds = yi}, i ∈ {1, 2}. Define

l1=

 l2, t ∈ [0, κ1]

0, t ∈ (κ1,+∞)
, τ1 = inf{ t ≥ 0|

∫ τ2∧κ2

τ1∧κ1

l̃ds ≤ |y2−y1| , t ≤ τ2}.

It is now obvious that (τ1, l1) ∈ A (x, y1). Thus, we have

J(x, y2; τ2, l2)− J(x, y1; τ1, l1)

=E[

∫ τ2∧κ2

0

e−ρtl2,t(Xt −K1)
+dt−

∫ τ1∧κ1

0

e−ρtl1,t(Xt −K1)
+dt]

+ cE[e−ρ(τ2∧κ2)Yτ2∧κ2(Xτ2∧κ2 −K2)
+ − e−ρ(τ2∧κ2)Yτ∧κ1(Xτ2∧κ2 −K2)

+]

+ cE[e−ρ(τ2∧κ2)Yτ1∧κ1(Xτ2∧κ2 −K2)
+ − e−ρ(τ2∧κ2)Yτ1∧κ1(Xτ1∧κ1 −K2)

+]

+ cE[e−ρ(τ2∧κ2)Yτ1∧κ1(Xτ1∧κ1 −K2)
+ − e−ρ(τ1∧κ1)Yτ1∧κ1(Xτ1∧κ1 −K2)

+]

=(a) + (b) + (c) + (d).

(2.10)
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Using integration by parts for the first component of (2.10) we get

(a) = E[

∫ τ2∧κ2

0

e−ρtl2,t(Xt −K1)
+dt−

∫ τ1∧κ1

0

e−ρtl1,t(Xt −K1)
+dt]

= E[

∫ τ2∧κ2

τ1∧κ1

e−ρtl2,t(Xt −K1)
+dt

≤ E[

∫ τ2∧κ2

τ1∧κ1

e−ρtl2,tXtdt

= E[

∫ τ2∧κ2

τ1∧κ1

e−ρtXtd

∫ t

τ1∧κ1

l2,sds

= E[e−ρtXtd

∫ t

τ1∧κ1

l2,sds|τ2∧κ2
τ1∧κ1

+

∫ τ2∧κ2

τ1∧κ1

∫ t

τ1∧κ

l2,sds · e−ρt(ρ− µ)Xtdt]

≤ (x+ 1) |y2 − y1| ,
(2.11)

The second part (b) becomes now

(b) = cE[e−ρ(τ2∧κ2)Yτ2∧κ2
(Xτ2∧κ2

−K2)
+ − e−ρ(τ2∧κ2)Yτ1∧κ1

(Xτ2∧κ2
−K2)

+]

= cE[(Yτ2∧κ2 − Yτ1∧κ1)e
−ρ(τ2∧κ2)(Xτ2∧κ2 −K2)

+]

≤ cx |y2 − y1| ,
(2.12)

and for the third component (c) holds

(c) = cE[e−ρ(τ2∧κ2)Yτ1∧κ1(Xτ2∧κ2 −K2)
+ − e−ρ(τ2∧κ2)Yτ1∧κ1(Xτ1∧κ1 −K2)

+]

≤ cy2 · E[e−ρ(τ2∧κ2) |Xτ2∧κ2 −Xτ1∧κ1 |].
(2.13)

Using the Itô-isometry, we obtain

E[e−ρ(τ2∧κ2)(Xτ2∧κ2 −Xτ1∧κ1)]
2

≤2E(

∫ τ2∧κ2

τ1∧κ1

µe−ρsXsds)
2 + 2E[e−ρ(τ2∧κ2)

∫ τ2∧κ2

τ1∧κ1

σXsdBs]
2

≤2Cp(τ2 ∧ κ2 − τ1 ∧ κ1) · E(

∫ τ2∧κ2

τ1∧κ1

∣∣e−ρsXs

∣∣2ds) + 2CpE[

∫ τ2∧κ2

τ1∧κ1

∣∣e−ρsXs

∣∣2ds]
≤2Cp · x2(τ2 ∧ κ2 − τ1 ∧ κ1)

2
+ 2Cp · x2(τ2 ∧ κ2 − τ1 ∧ κ1).

Because
∫ τ2∧κ2

τ1∧κ1
l̃ds ≤ |y2 − y1|, we have |τ2 ∧ κ2 − τ1 ∧ κ1| ≤ |y2−y1|

l̃
. Thus,

E[e−ρ(τ2∧κ2) |Xτ2∧κ2 −Xτ1∧κ1 |]

≤E[(e−ρ(τ2∧κ2)(Xτ2∧κ2 −Xτ1∧κ1)
2]

1
2

≤Cp · x
√

(τ2 ∧ κ2 − τ1 ∧ κ1)
2
+ (τ2 ∧ κ2 − τ1 ∧ κ1)

≤Cp · x
√

|y2 − y1|2+ |y2 − y1|.

(2.14)
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Together with (2.13) and (2.14), we obtain

(c) = cE[e−ρ(τ2∧κ2)Yτ1∧κ1(Xτ2∧κ2 −K2)
+ − e−ρ(τ2∧κ2)Yτ1∧κ1(Xτ1∧κ1 −K2)

+]

≤ Cp · xy2
√
|y2 − y1|2+ |y2 − y1|.

(2.15)

Consequently, we receive

(d) = cE[e−ρ(τ2∧κ2)Yτ1∧κ1(Xτ1∧κ1 −K2)
+ − e−ρ(τ1∧κ1)Yτ1∧κ1(Xτ1∧κ1 −K2)

+]

= cE[Yτ1∧κ1e
−ρ(τ1∧κ1)(Xτ1∧κ1 −K2)

+(e−ρ(τ2∧κ2−τ1∧κ1) − e0)]

≤ cy2x(τ2 ∧ κ2 − τ1 ∧ κ1)

≤ c
xy2 |y2 − y1|

l̃
.

(2.16)
With (2.10)–(2.16), we obtain now

J(x, y2; τ2, l2)− J(x, y1; τ1, l1)

≤(x+ 1) |y2 − y1|+ cx |y2 − y1|+ Cpxy2

√
|y2 − y1|2+ |y2 − y1|+ c

xy2 |y2 − y1|
l̃

≤((
cy2

l̃
+ c+ 1)x+ 1) |y2 − y1|+ Cpxy2

√
|y2 − y1|2+ |y2 − y1|.

(2.17)

It follows now that

W (x, y1) ≥ J(x, y1; τ1, l1)

≥J(x, y2; τ2, l2)− ((
cy2

l̃
+ c+ 1)x+ 1) |y2 − y1|+ Cp · xy2

√
|y2 − y1|2+ |y2 − y1|

≥W (x, y2)− ((
cy2

l̃
+ c+ 2)x+ 1) |y2 − y1|+ Cp · xy2

√
|y2 − y1|2+ |y2 − y1|.

(2.18)

This completes the proof of the continuity of W (x, y) with respect to y.
Referencing [18], we show now two DPPs of (2.4) for deducing the corresponding

HJBVI equations.

Proposition 2.1. For all (x, y) ∈ Q̄ and any stopping time θ, we have [18].

W (x, y) = sup
(τ,l)∈A (x,y)

E[

∫ τ∧θ∧κ

0

e−ρtlt(Xt −K1)
+
dt+ 1{τ<(θ∧κ)}ce

−ρτYτ (Xτ −K2)
+

+ 1{τ≥(θ∧κ)}e
−ρ(θ∧κ)W (Xx

θ∧κ, Y
y
θ∧κ)].

Proposition 2.2. Let ε > 0. For all (x, y) ∈ Q̄, and for each admissible control
l ∈ L define the stopping time

τεx,y,l = inf{t ≥ 0 |W (Xx
t , Y

y
t ) ≤ cY y

t (X
x
t −K2)

+ + ε}.

Therefore, if τ ≤ τεx,y,l for all l ∈ L , we have [18].

W (x, y) = sup
l∈L

E[

∫ τ

0

e−ρtlt(Xt −K1)
+
dt+ e−ρτW (Xx

τ , Y
y
τ )].
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According to the general hypothesis and the dynamic programming principle
(DPP), we derive formally the equation for the value function (2.4):

max
{

sup
l∈L (x,y)

{−l
∂W

∂y
+ l(x−K1)

+}+ µx
∂W

∂x
+

1

2
σ2x2 ∂

2W

∂x2
− ρW,

cy(x−K2)
+ −W

}
= 0, (x, y) ∈ Q,

(2.19)

W (x, 0) = 0, x ∈ R+, (2.20)

where Q = R+2. Since this is a combination of the Hamilton–Jacobi–Bellman (HJB)
equation of stochastic control and the variational inequality (VI) of optimal stop-
ping, we denote (2.19) from now by HJBVI.

Because the first term of (2.19) is linear in l, the optimal ESO–strategy can be
described by the following table:

Table 1. Optimal Strategy of ESOs

Definition Strategy Condition

Holding Region(HR) l=0 −∂W
∂y +(x−K1)

+
>0, W < cy(x−K2)

+

Execution Line(EL) —- Between the HR and ER

Execution Region(HR) l= l̃ −∂W
∂y +(x−K1)

+≤0, W<cy(x−K2)
+

Stopping Line(SL) —- Between the ER and SR

Stopping Region(SR) Execute all W ≥ cy(x−K2)
+

We will now prove that the value function defined in (2.4) is the viscosity solution
of the HJBVI equation (2.19)–(2.20). We use now the following notations:

USC(Q̄) := {W : Q̄ → R̄+|W is upper-semicontinuous in Q̄}.

LSC(Q̄) := {W : Q̄ → R̄+|W is lower-semicontinuous in Q̄}.
Above all, we introduce the following notion of a viscosity solution [9].

Definition 2.2. Let W : Q → R be locally bounded.

F (x, y,W,
∂W

∂x
,
∂W

∂y
,
∂2W

∂x2
)

=max
{

sup
l∈L (x,y)

{−l
∂W

∂y
+ l(x−K1)

+}

µx
∂W

∂x
+

1

2
σ2x2 ∂

2W

∂x2
− ρW, cy(x−K2)

+ −W
}
.

(2.21)

(1) W ∈ USC(Q) is a viscosity subsolution of (2.19) - (2.20) if

F (x, y,W,
∂ϕ

∂x
(x, y),

∂ϕ

∂y
(x, y),

∂2ϕ

∂x2
(x, y)) ≥ 0

for all (x, y) ∈ Q and for all ϕ ∈ C2(Q) such that (x, y) is a maximum point of
W − ϕ.
(2) W ∈ LSC(Q) is a viscosity supersolution of (2.19) - (2.20) if

F (x, y,W,
∂ϕ

∂x
(x, y),

∂ϕ

∂y
(x, y),

∂2ϕ

∂x2
(x, y)) ≤ 0
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for all (x, y) ∈ Q and for all ϕ ∈ C2(Q) such that (x, y) is a minimum point of
W − ϕ.

Definition 2.3. W is said to be a viscosity solution of (2.19)–(2.20) if it is both a
subsolution and supersolution of (2.19)–(2.20) .

Next, we will prove that the value function (2.4) is a viscosity solution which
exhibits at most quadratic growth. This implies the existence for problem (2.19)–
(2.20).

Theorem 2.1. The value function (2.4) is a viscosity solution of the HJBVI–
equation (2.19)–(2.20).

Proof. The conditions (2.20) are obviously satisfied by (2.4). We prove now that
the value function (2.4) is a viscosity subsolution of the HJBVI equation (2.19)–
(2.20). Let (x, y) ∈ Q and let ϕ ∈ C2(Q) be a test function, such that

0 = (W − ϕ)(x, y) = max
(x,y)∈Q

(W − ϕ)(x, y). (2.22)

This implies
W (x, y) ≤ ϕ(x, y). (2.23)

Because of the definition of (2.4), we have W (x̄, ȳ) ≥ cȳ(x̄ − K2)
+. If W (x̄, ȳ) =

cȳ(x̄−K2)
+, the value function (2.4) is a viscosity subsolution of the HJBVI equa-

tion (2.19)–(2.20).
Assume W (x̄, ȳ) > cȳ(x̄−K2)

+. For any admissible control l, define

τε
∆
= τεx̄,ȳ,l = inf{y ≥ 0

∣∣∣W (X x̄
t , Y

ȳ
t ) ≤ cY ȳ

t (X
x̄
t −K2)

+
+ ε}. (2.24)

Let θ > 0 be a stopping time. We have

W (x̄, ȳ) = sup
l∈L (x̄,ȳ)

E[

θ∧τε∧κ∫
0

e−ρtlt(X
x̄
t −K1)

+dt

+ e−ρ(θ∧τε∧κ)cY ȳ
θ∧τε∧κ(X

x̄
θ∧τε∧κ −K2)

+
].

(2.25)

Hence

W (x̄, ȳ) ≤ sup
l∈L (x̄,ȳ)

E[

θ∧τε∧κ∫
0

e−ρtlt(X
x̄
t −K1)

+dt

+ e−ρ(θ∧τε∧κ)ϕ(X x̄
θ∧τε∧κ, Y

ȳ
θ∧τε∧κ)].

(2.26)

By using Itô’s formula, we get

0 ≤ sup
l∈L (x̄,ȳ)

E[

θ∧τε∧κ∫
0

e−ρtlt(X
x̄
t −K1)

+ + (Ll − ρ)ϕ(X x̄
t , Y

ȳ
t )dt, (2.27)

where Ll = −l ∂
∂y + µx ∂

∂x + 1
2σ

2x2 ∂2

∂x2 . Let θ → 0. We obtain

Llϕ(x̄, ȳ)− ρW (x̄, ȳ) + l(x̄−K1)
+ ≥ 0 (2.28)
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by the mean value theorem. Thus,

F (x, y,W,
∂ϕ

∂x
(x, y),

∂ϕ

∂y
(x, y),

∂2ϕ

∂x2
(x, y)) ≥ 0. (2.29)

It remains to show that the value function (2.4) is a viscosity supersolution of
the HJBVI eqution (2.19)–(2.20). Let (x, y) ∈ Q, and let ϕ ∈ C2(Q) be a test
function such that

0 = (W − ϕ)(x, y) = min
(x,y)∈Q

(W − ϕ)(x, y). (2.30)

This implies
ϕ(x, y) ≤ W (x, y), (x, y) ∈ Q.

Let θ > 0 be a stopping time. We apply the dynamic programming principle
(cf. proposition 2.1). For arbitrary l(·) and τ = +∞, we have

W (x̄, ȳ) ≥ sup
l∈L (x̄,ȳ)

E[

θ∧κ∫
0

e−ρtlt(X
x̄
t −K1)

+dt

+ e−ρ(θ∧κ)W (X x̄
(θ∧κ), Y

ȳ
(θ∧κ))].

(2.31)

Hence

W (x̄, ȳ) ≥ sup
l∈L (x̄,ȳ)

E[

θ∧κ∫
0

e−ρtlt(X
x̄
t −K1)

+dt

+ e−ρ(θ∧κ)ϕ(X x̄
(θ∧κ), Y

ȳ
(θ∧κ))].

(2.32)

Applying Itô’s formula and dividing by θ, we obtain

0 ≥ sup
l∈L (x̄,ȳ)

E[

θ∧κ∫
0

e−ρtlt(X
x̄
t −K1)

+dt

+

θ∧κ∫
0

e−ρt(Llϕ− ρϕ)(X x̄
t , Y

ȳ
t )dt].

(2.33)

We replace now the control lt by any constant control l∗. With θ → 0, we have

Ll∗ϕ(x̄, ȳ)− ρW (x̄, ȳ) + l∗(x̄−K1)
+ ≤ 0 (2.34)

by the mean value theorem. Because of the definition of (2.4), it is obvious that
W (x̄, ȳ) ≥ cȳ(x̄−K2)

+. Referring to the arbitrariness of l∗ in (2.34), we have

F (x, y,W,
∂ϕ

∂x
(x, y),

∂ϕ

∂y
(x, y),

∂2ϕ

∂x2
(x, y)) ≤ 0. (2.35)

Consequently, (2.4) is a viscosity subsolution of (2.19)–(2.20). Together with (2.31)
and (2.35), we deduce that (2.4) is a viscosity solution of (2.19)–(2.20). This com-
pletes the proof.
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We choose the Euler transformation. Let ξ = lnx and u(ξ, y) = W (x, y). We
have

max
{

sup
l∈L (ξ,y)

{−l
∂u

∂y
+ l(eξ −K1)

+}+ (µ− 1

2
σ2)

∂u

∂ξ
+

1

2
σ2 ∂

2u

∂ξ2
− ρu,

cy(eξ −K2)
+ − u

}
= 0, (ξ, y) ∈ Q1,

(2.36)

u(ξ, 0) = 0, ξ ∈ R, (2.37)

where Q1 = R×R+ and Q̄1 = R× R̄+ .

Lemma 2.3. For all (ξ, y) ∈ Q̄1, u(ξ, y) is the viscosity solution of (2.36)–(2.37).
Furthermore, there exists a positive constant Cp such that

u(ξ, y) ≤ Cp(e
2ξ + |y|2 + 1).

3. Comparison Principle and Uniqueness

In this section, we proceed to develop the comparison principle and the unique-
ness of the viscosity solutions to (2.36)–(2.37). Firstly, we introduce a formulation
of viscosity sub- and supersolutions based on the so-called semijets.

Definition 3.1. Let

P 2,+U(u) ={
(
q,M

)
∈ R2 × S2 |U(u) ≤ U(u) + q(u− u)

+
1

2
M(u− u)(u− u) + o(|u− u|2)|Q1 ∋ u → ū}

be the set of second–order superjet of a USC function U at point u ∈ Q1, where S2

is 2× 2 symmetric matrix, and u = (x, y) and let

P 2,−V (u) ={
(
q,M

)
∈ R2 × S2 |V (u) ≥ V (u) + q(u− u)

+
1

2
M(u− u)(u− u) + o(|u− u|2)|Q1 ∋ u → ū}

be the set of second-order subjet of a LSC function V at point u ∈ Q1.
Superjet and subjet are both called semijet.

Then a point
(
q,M

)
∈ R2×S2 is said to be in the closure of set P

2,+
U(u)(P

2,−
V (u))

if there exists a sequence
(
uk, qk,Mk

)
∈ Q1×R2×S2 such that

(
uk, U(uk), qk,Mk

)
→(

u,U(u), q,M
)
as k → ∞, where

(
qk,Mk

)
∈ P 2,+U(u)

(
P 2,−V (u)

)
for all k.

Definition 3.2. (1) A locally bounded function U ∈ USC
(
Q

1
)

is said to be a

viscosity subsolution of (2.36) if and only if ∀(ξ, y) ∈ Q1 and ∀(q,M) ∈ P 2,+U(ξ, y)

max{ sup
l∈L (ξ,y)

[pq+
1

2
tr

(
ΣΣTM

)
+l(eξ −K1)

+]−ρU, cy(eξ−K2)
+−U} ≥ 0, (3.1)

where

p =

µ− 1
2σ

2

−l

 , Σ =

σ 0

0 0

 .
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(2) A locally bounded function U ∈ LSC
(
Q

1
)
is said to be a viscosity supersolution

of (2.36) if and only if ∀(ξ, y) ∈ Q1 and ∀(q,M) ∈ P 2,−U(ξ, y)

max{ sup
l∈L (ξ,y)

[pq+
1

2
tr

(
ΣΣTM

)
+l(eξ −K1)

+]−ρV, cy(eξ−K2)
+−V } ≤ 0. (3.2)

We refer now to the maximum principle for semicontinuous functions.

Lemma 3.1 (Ishii’s lemma [9]). Let Ui ∈ USC (Oi) for i = 1, · · · , k, where Qi is
a locally compact subset of RN . Let ϕ be defined on an open neighbourhood of O1 ×
· · ·×Ok such that ϕ(x1, · · · , xk) is twice continuously differentiable in (x1, · · · , xk) ∈
O1 × · · · ×Ok . Suppose

(x̂1, · · · , x̂k) ∈ O1 × · · · ×Ok,

F (x1, · · · , xk) = U1(x1) + · · ·+ Uk(xk)− ϕ(x1, · · · , xk) ≤ F (x̂1, · · · , x̂k),

for (x1, · · · , xk) ∈ O1 × · · · × Ok. Then for each η > 0, there are Mi ∈ SNi such
that 

(Dxiϕ(x̂1, · · · , x̂k),Mi) ∈ P
2,+

Ui(xi) for i = 1, · · · , k,

−
(

1
η + ∥A∥

)
I ≤


M1 · · · 0
...

. . .
...

0 · · · MK

 ≤ A+ ηA2,
(3.3)

where A = (D2
xϕ)(x̂1, · · · , x̂k). The norm of a symmetric matrix A is defined as

∥A∥ = sup{|⟨Aξ, ξ⟩| : |ξ| ≤ 1}.

We prove now a comparison principle for the viscosity sub- and super-solutions
that satisfies quadratic growth.

Theorem 3.1. Suppose ρ ≥ 1
2 ρ̂, and U ∈ USC

(
Q̄1

)
is a viscosity subsolution of

(2.36), V ∈ LSC
(
Q̄1

)
is a viscosity supersolution of (2.36), satisfying U(ξ, y) ≤

V (ξ, y), for (ξ, y) ∈ ∂Q1. Then we have U(ξ, y) ≤ V (ξ, y), for (ξ, y) ∈ Q
1
. It holds

∂Q1 = Q̄1 \Q1, ρ̂ = max{(2µ+ λσ2)(1 + λ), ε(2µ+ σ2)} and λ > 1.

Proof. To begin with, we introduce the following notations and operators:
Let P := (ξ, y), P ∗ := (ξ∗, y∗), P1 := (ξ1, y1),P2 := (ξ2, y2). P1,α, P2,α, P1,ε, P2,ε, Pε

are defined in an analogous way.

Let |P1P2| =
√

(ξ1 − ξ2)
2
+ (y1 − y2)

2
, ∥P∥n = e(1+n)ξ + |ξ|2 + |y|2n, n ∈ R+.

We argue by contradiction, which yields to

U(P ∗) ≥ V (P ∗) + 2δ, for some P ∗ ∈ Q
1

(3.4)

with δ > 0.
For any 0 < ε < 1 and α, we introduce the following functions:

Φ (P1, P2) = U(P1)− V (P2)− ϕ(P1, P2),

ϕ(P1, P2) =
α

2
|P1P2|2 + ε(∥P1∥λ + ∥P2∥λ),
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1 < λ.
Let

Fα = sup
R×R̄+×R×R̄+

Φ(P1, P2) . (3.5)

From the growth condition and upper semicontinuity of Φ (P1, P2) we get that
Fα < +∞ and there exists (P1,α, P2,α) such that

Fα = Φ(P1,α, P2,α) . (3.6)

Hence
Fα ≥ U(P ∗)− V (P ∗)− 2ε∥P ∗∥λ ≥ δ (3.7)

for each ε small enough. This implies that U(P1,α) ≥ V (P2,α) + δ, for each α > 0
and ε small enough.

Noting that Φ (0, 0) ≤ Φ(P1,α, P2,α) and by the linear growth condition, we have

U(0)− V (0)− 2ε ≤U(P1,α)− V (P2,α)

− α

2
|P1,αP2,α|2 − ε

(
∥P1,α∥λ + ∥P2,α∥λ

)
.

Then we obtain

α

2
|P1,αP2,α|2 + ε

(
∥P1,α∥λ + ∥P2,α∥λ

)
− 2ε ≤ U(P1,α)− V (P2,α)− U(0) + V (0)

≤ Cp

(
e2ξ1,α + y21,α + e2ξ2,α + y22,α+1

)
.

This means that there exists a positive constant C1,ε such that ∥P1,α∥λ +

∥P2,α∥λ ≤ C1,ε, where C1,ε is determined by ε.
From the above arguments we deduce that there exists a subsequence, still de-

noted by (P1,α, P2,α), which converges toward some (P1,ε, P2,ε) ∈ Q̄1×Q̄1, as α → ∞
(for each fixed ε).

Furthermore, we can get α
2 |P1,αP2,α|2 ≤ C2,ε where C2,ε is a positive constant

for any fixed ε .Thus, we have ξ1,α − ξ2,α → 0 , y1,α − y2,α → 0, as α → ∞, and
P1,ε = P2,ε. Let Pε = P1,ε = P2,ε.

Considering that Φ (P1,ε, P2,ε) ≤ Φ (P1,α, P2,α), we get

α

2
|P1,αP2,α|2 ≤U(P1,α)− U(P1,ε)− V (P2,α) + V (P2,ε)

+ ε
(
∥P1,ε∥λ + ∥P2,ε∥λ

)
− ε

(
∥P1,α∥λ + ∥P2,α∥λ

)
.

The semicontinuity of U and V help us to yield α
2 |P1,αP2,α|2 → 0 as α → ∞ (for

each fixed ε).
Since Φ (P ∗, P ∗) ≤ Φ(P1,α, P2,α) we have

ε
(
∥P1,α∥λ + ∥P2,α∥λ

)
≤ U(P1,α)− V (P2,α)− U(P ∗) + V (P ∗) + 2ε∥P ∗∥λ

≤ U(P1,α)− V (P2,α) + 2ε∥P ∗∥λ.

If Pε ∈ ∂Q1, then it is obvious that U(P1,α)−V (P2,α) ≥ Fα ≥ U(P ∗)−V (P ∗)−
2ε∥P ∗∥λ. From the upper semicontinuity of U − V and U(Pε) ≤ V (Pε), as α → ∞
and ε → 0, we get U(P ∗) ≤ V (P ∗). This contradicts to (3.4). Therefore, Pε ∈ Q1.
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We assume now Pε ∈ Q1 such that P1,α ∈ Q1, P2,α ∈ Q1, for any α being large
enough. An application of Ishii’s lemma yields that there exist Mα, Nα such that

(q1,α,Mα) ∈ P̄ 2,+U(P1,α),

(q2,α, Nα) ∈ P̄ 2,−V (P2,α),

where q1,α = DP1,αϕ, q2,α = DP2,αϕ.
Since U and V are viscosity subsolutions and viscosity supersolutions of (2.36),

there exists a constant l∗, such that

max

{µ− 1
2σ

2

−l∗

T α(ξ1,α − ξ2,α) + ε[(1 + λ)e(1+λ)ξ1,α + 2ξ1,α]

α(y1,α − y2,α) + 2λεy2λ−1
1,α


+

1

2
tr


σ 0

0 0

σ 0

0 0

T

Mα

}+ l∗(eξ1,α −K1)
+ − ρU,

cy1,α(e
ξ1,α −K2)

+ − U

}
≥ 0,

(3.8)

max

{µ− 1
2σ

2

−l∗

T α(ξ1,α − ξ2,α)− ε[(1 + λ)e(1+λ)ξ2,α + 2ξ2,α]

α(y1,α − y2,α)− 2λεy2λ−1
2,α


+

1

2
tr


σ 0

0 0

σ 0

0 0

T

Mα

}+ l∗(eξ2,α −K1)
+ − ρV,

cy2,α(e
ξ2,α −K2)

+ − V

}
≤ 0.

(3.9)

We compute now the difference of (3.8) and (3.9) and get

max{fa,1, fa,2} −max{fb,1, fb,2} ≥ 0, (3.10)

where fa,1, fa,2, fb,1 and fb,2 are corresponding expressions in (3.8) and (3.9). Thus,
we have

fa,1 − fb,1 ≥ 0, (3.11)

or
fa,2 − fb,2 ≥ 0. (3.12)

Firstly, we prove the contradiction to (3.11).
From (3.11), we obtain

fa,1 − fb,1 = I + II − ρ (U − V ) + l∗(eξ1,α −K1)
+ − l∗(eξ2,α −K1)

+ ≥ 0,

where

I =

µ− 1
2σ

2

−l∗

T α(ξ1,α − ξ2,α) + ε[(1 + λ)e(1+λ)ξ1,α + 2ξ1,α]

α(y1,α − y2,α) + 2λεy2λ−1
1,α

 (3.13)

−

µ− 1
2σ

2

−l∗

T α(ξ1,α − ξ2,α)− ε[(1 + λ)e(1+λ)ξ2,α + 2ξ2,α]

α(y1,α − y2,α)− 2λεy2λ−1
2,α

 ,
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II =
1

2
tr

CCT CDT

DCT DDT

Mα 0

0 −Nα

 , (3.14)

and C =

σ 0

0 0

 = D.

From Ishii’s lemma we concludeMα 0

0 −Nα

 ≤ A+
1

α
A2,

where A = α

 I −I

−I I

+ ε

R1 0

0 R2

,

Ri =

 (1 + λ)2e(1+λ)ξi,α + 2 0

0 2λ(2λ− 1)y2λ−2
i,α

 , i ∈ {1, 2},

and

A2 = 2α2

 I −I

−I I

+ εα

 2R1 −R1 −R2

−R1 −R2 2R2

+ ε2

R2
1 0

0 R2
2

 .

After simplifying the above matrices, we get

A+
1

α
A2 =3α

 I −I

−I I

+ ε

R1 0

0 R2

+ ε

 2R1 −R1 −R2

−R1 −R2 2R2


+

ε2

α

R2
1 0

0 R2
2

 .

(3.15)

Therefore

II =
1

2
tr

CCT CDT

DCT DDT

Mα 0

0 −Nα


≤ 1

2
tr

CCT CDT

DCT DDT

 (A+
1

α
A2)

 (3.16)

From (3.13)–(3.16), we obtain

lim
α→∞

I = 2ε(µ− 1

2
σ2)[(1 + λ)e(1+λ)ξε + 2ξε]− 4εl∗λy2λ−1

ε ,

lim
α→∞

II ≤ εσ2[(1 + λ)2e(1+λ)ξε + 2].
(3.17)
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Consequently, from (3.11) – (3.17) we get

0 ≤ ε(2µ− σ2)(1 + λ)e(1+λ)ξε + 4ε(µ− 1

2
σ2)ξε + εσ2(1 + λ)2e(1+λ)ξε + 2εσ2

− ρ(U(Pε)− V (Pε))

≤ ε(2µ+ λσ2)(1 + λ)e(1+λ)ξε + ε(2µ+ σ2)ξ2ε + ε(2µ+ 3σ2)− ρ(U(Pε)− V (Pε))

≤ ε(2µ+ 3σ2) + εmax{(2µ+ λσ2)(1 + λ), ε(2µ+ σ2)}∥Pε∥λ − ρ(U(Pε)− V (Pε))

≤ ε(2µ+ 3σ2) + ερ̂∥P ∗∥λ − (ρ− 1

2
ρ̂)(U(Pε)− V (Pε))

≤ ε(2µ+ 3σ2) + ερ̂∥P ∗∥λ − (ρ− 1

2
ρ̂)δ.

If ε is chosen sufficiently small, this leads to a contradiction of (3.11).
Next, from (3.8)–(3.12) we get

lim
α→∞

fa,2 − fb,2 = −(U(Pε)− V (Pε)) < −δ, (3.18)

which leads to a contradiction of (3.12). This completes the proof.

Corollary 3.1. The value function u(ξ, y) is the unique viscosity solution of (2.36)–
(2.37).

The uniqueness in corollary 3.1 is obvious after the conclusions of lemma 2.1
and theorem 3.1.

4. Numerical Simulation

In this section, we will give some numerical examples to illustrate our results.

4.1. Finite Difference Scheme

The finite difference method, which is discussed e.g. by [11], is used in the
following simulation to obtain a positive coefficient discretization of equation (2.19).
The main steps can be summarized as following:

(Step 1:) Consider the step size ∆x and ∆y for x, y. Define the infinite lattice

Σh
Inf = {(x, y) = (i∆x, j∆y)|i, j = 0, 1, 2, · · · } .

For actual numerical calculations, Σh
Inf must be replaced by some finite lattice Σh

F

as the subset of Σh
Inf . Denote

Σh
F =

{
(x, y) ∈ Σh

Inf |0 ≤ x ≤ M, 0 ≤ y ≤ N
}
,

where M > 0, N > 0 is large enough and M = m∆x,N = n∆y.
Let i = 0, · · · ,m; k = 0, · · · , n. Then we have xi = i∆x, yk = k∆y. The

equation (2.19) can be discretized using forward, backward or central differencing
to obtain

− l

∆y
(W k+1

i −W k
i ) + l(i∆x−K1)

+ + µi(W k+1
i −W k+1

i−1 )

+
1

2
σ2i2(W k+1

i+1 − 2W k+1
i +W k+1

i−1 )− ρW k+1
i = 0,

(4.1)
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where l can be assigned any initial value.
(Step 2:) Calculate the vector (W k+1)1 fromW k. If

∣∣(W k+1)1 − (W k+1)0
∣∣ < er,

the iteration stops, where er is the allowed error, and (W k+1)0 = W k. Otherwise,
compute l1 by (W k+1)1 and replace l in (2.20).

(Step 3:) Repeat the step 3, until
∣∣(W k+1)n − (W k+1)n−1

∣∣ < er.
(Step 4:) W k+1 = max{(W k+1)n, ck∆y(i∆x−K2)

+}.

4.2. Computational Examples

The parameters for this section are shown in Table 2.

Table 2. Parameters for this numerical simulation

Parameter Value

µ 0.03
σ 0.2
ρ 0.08

l̃ 1
K1 3
K2 4
c 0.6
M 20
N 32

Firstly, we show the the numerical values of the employee stock options obtained
from numerical calculation by using the finite difference method discussed in section
4.1 (see Figure 1). It is obvious that W is monotonically increasing in X and Y .
Secondly, we concentrate on the impacts of different parameters in our model.

Figure 1. The present value

We observe from Figure 2 that the SL and EL with higher µ are respectively
standing above those with lower µ. In fact, µ is the drift or growth factor of the price
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process. The higher µ, the higher the price of the stock. To achieve a maximum
payoff of the all ESOs, the employees will partly or totally exercise the ESOs with
higher µ until the stock price rises.
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Figure 2. The strategy with different µ

In Figure 3, we show the plots of ER and SR with different ρ, ρ being the market
rate of return. A higher ρ corresponds to better investment chances in the market.
The employees will here be inspired to exercise more ESOs to invest other financial
products in the market. Thus, the SL and EL with a higher ρ lie below those with
a lower ρ, respectively.
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Figure 3. The strategy with different ρ

In Figure 4, we plot the strategy against different initial strike prices K1. On
the one hand, it is obvious that a higher K1 corresponds to a higher stock price,
which keeps the ESO in the money. On the other hand, a higher K1 corresponds
to a higher risk of the option, so the corresponding to the SL being situated lower.
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Figure 4. The strategy with different K1

We also plot the strategy under varying c. The SL is sensitive to c because the
value c effects directly the payoff at the stopping time τ . The employees will thus
completely exercise the ESOs with a lower c at a higher price. The SL with the
lower c is thus above their corresponding line. This means the employee will wait
for a higher stock price to exercise the options with the lower c, because the waiting
time cost will be compensated by the one-time execution returns.
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Figure 5. The strategy with different c

5. Conclusions

In this paper, we examine optimal strategies for exercising small numbers of
ESOs over an infinite time horizon. In particular, a single–time execution is consid-
ered. The objective is to maximize the expected overall payoff. The value function
for developing the optimal execution strategy is established, and a fully nonlinear
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corresponding equation is derived by using the dynamic programming principle.
The uniqueness and comparison principle of the viscosity solutions of the related
HJBVI equation are proved. Finally, numerical examples are given and interpreted.
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